
Audio Toolbox™
Reference

R2020a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Audio Toolbox™ Reference Guide
© COPYRIGHT 2016 - 2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2016 Online only New for Version 1.0 (Release 2016a)
September 2016 Online only Revised for Version 1.1 (Release 2016b)
March 2017 Online only Revised for Version 1.2 (Release 2017a)
September 2017 Online only Revised for Version 1.3 (Release 2017b)
March 2018 Online only Revised for Version 1.4 (Release 2018a)
September 2018 Online only Revised for Version 1.5 (Release 2018b)
March 2019 Online only Revised for Version 2.0 (Release 2019a)
September 2019 Online only Revised for Version 2.1 (Release 2019b)
March 2020 Online only Revised for Version 2.2 (Release 2020a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Apps
1

Functions
2

System Objects
3

Classes
4

Blocks
5

iii

Contents

Apps

1

Audio Labeler
Define and visualize ground-truth labels

Description
The Audio Labeler app enables you to label ground-truth data at both the region level and file level.

Using the app, you can:

• Create label definitions for consistent and fast labeling.
• Visualize the time-domain waveform during playback.
• Interactively specify labels at the file level and region level. You can specify regions by drawing

directly on the time-domain waveform.
• Record new audio to add to your dataset.
• Apply automatic labeling of detected speech regions.
• Apply automatic word labeling using third-party speech-to-text transcription services. See

“Speech-to-Text Transcription” for more information.

The app exports data as a labeledSignalSet object. You can use labeledSignalSet to train a
network, classifier, or analyze data and report statistics.

Open the Audio Labeler App
• MATLAB® toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter audioLabeler.

Examples

Create Keyword Spotting Mask Using Audio Labeler

In this example, you create a logical mask for an audio signal where ones correspond to the utterance
"yes" and zeros correspond to the absence of the utterance "yes". To create the mask, you use the
IBM™ speech-to-text API through the Audio Labeler app.

This example requires that you install the “Speech-to-Text Transcription” functionality.

Listen to the audio file that you want to label and then visualize it in the time domain.

[audioIn,fs] = audioread("KeywordSpeech-16-16-mono-34secs.flac");

sound(audioIn,fs)

t = (0:numel(audioIn)-1)/fs;
plot(t,audioIn)
xlabel('Time (s)')
ylabel('Amplitude')

1 Apps

1-2

Open the Audio Labeler app and load the KeywordSpeech-16-16-mono-34secs.flac file into
the Data Browser.

 Audio Labeler

1-3

Under Automation, click Speech to Text. On the Speech to Text tab, select your preferred speech-
to-text API. This example uses the IBM speech-to-text API. Select Segment Words so that the text
labels are divided into individual words instead of sentences. Click Run to interface with the speech-
to-text API and create a new region of interest (ROI) label. The ROI label contains words detected and
labeled by IBM's speech-to-text API.

1 Apps

1-4

Close the Speech to Text tab and then export the labeled signal set to the workspace.

 Audio Labeler

1-5

The labels are exported to the workspace as labeledSignalSet object with a time stamp. Set the
variable labeledSet to the time-stamped labeledSignalSet object.

labeledSet = myLabeledSet;

Inspect the SpeechContent label.

speechContent = labeledSet.Labels.SpeechContent{1}

speechContent=52×2 table
 ROILimits Value
 ____________ _________

 0.87 1.31 "first"
 1.31 1.41 "you"
 1.41 1.63 "said"
 1.63 2.22 "yes"
 2.25 2.52 "then"
 2.52 3.03 "no"
 3.09 3.22 "and"
 3.22 3.32 "you"
 3.32 3.52 "said"
 3.52 3.94 "yes"
 3.94 4.16 "then"
 4.16 4.66 "no"
 4.83 5.39 "yes"
 5.42 5.57 "the"

1 Apps

1-6

 5.57 6.07 "no"
 6.15 6.56 "driving"
 ⋮

The speech-to-text API returns the limits of the ROI labels in seconds. Use the SpeechContent table
to create a logical vector.

keywordLabels = speechContent(speechContent.Value == "yes",:);
keywordROILimitsInSamples = round(keywordLabels.ROILimits*fs);

mask = zeros(size(audioIn),"logical");
for i = 1:size(keywordROILimitsInSamples)
 mask(keywordROILimitsInSamples(i,1):keywordROILimitsInSamples(i,2)) = true;
end

Plot the speech signal and the keyword spotting mask.

plot(t,audioIn, ...
 t,mask)
xlabel('Time (s)')
ylabel('Amplitude')
legend('Audio','Keyword Spotting Mask','Location','southeast')

• “Label Audio Using Audio Labeler”

 Audio Labeler

1-7

Programmatic Use
audioLabeler opens the app, enabling you to label ground-truth data about audio.

See Also
audioDatastore | audioDeviceReader | audioDeviceWriter | labeledSignalSet |
signalLabelDefinition

Topics
“Label Audio Using Audio Labeler”

Introduced in R2018b

1 Apps

1-8

Impulse Response Measurer
Measure impulse response of audio system

Description
The Impulse Response Measurer app enables you to acquire, analyze, and export impulse response
and frequency response measurements through a user interface.

Using this app, you can:

• Acquire impulse responses to create filters and generate models for offline simulations.
• Determine whether audio devices (loudspeakers, for example) meet time and frequency
specifications.

• Optimize audio systems, such as automotive-acoustic systems, to match goal specifications.
• Acquire accurate impulse response measurements for use in acoustic reporting.

Open the Impulse Response Measurer App
MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the app
icon.

MATLAB Command prompt: Enter impulseResponseMeasurer.

Examples

Verify Input/Output Configuration

For large systems with multiple audio devices and multiple input and output channels, tracking how
reported devices and channels correspond to physical devices can be difficult. The Impulse
Response Measurer provides a level monitor so that you can verify your audio I/O configuration.

To open the level monitor, click Level Monitor, .

 Impulse Response Measurer

1-9

Choose a player and recorder channel, the test signal, and the output level. Verify that the level
reported by the recorder reacts appropriately to level changes output by the player. Once you are
satisfied that your system is configured correctly, close the level monitor and begin the impulse
response capture.

• “Impulse Response Measurer Walkthrough”

Parameters
Method — Select excitation signal as MLS or swept sine wave
MLS (default) | Exponential Swept Sine

Select the excitation signal algorithm used to generate an impulse response measurement:

• MLS –– The maximum length sequence (MLS) technique is based on the excitation of the acoustical
space by a periodic pseudorandom signal. The impulse response is obtained by circular cross-
correlation between the measured output and the test tone. For more details, see [2].

• Exponential Swept Sine –– The swept sine measurement technique uses an exponential time-
growing frequency sweep as an output signal. The output signal is recorded, and deconvolution is
used to recover the impulse response from the swept sine tone. For more details, see [1]. The
swept sine technique enables you to modify additional Advanced Settings to control the
excitation signal. The advanced settings apply per run:

1 Apps

1-10

• Sweep start frequency
• Sweep stop frequency
• Sweep duration
• End silence duration

The value of the End silence duration is read-only and depends on the Sweep duration and
Duration per Run (s): End silence duration = Duration per Run − Sweep duration

References
[1] Farino, Angelo. "Advancements in Impulse Response Measurements by Sine Sweeps." Presented

at the Audio Engineering Society 122nd Convention, Vienna, Austria, 2007.

[2] Guy-Bart, Stan, Jean-Jacques Embrachts, and Dominique Archambeau. "Comparison of Different
Impulse Response Measurement Techniques." Journal of Audio Engineering Society. Vol. 50,
Issue 4, 2002, pp. 246–262.

[3] Armelloni, Enrico, Christian Giottoli, and Angelo Farina. "Implementation of Real-Time Partitioned
Convolution on a DSP Board." Application of Signal Processing to Audio and Acoustics, 2003
IEEE Workshop, pp. 71–74. IEEE, 2003.

See Also
audioPlayerRecorder | reverberator | splMeter

Topics
“Impulse Response Measurer Walkthrough”

Introduced in R2018a

 Impulse Response Measurer

1-11

Audio Test Bench
Debug, test, and tune audio plugin

Description
The Audio Test Bench provides a graphical interface through which you can develop, debug, test,
and tune your audio plugin in real time. You can interact with properties of your audio plugin using
associated parameter graphical widgets. See audioPluginParameter for more information.

Using the Audio Test Bench, you can:

• Debug your audio plugin.
• Simulate your audio plugin as generated in a digital audio workstation (DAW).
• Visualize your processing with time-domain and frequency-domain scopes.
• Interactively synchronize MIDI controls to plugin properties.
• Run validation checks and generate VST plugins.

Open the Audio Test Bench App
MATLAB command prompt: Enter audioTestBench.

Examples

Open Audio Test Bench

Open the Audio Test Bench for an audio plugin class.

audioTestBench(audiopluginexample.VarSlopeBandpassFilter)

1 Apps

1-12

• “Audio Test Bench Walkthrough”

Programmatic Use
audioTestBench(aClass) opens the Audio Test Bench for an instance of aClass. Valid classes
include:

• An audio plugin class that derives from audioPlugin, the base class for audio plugins.
• A compatible Audio Toolbox System object™.

audioTestBench(aObject) opens the Audio Test Bench for aObject. Valid objects include:

• An instance of an audio plugin class, where the class derives from audioPlugin, the base class
for audio plugins.

• An instance of a compatible Audio Toolbox System object.
• A hosted plugin object, as returned by the loadAudioPlugin function.

audioTestBench(pluginPath) opens the Audio Test Bench for pluginPath, where
pluginPath is the location of an external plugin. Use the full path to specify the audio plugin you
want to host. If the plugin is located in the current folder, specify it by its name.

audioTestBench('-close') closes the Audio Test Bench.

Tips
• The Audio Test Bench provides persistent input and output settings across sessions.

 Audio Test Bench

1-13

See Also
Functions
audioPluginInterface | audioPluginParameter | generateAudioPlugin |
validateAudioPlugin

Classes
audioPlugin | audioPluginSource

Topics
“Audio Test Bench Walkthrough”
“What Are DAWs, Audio Plugins, and MIDI Controllers?”
“Design an Audio Plugin”
“Audio Plugins in MATLAB”
“Audio Plugin Example Gallery”

Introduced in R2016a

1 Apps

1-14

Extract Audio Features
Streamline audio feature extraction in the Live Editor

Description
The Extract Audio Features task enables you to configure an optimized feature extraction pipeline
by selecting features and parameters graphically. You can reuse the output from Extract Audio
Features to apply feature extraction to entire data sets. The task automatically generates MATLAB
code for your live script.

Using this task, you can:

• Extract features of audio signals common to machine learning and deep learning workflows.
• Create a feature extraction object for use with large data sets.

To learn more about interactive tasks in live scripts, see “Add Interactive Tasks to a Live Script”
(MATLAB).

Open the Task
• On the Live Editor tab, select Task > Extract Audio Features.
• In a code block in the script, type a relevant keyword, such as extract, audio, or feature.

Select Extract Audio Features from the suggested command completions.

Examples

Extract Features From Audio Signal

Read in an audio signal, audioIn, and its sample rate, fs.

[audioIn,fs] = audioread('FemaleSpeech-16-8-mono-3secs.wav');

Extract features from the audio signal using the Extract Audio Features task. Set the input audio
data to audioIn and the sample rate to fs. Select the spectral crest, flux, slope, entropy, and rolloff
point to extract.

 Extract Audio Features

1-15

1 Apps

1-16

Extract Features from Audio Data Set

Create an audioDatastore object that points to audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ads = audioDatastore(folder);

Find all files that correspond to a sample rate of 44.1 kHz and then subset the datastore.

keepFile = cellfun(@(x)contains(x,'44p1'),ads.Files);
ads = subset(ads,keepFile);

Read one file from the data set.

[audioIn,adsInfo] = read(ads);
fs = adsInfo.SampleRate;

Extract audio features from audioIn using the Extract Audio Features live task.

 Extract Audio Features

1-17

1 Apps

1-18

The Extract Audio Features live task returns an array containing the extracted features. The
dimensions of the array are numHops by numFeatures by numChannels, where numHops is the
number of windows analyzed, numFeatures is the number of features you extracted, and
numChannels is the number of channels in the original audio.

[numHops,numFeatures,numChannels] = size(features)

numHops =

 1053

numFeatures =

 43

numChannels =

 1

You can use the output column mapping to determine which columns of features correspond to which
features you requested.

plot(features(:,40,:))
title('Spectral Centroid')
xlabel('Hop')
ylabel('Frequency (Hz)')

 Extract Audio Features

1-19

The Extract Audio Features task also returns a configured audioFeatureExtractor object. The
object is configured by the parameters you set in the task.

extractor

extractor =

 audioFeatureExtractor with properties:

 Properties
 Window: [1024×1 double]
 OverlapLength: 512
 SampleRate: 44100
 FFTLength: []
 SpectralDescriptorInput: 'linearSpectrum'

 Enabled Features
 gtcc, gtccDelta, gtccDeltaDelta, spectralCentroid, spectralEntropy, pitch
 harmonicRatio

 Disabled Features
 linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, mfcc, mfccDelta
 mfccDeltaDelta, spectralCrest, spectralDecrease, spectralFlatness, spectralFlux, spectralKurtosis
 spectralRolloffPoint, spectralSkewness, spectralSlope, spectralSpread

 To extract a feature, set the corresponding property to true.

1 Apps

1-20

 For example, obj.mfcc = true, adds mfcc to the list of enabled features.

You can use the configured audioFeatureExtractor object to extract features from the entire data
set. For example, while the audioDatastore object has unread data, read a file from the datastore
and then extract the features. First, reset the audioDatastore object so that you read from the
beginning.

reset(ads)
while hasdata(ads)
 audioIn = read(ads);
 features = extract(extractor,audioIn);
end

Copyright 2019 The MathWorks, Inc.

Tips
The Extract Audio Features task provides a graphical user interface to configure an
audioFeatureExtractor object. For details on the configuration parameters, see
audioFeatureExtractor.

See Also
audioDataAugmenter | audioDatastore | audioFeatureExtractor

Introduced in R2020a

 Extract Audio Features

1-21

Functions

2

showaudioblockdatatypetable
Simulink block data type support table

Syntax
showaudioblockdatatypetable

Description
showaudioblockdatatypetable shows a table of characteristics for Audio Toolbox blocks. The
table lists capabilities and limitations about blocks, such as support for code generation and variable-
sized input.

Examples

Show Block Characteristics for Audio Toolbox™

Show a table of Audio Toolbox™ block characteristics. The table opens in a separate window.

showaudioblockdatatypetable

Loading Audio Toolbox Library.

See Also
Topics
“Real-Time Audio in Simulink”

Introduced in R2016a

2 Functions

2-2

audioPluginGridLayout
Specify layout for audio plugin UI

Syntax
gridLayout = audioPluginGridLayout
gridLayout = audioPluginGridLayout(Name,Value)

Description
gridLayout = audioPluginGridLayout creates an object that specifies the layout grid for an
audio plugin graphical user interface. Use the plugin grid layout object, gridLayout, as an
argument to audioPluginInterface in your plugin class definition. audioPluginGridLayout
specifies only the grid. The placement of individual graphical elements is specified using
audioPluginParameter.

To learn how to design a graphic user interface, see “Design User Interface for Audio Plugin”.

For example plugins, see “Audio Plugin Example Gallery”.

gridLayout = audioPluginGridLayout(Name,Value) specifies audioPluginGridLayout
properties using one or more Name,Value pair arguments.

Examples

Use Default Audio Plugin Grid Layout

The default audio plugin grid layout specifies a 2-by-2 grid. Call audioPluginGridLayout with no
arguments to view the default settings.

audioPluginGridLayout

ans =

 audioPluginGridLayout with properties:

 RowHeight: [100 100]
 ColumnWidth: [100 100]
 RowSpacing: 10
 ColumnSpacing: 10
 Padding: [10 10 10 10]

noisifyClassic uses a default grid layout by passing audioPluginGridLayout, without any
arguments, to audioPluginInterface. When you use audioPluginGridLayout, you must
specify the position of each audioPluginParameter on the grid using Layout. Display names
corresponding to parameters occupy cells on the grid also. The default grid contains only four cells
and noisifyClassic has four parameters, so you must set DisplayNameLocation to none to fit

 audioPluginGridLayout

2-3

all elements on the grid. audioPluginGridLayout is passed to the audioPluginInterface. Save
noisifyClassic to your current folder.

classdef noisifyClassic < audioPlugin
 properties
 DropoutLeft = false
 DropoutRight = false
 NoiseLeftGain = 0
 NoiseRightGain = 0
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('DropoutLeft', ...
 'Layout',[2,1], ...
 'DisplayNameLocation','none'), ...
 audioPluginParameter('DropoutRight', ...
 'Layout',[2,2], ...
 'DisplayNameLocation','none'), ...
 audioPluginParameter('NoiseLeftGain', ...
 'Layout',[1,1], ...
 'DisplayNameLocation','none'), ...
 audioPluginParameter('NoiseRightGain', ...
 'Layout',[1,2], ...
 'DisplayNameLocation','none'), ...
 ...
 audioPluginGridLayout)
 end
 methods
 function out = process(plugin,in)
 r = size(in,1);
 dropRate = 0.1;

 if plugin.DropoutLeft
 idx = randperm(r,round(r*dropRate));
 in(idx,1) = 0;
 end
 if plugin.DropoutRight
 idx = randperm(r,round(r*dropRate));
 in(idx,2) = 0;
 end

 in(:,1) = in(:,1) + plugin.NoiseLeftGain*(2*rand(r,1,'like',in)-1);
 in(:,2) = in(:,2) + plugin.NoiseRightGain*(2*rand(r,1,'like',in)-1);

 out = in;
 end
 end
end

You can quickly iterate on your UI design by using parameterTuner to visualize the plugin UI. Call
parameterTuner on noisifyClassic.

parameterTuner(noisifyClassic)

2 Functions

2-4

Design Audio Plugin Grid Layout

The example plugin, noisify, adds noise to your audio signal channel-wise at a specified gain (per
channel) and dropout rate.

classdef noisifyOriginal < audioPlugin
 properties
 DropoutLeft = false;
 DropoutRight = false;
 NoiseLeftGain = 0;
 NoiseRightGain = 0;
 DropoutRate = 0.1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('DropoutLeft'), ...
 audioPluginParameter('DropoutRight'), ...
 audioPluginParameter('NoiseLeftGain'), ...
 audioPluginParameter('NoiseRightGain'), ...
 audioPluginParameter('DropoutRate'))
 end
 methods
 function out = process(plugin,in)
 r = size(in,1);

 if plugin.DropoutLeft
 idx = randperm(r,round(r*plugin.DropoutRate));
 in(idx,1) = 0;
 end
 if plugin.DropoutRight
 idx = randperm(r,round(r*plugin.DropoutRate));
 in(idx,2) = 0;
 end

 in(:,1) = in(:,1) + plugin.NoiseLeftGain*randn(r,1,'like',in);

 audioPluginGridLayout

2-5

 in(:,2) = in(:,2) + plugin.NoiseRightGain*randn(r,1,'like',in);

 out = in;
 end
 end
end

To see the corresponding UI for the plugin, call parameterTuner with the plugin. When you
generate an audio plugin and deploy it to a DAW, the DAW uses a default UI that is similar to the
default UI of parameterTuner.

parameterTuner(noisifyOriginal)

You can create a more intuitive and visually pleasing UI using audioPluginInterface,
audioPluginGridLayout, and audioPluginParameter. For example, to create a more intuitive
UI for noisyOriginal, you could update the audioPluginInterface as follows:

classdef noisify < audioPlugin
 properties
 DropoutLeft = false;
 DropoutRight = false;
 NoiseLeftGain = 0;
 NoiseRightGain = 0;
 DropoutRate = 0.1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('DropoutLeft', ...
 'Layout',[4,1], ...
 'DisplayName','Dropout (L)', ...
 'DisplayNameLocation','above', ...
 'Style','vrocker'), ...
 audioPluginParameter('DropoutRight', ...
 'Layout',[4,4], ...
 'DisplayName','Dropout (R)', ...
 'DisplayNameLocation','above', ...

2 Functions

2-6

 'Style','vrocker'), ...
 audioPluginParameter('NoiseLeftGain', ...
 'DisplayName','Noise Gain (L)', ...
 'Layout',[2,1;2,2], ...
 'DisplayNameLocation','above', ...
 'Style','rotaryknob'), ...
 audioPluginParameter('NoiseRightGain', ...
 'Layout',[2,3;2,4], ...
 'DisplayName','Noise Gain (R)', ...
 'DisplayNameLocation','above', ...
 'Style','rotaryknob'), ...
 audioPluginParameter('DropoutRate', ...
 'Layout',[4,2;4,3], ...
 'DisplayName','Droput Rate', ...
 'DisplayNameLocation','below', ...
 'Style','vslider'), ...
 ...
 audioPluginGridLayout(...
 'RowHeight',[15,150,15,150,15], ...
 'ColumnWidth',[100,40,40,100], ...
 'RowSpacing',30))
 end
 methods
 function out = process(plugin,in)
 r = size(in,1);

 if plugin.DropoutLeft
 idx = randperm(r,round(r*plugin.DropoutRate));
 in(idx,1) = 0;
 end
 if plugin.DropoutRight
 idx = randperm(r,round(r*plugin.DropoutRate));
 in(idx,2) = 0;
 end

 in(:,1) = in(:,1) + plugin.NoiseLeftGain*randn(r,1,'like',in);
 in(:,2) = in(:,2) + plugin.NoiseRightGain*randn(r,1,'like',in);

 out = in;
 end
 end
end

You can quickly iterate on your UI design by using parameterTuner to visualize incremental
changes. Call parameterTuner on noisify. When you generate an audio plugin and deploy it to a
DAW, the DAW uses the enhanced UI.

parameterTuner(noisify)

 audioPluginGridLayout

2-7

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'RowHeight', [50,200,150] species a grid with three rows. The first row is 50 pixels
high, the second row is 200 pixels high, and the third row is 150 pixels high.

RowHeight — Height of each row (pixels)
[100, 100] (default) | row vector of positive integers

Height in pixels of each row in the grid, specified as a comma-separated pair consisting of
'RowHeight' and a row vector of positive integers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

2 Functions

2-8

ColumnWidth — Width of each column (pixels)
[100, 100] (default) | row vector of positive integers

Width in pixels of each column in the grid, specified as a comma-separated pair consisting of
'ColumnWidth' and a row vector of positive integers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

RowSpacing — Distance between rows (pixels)
10 (default) | nonnegative integer

Distance between rows in pixels, specified as a comma-separated pair consisting of 'RowSpacing'
and a nonnegative integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ColumnSpacing — Distance between columns (pixels)
10 (default) | nonnegative integer

Distance between columns in pixels, specified as a comma-separated pair consisting of
'ColumnSpacing' and a nonnegative integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Padding — Padding around the outer perimeter of grid (pixels)
[10, 10, 10, 10] (default) | [left, bottom, right, top]

Padding around the outer perimeter of the grid in pixels, specified as a comma-separated pair
consisting of 'Padding' and a four-element row vector of nonnegative integers. The elements of the
vector are interpreted as [left, bottom, right, top], where:

• left –– Distance in pixels from the left edge of the grid to the left edge of the parent container.
• bottom –– Distance in pixels from the bottom edge of the grid to the bottom edge of the parent

container.
• right –– Distance in pixels from the right edge of the grid to the right edge of the parent container.
• top –– Distance in pixels from the top edge of the grid to the top edge of the parent container.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Audio Test Bench | audioPlugin | audioPluginInterface | audioPluginParameter |
audioPluginSource | generateAudioPlugin | parameterTuner | validateAudioPlugin

Topics
“Design User Interface for Audio Plugin”
“Audio Plugin Example Gallery”
“Audio Plugins in MATLAB”
“Export a MATLAB Plugin to a DAW”

 audioPluginGridLayout

2-9

Introduced in R2019b

2 Functions

2-10

pinknoise
Generate pink noise

Syntax
X = pinknoise(n)
X = pinknoise(sz1,sz2)
X = pinknoise(sz)
X = pinknoise(___ ,typename)
X = pinknoise(___ ,'like',p)

Description
X = pinknoise(n) returns a pink noise column vector of length n.

X = pinknoise(sz1,sz2) returns a sz1-by-sz2 matrix. Each channel (column) of the output X is
an independent pink noise signal.

X = pinknoise(sz) returns a vector or matrix with dimensions defined by the elements of vector
sz. sz must be a one- or two-element row vector of positive integers. Each channel (column) of the
output X is an independent pink noise signal.

X = pinknoise(___ ,typename) returns an array of pink noise of data type typename. The
typename input can be either 'single' or 'double'. You can combine typename with any of the
input arguments in the previous syntaxes.

X = pinknoise(___ ,'like',p) returns an array of pink noise like p. You can specify either
typename or 'like', but not both.

Examples

Generate Pink Noise

Generate 100 seconds of pink noise with a sample rate of 44.1 kHz.

fs = 44.1e3;
duration = 100;

y = pinknoise(duration*fs);

Plot the average power spectral density (PSD) of the generated pink noise.

[~,freqVec,~,psd] = spectrogram(y,round(0.05*fs),[],[],fs);
meanPSD = mean(psd,2);

semilogx(freqVec,db(meanPSD,"power"))
xlabel('Frequency (Hz)')
ylabel('PSD (dB/Hz)')
title('Power Spectral Density of Pink Noise (Averaged)')
grid on

 pinknoise

2-11

Amplitude Distribution of Pink Noise

Generate 500 seconds of pink noise with a sample rate of 16 kHz.

fs = 16e3;
duration = 500;

y = pinknoise(duration*fs);

Plot the relative probability of the pink noise amplitude. The amplitude is always bounded between −
1 and 1.

histogram(y,"Normalization","probability","EdgeColor","none")
xlabel("Amplitude")
ylabel("Probability")
title("Relative Probability of Pink Noise Amplitude")
grid on

2 Functions

2-12

Generate Multiple Independent Channels of Pink Noise

Create a 5 second stereo pink noise signal with a 48 kHz sample rate.

fs = 48e3;
duration = 5;
numChan = 2;

pn = pinknoise(duration*fs,numChan);

Listen to the stereo pink noise signal.

sound(pn,fs)

Channels of the pink noise function are generated independently. Note that the off-diagonal
correlation coefficients are close to zero (uncorrelated).

R = corrcoef(pn(:,1),pn(:,2))

R = 2×2

 1.0000 -0.0190
 -0.0190 1.0000

 pinknoise

2-13

Correlated and uncorrelated pink noise have different psychoacoustic effects. When the noise is
correlated, the sound is less ambient and more centralized. To listen to correlated pink noise, send a
single channel of the pink noise signal to your stereo device. The effect is most pronounced when
using headphones.

sound([pn(:,1),pn(:,1)],fs)

Add Pink Noise to Audio Signal

Read in an audio file.

[audioIn,fs] = audioread("MainStreetOne-24-96-stereo-63secs.wav");

Create a pink noise signal of the same size and data type as audioIn.

noise = pinknoise(size(audioIn),'like',audioIn);

Add the pink noise to the audio signal and then listen to the first 5 seconds.

noisyMainStreet = noise + audioIn;
sound(noisyMainStreet(1:fs*5,:),fs)

The pinknoise function generates an approximate −29.5 dB signal level, which is close to the power
of the audio signal.

noisePower = sum(noise.^2,1)/size(noise,1);
signalPower = sum(audioIn.^2,1)/size(audioIn,1);
snr = 10*log10(signalPower./noisePower)

snr = 1×2

 -0.3505 -1.6718

noisePowerdB = 10*log10(noisePower)

noisePowerdB = 1×2

 -29.6072 -29.5546

signalPowerdB = 10*log10(signalPower)

signalPowerdB = 1×2

 -29.9577 -31.2264

Mix the input audio with the generated pink noise at an 8 dB SNR.

desiredSNR = 8;
scaleFactor = sqrt(signalPower./(noisePower*(10^(desiredSNR/10))));

noise = noise.*scaleFactor;

Verify the resulting SNR is 8 dB and then listen to the first 5 seconds.

2 Functions

2-14

noisePower = sum(noise.^2,1)/size(noise,1);
snr = 10*log10(signalPower./noisePower)

snr = 1×2

 8.0000 8.0000

noisyMainStreet = noise + audioIn;
sound(noisyMainStreet(1:fs*5,:),fs)

Input Arguments
n — Number of rows of pink noise
nonnegative integer

Number of rows of pink noise, specified as a nonnegative integer.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz1,sz2 — Size of each dimension (as separate arguments)
nonnegative integers

Size of each dimension, specified as a nonnegative integer or two separate arguments of nonnegative
integers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Size of each dimension (as a row vector)
one- or two-element row vector of nonnegative integers

Size of each dimension, specified as a one- or two-element row vector of nonnegative integers. Each
element of this vector indicates the size of the corresponding dimension.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

typename — Data type to create
'double' (default) | 'single'

Data type to create, specified as 'double' or 'single'.
Data Types: char | string

p — Prototype of array to create
numeric array

Prototype of array to create, specified as a numeric array. The generated pink noise is the same data
type as p.
Data Types: single | double

Output Arguments
X — Pink noise
column vector | matrix

 pinknoise

2-15

Pink noise, returned as a column vector or matrix of independent channels.
Data Types: single | double

Tips
• The concatenation of multiple pink noise vectors does not result in pink noise. For streaming

applications, use dsp.ColoredNoise.

Algorithms
Pink noise is generated by passing uniformly distributed random numbers through a series of
randomly initiated SOS filters. The resulting pink noise amplitude distribution is quasi-Gaussian and
bounded between −1 and 1. The resulting pink noise power spectral density (PSD) is inversely
proportional to frequency:

S(f) ∝ 1
f

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsp.ColoredNoise | rand | rng

Introduced in R2019b

2 Functions

2-16

stretchAudio
Time-stretch audio

Syntax
audioOut = stretchAudio(audioIn,alpha)
audioOut = stretchAudio(audioIn,alpha,Name,Value)

Description
audioOut = stretchAudio(audioIn,alpha) applies time scale modification (TSM) on the input
audio by the TSM factor alpha.

audioOut = stretchAudio(audioIn,alpha,Name,Value) specifies options using one or more
Name,Value pair arguments.

Examples

Apply TSM

Read in an audio signal. Listen to the audio signal and plot it over time.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

t = (0:size(audioIn,1)-1)/fs;
plot(t,audioIn)
xlabel('Time (s)')
ylabel('Amplitude')
title('Original Signal')
axis tight
grid on

 stretchAudio

2-17

sound(audioIn,fs)

Use stretchAudio to apply a 1.5 speedup factor. Listen to the modified audio signal and plot it over
time. The sample rate remains the same, but the duration of the signal has decreased.

audioOut = stretchAudio(audioIn,1.5);

t = (0:size(audioOut,1)-1)/fs;
plot(t,audioOut)
xlabel('Time (s)')
ylabel('Amplitude')
title('Modified Signal, Speedup Factor = 1.5')
axis tight
grid on

2 Functions

2-18

sound(audioOut,fs)

Slow down the original audio signal by a 0.75 factor. Listen to the modified audio signal and plot it
over time. The sample rate remains the same as the original audio, but the duration of the signal has
increased.

audioOut = stretchAudio(audioIn,0.75);

t = (0:size(audioOut,1)-1)/fs;
plot(t,audioOut)
xlabel('Time (s)')
ylabel('Amplitude')
title('Modified Signal, Speedup Factor = 0.75')
axis tight
grid on

 stretchAudio

2-19

sound(audioOut,fs)

Apply TSM to Frequency-Domain Audio

stretchAudio supports TSM on frequency-domain audio when using the default vocoder method.
Applying TSM to frequency-domain audio enables you to reuse your STFT computation for multiple
TSM factors.

Read in an audio signal. Listen to the audio signal and plot it over time.

[audioIn,fs] = audioread('FemaleSpeech-16-8-mono-3secs.wav');

sound(audioIn,fs)

t = (0:size(audioIn,1)-1)/fs;
plot(t,audioIn)
xlabel('Time (s)')
ylabel('Amplitude')
title('Original Signal')
axis tight
grid on

2 Functions

2-20

Convert the audio signal to the frequency domain.

win = sqrt(hann(256,'periodic'));
ovrlp = 192;
S = stft(audioIn,'Window',win,'OverlapLength',ovrlp,'Centered',false);

Speed up the audio signal by a factor of 1.4. Specify the window and overlap length used to create
the frequency-domain representation.

alpha = 1.4;
audioOut = stretchAudio(S,alpha,'Window',win,'OverlapLength',ovrlp);

sound(audioOut,fs)

t = (0:size(audioOut,1)-1)/fs;
plot(t,audioOut)
xlabel('Time (s)')
ylabel('Amplitude')
title('Modified Signal, TSM Factor = 1.4')
axis tight
grid on

 stretchAudio

2-21

Slow down the audio signal by a factor of 0.8. Specify the window and overlap length used to create
the frequency-domain representation.

alpha = 0.8;
audioOut = stretchAudio(S,alpha,'Window',win,'OverlapLength',ovrlp);

sound(audioOut,fs)

t = (0:size(audioOut,1)-1)/fs;
plot(t,audioOut)
xlabel('Time (s)')
ylabel('Amplitude')
title('Modified Signal, TSM Factor = 0.8')
axis tight
grid on

2 Functions

2-22

Increase Fidelity Using Phase-Locking

The default TSM method (vocoder) enables you to additionally apply phase-locking to increase the
fidelity to the original audio.

Read in an audio signal. Listen to the audio signal and plot it over time.

[audioIn,fs] = audioread("SpeechDFT-16-8-mono-5secs.wav");

sound(audioIn,fs)

t = (0:size(audioIn,1)-1)/fs;
plot(t,audioIn)
xlabel('Time (s)')
ylabel('Amplitude')
title('Original Signal')
axis tight
grid on

 stretchAudio

2-23

Phase-locking adds a nontrivial computational load to TSM and is not always required. By default,
phase-locking is disabled. Apply a speedup factor of 1.8 to the input audio signal. Listen to the audio
signal and plot it over time.

alpha = 1.8;

tic
audioOut = stretchAudio(audioIn,alpha);
processingTimeWithoutPhaseLocking = toc

processingTimeWithoutPhaseLocking = 0.0798

sound(audioOut,fs)

t = (0:size(audioOut,1)-1)/fs;
plot(t,audioOut)
xlabel('Time (s)')
ylabel('Amplitude')
title('Modified Signal, alpha = 1.8, LockPhase = false')
axis tight
grid on

2 Functions

2-24

Apply the same 1.8 speedup factor to the input audio signal, this time enabling phase-locking. Listen
to the audio signal and plot it over time.

tic
audioOut = stretchAudio(audioIn,alpha,"LockPhase",true);
processingTimeWithPhaseLocking = toc

processingTimeWithPhaseLocking = 0.1154

sound(audioOut,fs)

t = (0:size(audioOut,1)-1)/fs;
plot(t,audioOut)
xlabel('Time (s)')
ylabel('Amplitude')
title('Modified Signal, alpha = 1.8, LockPhase = true')
axis tight
grid on

 stretchAudio

2-25

Increase Fidelity Using WSOLA Delta

The waveform similarity overlap-add (WSOLA) TSM method enables you to specify the maximum
number of samples to search for the best signal alignment. By default, WSOLA delta is the number of
samples in the analysis window minus the number of samples overlapped between adjacent analysis
windows. Increasing the WSOLA delta increases the computational load but might also increase
fidelity.

Read in an audio signal. Listen to the first 10 seconds of the audio signal.

[audioIn,fs] = audioread('RockGuitar-16-96-stereo-72secs.flac');

sound(audioIn(1:10*fs,:),fs)

Apply a TSM factor of 0.75 to the input audio signal using the WSOLA method. Listen to the first 10
seconds of the resulting audio signal.

alpha = 0.75;
tic
audioOut = stretchAudio(audioIn,alpha,"Method","wsola");
processingTimeWithDefaultWSOLADelta = toc

processingTimeWithDefaultWSOLADelta = 19.4403

sound(audioOut(1:10*fs,:),fs)

2 Functions

2-26

Apply a TSM factor of 0.75 to the input audio signal, this time increasing the WSOLA delta to 1024.
Listen to the first 10 seconds of the resulting audio signal.

tic
audioOut = stretchAudio(audioIn,alpha,"Method","wsola","WSOLADelta",1024);
processingTimeWithIncreasedWSOLADelta = toc

processingTimeWithIncreasedWSOLADelta = 25.5306

sound(audioOut(1:10*fs,:),fs)

Input Arguments
audioIn — Input signal
column vector | matrix | 3-D array

Input signal, specified as a column vector, matrix, or 3-D array. How the function interprets audioIn
depends on the complexity of audioIn and the value of Method:

• If audioIn is real, audioIn is interpreted as a time-domain signal. In this case, audioIn must be
a column vector or matrix. Columns are interpreted as individual channels.

This syntax applies when Method is set to 'vocoder' or 'wsola'.
• If audioIn is complex, audioIn is interpreted as a frequency-domain signal. In this case,

audioIn must be an L-by-M-by-N array, where L is the FFT length, M is the number of individual
spectrums, and N is the number of channels.

This syntax only applies when Method is set to 'vocoder'.

Data Types: single | double
Complex Number Support: Yes

alpha — TSM factor
positive scalar

TSM factor, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Window',kbdwin(512)

Method — Method used to time-scale audio
'vocoder' (default) | 'wsola'

Method used to time-scale audio, specified as the comma-separated pair consisting of 'Method' and
'vocoder' or 'wsola'. Set 'Method' to 'vocoder' to use the phase vocoder method. Set
'Method' to 'wsola' to use the WSOLA method.

If 'Method' is set to 'vocoder', audioIn can be real or complex. If 'Method' is set to 'wsola',
audioIn must be real.

 stretchAudio

2-27

Data Types: single | double

Window — Window applied in time domain
sqrt(hann(1024,'periodic')) (default) | real vector

Window applied in the time domain, specified as the comma-separated pair consisting of 'Window'
and a real vector. The number of elements in the vector must be in the range [1, size(audioIn,1)].
The number of elements in the vector must also be greater than OverlapLength.

Note If using stretchAudio with frequency-domain input, you must specify Window as the same
window used to transform audioIn to the frequency domain.

Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(0.75*numel(Window)) (default) | scalar in the range [0 numel(Window))

Number of samples overlapped between adjacent windows, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, numel(Window)).

Note If using stretchAudio with frequency-domain input, you must specify OverlapLength as the
same overlap length used to transform audioIn to a time-frequency representation.

Data Types: single | double

LockPhase — Apply identity phase-locking
false (default) | true

Apply identity phase-locking, specified as the comma-separated pair consisting of 'LockPhase' and
false or true.
Dependencies

To enable this name-value pair argument, set Method to 'vocoder'.
Data Types: logical

WSOLADelta — Maximum samples used to search for best signal alignment
numel(Window)-OverlapLength (default) | nonnegative scalar

Maximum number of samples used to search for the best signal alignment, specified as the comma-
separated pair consisting of 'WSOLADelta' and a nonnegative scalar.
Dependencies

To enable this name-value pair argument, set Method to 'wsola'.
Data Types: single | double

Output Arguments
audioOut — Time-scale modified audio
column vector | matrix

2 Functions

2-28

Time-scale modified audio, returned as a column vector or matrix of independent channels.

Algorithms
Phase Vocoder

The phase vocoder algorithm is a frequency-domain approach to TSM [1][2]. The basic steps of the
phase vocoder algorithm are:

1 The algorithm windows a time-domain signal at interval η, where η = numel(Window) -
OverlapLength. The windows are then converted to the frequency domain.

2 To preserve horizontal (across time) phase coherence, the algorithm treats each bin as an
independent sinusoid whose phase is computed by accumulating the estimates of its
instantaneous frequency.

3 To preserve vertical (across an individual spectrum) phase coherence, the algorithm locks the
phase advance of groups of bins to the phase advance of local peaks. This step only applies if
LockPhase is set to true.

4 The algorithm returns the modified spectrogram to the time domain, with windows spaced at
intervals of δ, where δ ≈ η/α. α is the speedup factor specified by the alpha input argument.

 stretchAudio

2-29

WSOLA

The WSOLA algorithm is a time-domain approach to TSM [1][2]. WSOLA is an extension of the
overlap and add (OLA) algorithm. In the OLA algorithm, a time-domain signal is windowed at interval

2 Functions

2-30

η, where η = numel(Window) - OverlapLength. To construct the time-scale modified output
audio, the windows are spaced at interval δ, where δ ≈ η/α. α is the TSM factor specified by the
alpha input argument.

The OLA algorithm does a good job of recreating the magnitude spectra but can introduce phase
jumps between windows. The WSOLA algorithm attempts to smooth the phase jumps by searching
WSOLADelta samples around the η interval for a window that minimizes phase jumps. The algorithm
searches for the best window iteratively, so that each successive window is chosen relative to the
previously selected window.

 stretchAudio

2-31

If WSOLADelta is set to 0, then the algorithm reduces to OLA.

2 Functions

2-32

References
[1] Driedger, Johnathan, and Meinard Müller. "A Review of Time-Scale Modification of Music Signals."

Applied Sciences. Vol. 6, Issue 2, 2016.

[2] Driedger, Johnathan. "Time-Scale Modification Algorithms for Music Audio Signals", Master's
thesis, Saarland University, Saarbrücken, Germany, 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
audioDataAugmenter | audioTimeScaler | reverberator | shiftPitch

Topics
“Time-Frequency Masking for Harmonic-Percussive Source Separation”

Introduced in R2019b

 stretchAudio

2-33

shiftPitch
Shift audio pitch

Syntax
audioOut = shiftPitch(audioIn,nsemitones)
audioOut = shiftPitch(audioIn,nsemitones,Name,Value)

Description
audioOut = shiftPitch(audioIn,nsemitones) shifts the pitch of the audio input by the
specified number of semitones, nsemitones.

audioOut = shiftPitch(audioIn,nsemitones,Name,Value) specifies options using one or
more Name,Value pair arguments.

Examples

Apply Pitch-Shifting to Time-Domain Audio

Read in an audio file and listen to it.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
sound(audioIn,fs)

Increase the pitch by 3 semitones and listen to the result.

nsemitones = 3;
audioOut = shiftPitch(audioIn,nsemitones);
sound(audioOut,fs)

Decrease the pitch of the original audio by 3 semitones and listen to the result.

nsemitones = -3;
audioOut = shiftPitch(audioIn,nsemitones);
sound(audioOut,fs)

Apply Pitch-Shifting to Frequency-Domain Audio

Read in an audio file and listen to it.

[audioIn,fs] = audioread("SpeechDFT-16-8-mono-5secs.wav");
sound(audioIn,fs)

Convert the audio signal to a time-frequency representation using stft. Use a 512-point kbdwin
with 75% overlap.

win = kbdwin(512);
overlapLength = 0.75*numel(win);

2 Functions

2-34

S = stft(audioIn, ...
 "Window",win, ...
 "OverlapLength",overlapLength, ...
 "Centered",false);

Increase the pitch by 8 semitones and listen to the result. Specify the window and overlap length you
used to compute the STFT.

nsemitones = ;
lockPhase = ;
audioOut = shiftPitch(S,nsemitones, ...
 "Window",win, ...
 "OverlapLength",overlapLength, ...
 "LockPhase",lockPhase);

sound(audioOut,fs)

Decrease the pitch of the original audio by 8 semitones and listen to the result. Specify the window
and overlap length you used to compute the STFT.

nsemitones = ;
lockPhase = ;
audioOut = shiftPitch(S,nsemitones, ...
 "Window",win, ...
 "OverlapLength",overlapLength, ...
 "LockPhase",lockPhase);

sound(audioOut,fs)

Increase Fidelity Using Phase Locking

Read in an audio file and listen to it.

[audioIn,fs] = audioread('FemaleSpeech-16-8-mono-3secs.wav');
sound(audioIn,fs)

Increase the pitch by 6 semitones and listen to the result.

nsemitones = 6;
lockPhase = false;
audioOut = shiftPitch(audioIn,nsemitones, ...
 'LockPhase',lockPhase);
sound(audioOut,fs)

To increase fidelity, set LockPhase to true. Apply pitch shifting, and listen to the results.

lockPhase = true;
audioOut = shiftPitch(audioIn,nsemitones, ...
 'LockPhase',lockPhase);
sound(audioOut,fs)

 shiftPitch

2-35

Increase Fidelity Using Formant Preservation

Read in the first 11.5 seconds of an audio file and listen to it.

[audioIn,fs] = audioread('Rainbow-16-8-mono-114secs.wav',[1,8e3*11.5]);
sound(audioIn,fs)

Increase the pitch by 4 semitones and apply phase locking. Listen to the results. The resulting audio
has a "chipmunk effect" that sounds unnatural.

nsemitones = ;
lockPhase = ;
audioOut = shiftPitch(audioIn,nsemitones, ...
 "LockPhase",lockPhase);

sound(audioOut,fs)

To increase fidelity, set PreserveFormants to true. Use the default cepstral order of 30. Listen to
the result.

cepstralOrder = ;
audioOut = shiftPitch(audioIn,nsemitones, ...
 "LockPhase",lockPhase, ...
 "PreserveFormants",true, ...
 "CepstralOrder",cepstralOrder);

sound(audioOut,fs)

Input Arguments
audioIn — Input signal
column vector | matrix | 3-D array

Input signal, specified as a column vector, matrix, or 3-D array. How the function interprets audioIn
depends on the complexity of audioIn:

• If audioIn is real, audioIn is interpreted as a time-domain signal. In this case, audioIn must be
a column vector or matrix. Columns are interpreted as individual channels.

• If audioIn is complex, audioIn is interpreted as a frequency-domain signal. In this case,
audioIn must be an L-by-M-by-N array, where L is the FFT length, M is the number of individual
spectrums, and N is the number of channels.

Data Types: single | double
Complex Number Support: Yes

nsemitones — Number of semitones to shift audio by
real scalar

Number of semitones to shift the audio by, specified as a real scalar.

The range of nsemitones depends on the window length (numel(Window)) and the overlap length
(OverlapLength):

-12*log2(numel(Window)-OverlapLength) ≤ nsemitones ≤ -12*log2((numel(Window)-
OverlapLength)/numel(Window))

2 Functions

2-36

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Window',kbdwin(512)

Window — Window applied in time domain
sqrt(hann(1024,'periodic')) (default) | real vector

Window applied in the time domain, specified as the comma-separated pair consisting of 'Window'
and a real vector. The number of elements in the vector must be in the range [1, size(audioIn,1)].
The number of elements in the vector must also be greater than OverlapLength.

Note If using shiftPitch with frequency-domain input, you must specify Window as the same
window used to transform audioIn to the frequency domain.

Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(0.75*numel(Window)) (default) | scalar in the range [0, numel(Window))

Number of samples overlapped between adjacent windows, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, numel(Window)).

Note If using shiftPitch with frequency-domain input, you must specify OverlapLength as the
same overlap length used to transform audioIn to a time-frequency representation.

Data Types: single | double

LockPhase — Apply identity phase locking
false (default) | true

Apply identity phase locking, specified as the comma-separated pair consisting of 'LockPhase' and
false or true.
Data Types: logical

PreserveFormants — Preserve formants
false (default) | true

Preserves formants, specified as the comma-separated pair consisting of 'PreserveFormants' and
true or false. Formant preservation is attempted using spectral envelope estimation with cepstral
analysis.
Data Types: logical

CepstralOrder — Cepstral order used for formant preservation
30 (default) | nonnegative integer

 shiftPitch

2-37

Cepstral order used for formant preservation, specified as the comma-separated pair consisting of
'CepstralOrder' and a nonnegative integer.

Dependencies

To enable this name-value pair argument, set PreserveFormants to true.
Data Types: single | double

Output Arguments
audioOut — Pitch-shifted audio
column vector | matrix

Pitch-shifted audio, returned as a column vector or matrix of independent channels.

Algorithms
To apply pitch shifting, shiftPitch modifies the time-scale of audio using a phase vocoder and then
resamples the modified audio. The time scale modification algorithm is based on [1] and [2] and is
implemented as in stretchAudio.

After time-scale modification, shiftPitch performs sample rate conversion using an interpolation
factor equal to the analysis hop length and a decimation factor equal to the synthesis hop length. The
interpolation and decimation factors of the resampling stage are selected as follows: The analysis hop
length is determined as analysisHopLength = numel(Window)-OverlapLength. The
shiftPitch function assumes that there are 12 semitones in an octave, so the speedup factor used
to stretch the audio is speedupFactor = 2^(-nsemitones/12). The speedup factor and analysis
hop length determine the synthesis hop length for time-scale modification as synthesisHopLength
= round((1/SpeedupFactor)*analysisHopLength).

The achievable pitch shift is determined by the window length (numel(Window)) and
OverlapLength. To see the relationship, note that the equation for speedup factor can be rewritten
as: nsemitones = -12*log2(speedupFactor), and the equation for synthesis hop length can be
rewritten as speedupFactor = analysisHopLengh/synthesisHopLength. Using simple
substitution, nsemitones = -12*log2(analysisHopLength/synthesisHopLength). The
practical range of a synthesis hop length is [1, numel(Window)]. The range of achievable pitch shifts
is:

• Max number of semitones lowered: -12*log2(numel(Window)-OverlapLength)
• Max number of semitones raised: -12*log2((numel(Window)-OverlapLength)/

numel(Window))

Formant Preservation

Pitch shifting can alter the spectral envelope of the pitch-shifted signal. To diminish this effect, you
can set PreserveFormants to true. If PreserveFormants is set to true, the algorithm attempts
to estimate the spectral envelope using an iterative procedure in the cepstral domain, as described in
[3] and [4]. For both the original spectrum, X, and the pitch-shifted spectrum, Y, the algorithm
estimates the spectral envelope as follows.

For the first iteration, EnvXa is set to X. Then, the algorithm repeats these two steps in a loop:

2 Functions

2-38

1 Lowpass filters the cepstral representation of EnvXa to get a new estimate, EnvXb. The
CepstralOrder parameter controls the quefrency bandwidth.

2 To update the current best fit, the algorithm takes the element-by-element maximum of the
current spectral envelope estimate and the previous spectral envelope estimate:

EnvXa = max(EnvXa, EnvXb) .

The loop ends if either a maximum number of iterations (100) is reached, or if all bins of the
estimated log envelope are within a given tolerance of the original log spectrum. The tolerance is set
to log(10^(1/20)).

Finally, the algorithm scales the spectrum of the pitch-shifted audio by the ratio of estimated
envelopes, element-wise:

Y = Y ×
EnvXb
EnvYb

.

References
[1] Driedger, Johnathan, and Meinard Müller. "A Review of Time-Scale Modification of Music Signals."

Applied Sciences. Vol. 6, Issue 2, 2016.

[2] Driedger, Johnathan. "Time-Scale Modification Algorithms for Music Audio Signals." Master's
Thesis. Saarland University, Saarbrücken, Germany, 2011.

[3] Axel Roebel, and Xavier Rodet. "Efficient Spectral Envelope Estimation and its application to pitch
shifting and envelope preservation." International Conference on Digital Audio Effects, pp.
30–35. Madrid, Spain, September 2005. hal-01161334

 shiftPitch

2-39

[4] S. Imai, and Y. Abe. "Spectral envelope extraction by improved cepstral method." Electron. and
Commun. in Japan. Vol. 62-A, Issue 4, 1997, pp. 10–17.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
audioDataAugmenter | audioTimeScaler | reverberator | stretchAudio

Introduced in R2019b

2 Functions

2-40

designAuditoryFilterBank
Design auditory filter bank

Syntax
filterBank = designAuditoryFilterBank(fs)
filterBank = designAuditoryFilterBank(fs,Name,Value)
[filterBank,Fc,BW] = designAuditoryFilterBank(___)

Description
filterBank = designAuditoryFilterBank(fs) returns a frequency-domain auditory filter
bank, filterBank.

filterBank = designAuditoryFilterBank(fs,Name,Value) specifies options using one or
more Name,Value pair arguments.

[filterBank,Fc,BW] = designAuditoryFilterBank(___) returns the center frequency and
bandwidth of each filter in the filter bank. You can use this output syntax with any of the previous
input syntaxes.

Examples

Create Default Auditory Filter Bank

Call designAuditoryFilterBank with a specified sample rate to design the default auditory filter
bank.

fs = 44.1e3;
fb = designAuditoryFilterBank(fs);

The default filter bank consists of 32 triangular bandpass filters spaced evenly on the mel scale
between 0 and fs/2 Hz.

numBands = size(fb,1)

numBands = 32

designAuditoryFilterBank is intended for use in frequency-domain filtering for a one-sided
spectrum. By default, designAuditoryFilterBank assumes a 1024-point DFT, so it returns a half-
sided frequency-domain filter bank with 513 points.

numPoints = size(fb,2)

numPoints = 513

 designAuditoryFilterBank

2-41

Design Mel-Based Auditory Filter Bank

Read in audio and convert it to a one-sided power spectrum.

[audioIn,fs] = audioread("Laughter-16-8-mono-4secs.wav");

win = hamming(1024,"periodic");
noverlap = 512;
fftLength = 1024;
[~,F,t,PowerSpectrum] = spectrogram(audioIn,win,noverlap,fftLength,"power","onesided",fs);

Design a mel-based auditory filter bank. Plot the filter bank.

numBands = ;
range = [,];
normalization = ;

[fb,cf] = designAuditoryFilterBank(fs, ...
 "FFTLength",fftLength, ...
 "NumBands",numBands, ...
 "FrequencyRange",range, ...
 "Normalization",normalization);

plot(F,fb.')
grid on
title("Mel Filter Bank")
xlabel("Frequency (Hz)")

2 Functions

2-42

To apply frequency domain filtering, perform a matrix multiplication of the filter bank and the power
spectrogram.

X = fb*PowerSpectrum;

Visualize the power-per-band in dB.

XdB = 10*log10(X);

surf(t,cf,XdB,"EdgeColor","none");
xlabel("Time (s)")
ylabel("Frequency (Hz)")
zlabel("Power (dB)")
view([45,60])
title('Mel-Based Spectrogram')
axis tight

Design Bark-Based Auditory Filter Bank

Read in audio and convert it to a one-sided power spectrum.

[audioIn,fs] = audioread("RockDrums-44p1-stereo-11secs.mp3");

win = hann(round(0.03*fs),"periodic");
noverlap = round(0.02*fs);

 designAuditoryFilterBank

2-43

fftLength = 2048;

[~,F,t,PowerSpectrumLeft] = spectrogram(audioIn(:,1),win,noverlap,fftLength,"power","onesided",fs);
[~,~,~,PowerSpectrumRight] = spectrogram(audioIn(:,2),win,noverlap,fftLength,"power","onesided",fs);

Design a Bark-based auditory filter bank. Plot the filter bank.

numBands = ;
range = [,];
normalization = ;

[fb,cf] = designAuditoryFilterBank(fs, ...
 "FrequencyScale","bark", ...
 "FFTLength",fftLength, ...
 "NumBands",numBands, ...
 "FrequencyRange",range, ...
 "Normalization",normalization);

plot(F,fb.');
grid on
title("Bark Filter Bank")
xlabel("Frequency (Hz)")

To apply frequency domain filtering, perform a matrix multiplication of the filter bank and the left and
right power spectrograms.

XL = fb*PowerSpectrumLeft;
XR = fb*PowerSpectrumRight;

2 Functions

2-44

Visualize the power-per-band in dB.

XLdB = 10*log10(XL);
XRdB = 10*log10(XR);

surf(t,cf,XLdB,"EdgeColor","none");
xlabel("Time (s)")
ylabel("Frequency (Hz)")
view([0,90])
title("Bark-Based Spectrogram (Left Channel)")
axis tight

surf(t,cf,XRdB,"EdgeColor","none");
xlabel("Time (s)")
ylabel("Frequency (Hz)")
view([0,90])
title("Bark-Based Spectrogram (Right Channel)")
axis tight

 designAuditoryFilterBank

2-45

Design ERB-Based Auditory Filter Bank

Read in audio and convert it to a one-sided power spectrum.

[audioIn,fs] = audioread("NoisySpeech-16-22p5-mono-5secs.wav");

win = hann(round(0.04*fs),"periodic");
noverlap = round(0.02*fs);
fftLength = 1024;

[~,F,t,PowerSpectrum] = spectrogram(audioIn,win,noverlap,fftLength,"power","onesided",fs);

Design an ERB-based auditory filter bank. Plot the filter bank.

numBands = ;
range = [,];
normalization = ;

[fb,cf] = designAuditoryFilterBank(fs, ...
 "FrequencyScale","erb", ...
 "FFTLength",fftLength, ...
 "NumBands",numBands, ...
 "FrequencyRange",range, ...
 "Normalization",normalization);

2 Functions

2-46

plot(F,fb.');
grid on
title("ERB Filter Bank")
xlabel("Frequency (Hz)")

To apply frequency-domain filtering, perform a matrix multiplication of the filter bank and the power
spectrogram.

X = fb*PowerSpectrum;

Visualize the power-per-band in dB.

XdB = 10*log10(X);
surf(t,cf,XdB,"EdgeColor","none");
xlabel("Time (s)")
ylabel("Frequency (Hz)")
view([0,90])
title("ERB-Based Spectrogram")
axis tight

 designAuditoryFilterBank

2-47

Input Arguments
fs — Sample rate of filter design (Hz)
positive scalar

Sample rate of filter design in Hz, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: "FrequencyScale","mel"

FrequencyScale — Frequency scale
"mel" (default) | "bark" | "erb"

Frequency scale used to design the auditory filter bank, specified as the comma-separated pair
consisting of 'FrequencyScale' and "mel", "bark", or "erb".
Data Types: char | string

2 Functions

2-48

FFTLength — Number of DFT points
1024 (default) | positive integer

Number of points used to calculate the DFT, specified as the comma-separated pair consisting of
'FFTLength' and a positive integer.
Data Types: single | double

NumBands — Number of bandpass filters
positive integer

Number of bandpass filters, specified as the comma-separated pair consisting of 'NumBands' and a
positive integer. The default number of bandpass filters depends on the FrequencyScale:

• If FrequencyScale is set to "bark" or "mel", then NumBands defaults to 32.
• If FrequencyScale is set to "erb", then NumBands defaults to

ceil(hz2erb(FrequencyRange(2))-hz2erb(FrequencyRange(1))).

Data Types: single | double

FrequencyRange — Frequency range over which to design auditory filter bank (Hz)
[0 fs/2] (default) | two-element row vector

Frequency range over which to design auditory filter bank in Hz, specified as the comma-separated
pair consisting of 'FrequencyRange' and a two-element row vector of monotonically increasing
values in the range [0, fs/2].
Data Types: single | double

Normalization — Normalize filter bank
"bandwidth" (default) | "area" | "none"

Normalization technique used on the weights of the filter bank:

• "bandwidth" –– The weights of each bandpass filter are normalized by the corresponding
bandwidth of the filter.

• "area" –– The weights of each bandpass filter are normalized by the corresponding area of the
bandpass filter.

• "none" –– The weights of the filters are not normalized.

Data Types: char | string

Output Arguments
filterBank — Auditory filter bank
column vector | matrix

Auditory filter bank, returned as an M-by-N matrix, where M is the number of bands (NumBands), and
N is the number of frequency points of a one-sided spectrum (ceil(FFTLength/2)).
Data Types: double

Fc — Center frequencies of bandpass filters (Hz)
row vector

 designAuditoryFilterBank

2-49

Center frequencies of bandpass filters in Hz, returned as a row vector with NumBands elements.
Data Types: double

BW — Bandwidth of bandpass filters (Hz)
row vector

Bandwidth of bandpass filters in Hz, returned as a row vector with NumBands elements.
Data Types: double

Algorithms
The mel filter bank is designed as half-overlapped triangles equally spaced on the mel scale. [1]

The Bark filter bank is designed as half-overlapped triangles equally spaced on the Bark scale. [2]

The ERB filter bank is designed as gammatone filters [4] whose center frequencies are equally spaced
on the ERB scale. [3]

References
[1] O'Shaghnessy, Douglas. Speech Communication: Human and Machine. Reading, MA: Addison-

Wesley Publishing Company, 1987.

[2] Traunmüller, Hartmut. "Analytical Expressions for the Tonotopic Sensory Scale." Journal of the
Acoustical Society of America. Vol. 88, Issue 1, 1990, pp. 97–100.

[3] Glasberg, Brian R., and Brian C. J. Moore. "Derivation of Auditory Filter Shapes from Notched-
Noise Data." Hearing Research. Vol. 47, Issues 1–2, 1990, pp. 103–138.

[4] Slaney, Malcolm. "An Efficient Implementation of the Patterson-Holdworth Auditory Filter Bank."
Apple Computer Technical Report 35, 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bark2hz | erb2hz | gammatoneFilterBank | hz2bark | hz2erb | hz2mel | mel2hz |
melSpectrogram

Introduced in R2019b

2 Functions

2-50

melSpectrogram
Mel spectrogram

Syntax
S = melSpectrogram(audioIn,fs)
S = melSpectrogram(audioIn,fs,Name,Value)
[S,F,T] = melSpectrogram(___)
melSpectrogram(___)

Description
S = melSpectrogram(audioIn,fs) returns the mel spectrogram of the audio input at sample rate
fs. The function treats columns of the input as individual channels.

S = melSpectrogram(audioIn,fs,Name,Value) specifies options using one or more
Name,Value pair arguments.

[S,F,T] = melSpectrogram(___) returns the center frequencies of the bands in Hz and the
location of each window of data in seconds. The location corresponds to the center of each window.
You can use this output syntax with any of the previous input syntaxes.

melSpectrogram(___) plots the mel spectrogram on a surface in the current figure.

Examples

Calculate Mel Spectrogram

Use the default settings to calculate the mel spectrogram for an entire audio file. Print the number of
bandpass filters in the filter bank and the number of frames in the mel spectrogram.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

S = melSpectrogram(audioIn,fs);

[numBands,numFrames] = size(S);
fprintf("Number of bandpass filters in filterbank: %d\n",numBands)

Number of bandpass filters in filterbank: 32

fprintf("Number of frames in spectrogram: %d\n",numFrames)

Number of frames in spectrogram: 1551

Plot the mel spectrogram.

melSpectrogram(audioIn,fs)

 melSpectrogram

2-51

Calculate Mel Spectrums of 2048-Point Windows

Calculate the mel spectrums of 2048-point windows with 1024-point overlap. Convert to the
frequency domain using a 4096-point FFT. Pass the frequency-domain representation through 64 half-
overlapped triangular bandpass filters that span the range 62.5 Hz to 8 kHz.

[audioIn,fs] = audioread('FunkyDrums-44p1-stereo-25secs.mp3');

S = melSpectrogram(audioIn,fs, ...
 'WindowLength',2048,...
 'OverlapLength',1024, ...
 'FFTLength',4096, ...
 'NumBands',64, ...
 'FrequencyRange',[62.5,8e3]);

Call melSpectrogram again, this time with no output arguments so that you can visualize the mel
spectrogram. The input audio is a multichannel signal. If you call melSpectrogram with a
multichannel input and with no output arguments, only the first channel is plotted.

melSpectrogram(audioIn,fs, ...
 'WindowLength',2048,...
 'OverlapLength',1024, ...
 'FFTLength',4096, ...
 'NumBands',64, ...
 'FrequencyRange',[62.5,8e3])

2 Functions

2-52

Get Filter Bank Center Frequencies and Analysis Window Time Instants

melSpectrogram applies a frequency-domain filter bank to audio signals that are windowed in time.
You can get the center frequencies of the filters and the time instants corresponding to the analysis
windows as the second and third output arguments from melSpectrogram.

Get the mel spectrogram, filter bank center frequencies, and analysis window time instants of a
multichannel audio signal. Use the center frequencies and time instants to plot the mel spectrogram
for each channel.

[audioIn,fs] = audioread('AudioArray-16-16-4channels-20secs.wav');

[S,cF,t] = melSpectrogram(audioIn,fs);

S = 10*log10(S+eps); % Convert to dB for plotting

for i = 1:size(S,3)
 figure(i)
 surf(t,cF,S(:,:,i),'EdgeColor','none');
 xlabel('Time (s)')
 ylabel('Frequency (Hz)')
 view([0,90])
 title(sprintf('Channel %d',i))
 axis([t(1) t(end) cF(1) cF(end)])
end

 melSpectrogram

2-53

2 Functions

2-54

 melSpectrogram

2-55

2 Functions

2-56

Input Arguments
audioIn — Audio input
column vector | matrix

Audio input, specified as a column vector or matrix. If specified as a matrix, the function treats
columns as independent audio channels.
Data Types: single | double

fs — Input sample rate (Hz)
positive scalar

Input sample rate in Hz, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'WindowLength',1024

 melSpectrogram

2-57

WindowLength — Analysis window length (samples)
round(0.03*fs) (default) | integer in the range [2, size(audioIn,1)]

Analysis window length in samples, specified as the comma-separated pair consisting of
'WindowLength' and an integer in the range [2, size(audioIn,1)].
Data Types: single | double

OverlapLength — Analysis window overlap length (samples)
round(0.02*fs) (default) | integer in the range [0, (WindowLength - 1)]

Analysis window overlap length in samples, specified as the comma-separated pair consisting of
'OverlapLength' and an integer in the range [0, (WindowLength - 1)].
Data Types: single | double

FFTLength — Number of DFT points
WindowLength (default) | positive integer

Number of points used to calculate the DFT, specified as the comma-separated pair consisting of
'FFTLength' and a positive integer greater than or equal to WindowLength. If unspecified,
FFTLength defaults to WindowLength.
Data Types: single | double

NumBands — Number of mel bandpass filters
32 (default) | positive integer

Number of mel bandpass filters, specified as the comma-separated pair consisting of 'NumBands'
and a positive integer.
Data Types: single | double

FrequencyRange — Frequency range over which to compute mel spectrogram (Hz)
[0 fs/2] (default) | two-element row vector

Frequency range over which to compute the mel spectrogram in Hz, specified as the comma-
separated pair consisting of 'FrequencyRange' and a two-element row vector of monotonically
increasing values in the range [0, fs/2].
Data Types: single | double

SpectrumType — Type of mel spectrogram
'power' (default) | 'magnitude'

Type of mel spectrogram, specified as the comma-separated pair consisting of 'SpectrumType' and
'power' or 'magnitude'.
Data Types: char | string

Output Arguments
S — Mel spectrogram
column vector | matrix | 3-D array

Mel spectrogram, returned as a column vector, matrix, or 3-D array. The dimensions of S are L-by-M-
by-N, where:

2 Functions

2-58

• L is the number of frequency bins in each mel spectrum. NumBands and fs determine L.
• M is the number of frames the audio signal is partitioned into. size(audioIn,1),

WindowLength, and OverlapLength determine M.
• N is the number of channels such that N = size(audioIn,2).

Trailing singleton dimensions are removed from the output S.
Data Types: single | double

F — Center frequencies of mel bandpass filters (Hz)
row vector

Center frequencies of mel bandpass filters in Hz, returned as a row vector with length size(S,1).
Data Types: single | double

T — Location of each window of audio (s)
row vector

Location of each analysis window of audio in seconds, returned as a row vector length size(S,2).
The location corresponds to the center of each window.
Data Types: single | double

Algorithms
The melSpectrogram function follows the general algorithm to compute a mel spectrogram as
described in [1].

In this algorithm, the audio input is first buffered into frames of WindowLength number of samples.
The frames are overlapped by OverlapLength number of samples. A periodic hamming window is
applied to each frame, and then the frame is converted to frequency-domain representation with
FFTLength number of points. The frequency-domain representation can be either magnitude or
power, specified by SpectrumType. Each frame of the frequency-domain representation passes
through a mel filter bank. The spectral values output from the mel filter bank are summed, and then

 melSpectrogram

2-59

the channels are concatenated so that each frame is transformed to a NumBands-element column
vector.

Filter Bank Design

The mel filter bank is designed as half-overlapped triangular filters equally spaced on the mel scale.
NumBands controls the number of mel bandpass filters. FrequencyRange controls the band edges of
the first and last filters in the mel filter bank. The filters are normalized by their bandwidths, so that
if white noise is input to the system, each filter outputs an equal amount of energy.

References
[1] Rabiner, Lawrence R., and Ronald W. Schafer. Theory and Applications of Digital Speech

Processing. Upper Saddle River, NJ: Pearson, 2010.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
gtcc | mdct | mfcc | spectrogram

2 Functions

2-60

Topics
“Speech Command Recognition Using Deep Learning”

Introduced in R2019a

 melSpectrogram

2-61

kbdwin
Kaiser-Bessel-derived window

Syntax
wdw = kbdwin(N)
wdw = kbdwin(N,Beta)

Description
wdw = kbdwin(N) returns an N-point Kaiser-Bessel-derived (KBD) window.

wdw = kbdwin(N,Beta) specifies the tuning parameter, Beta.

Examples

Create Kaiser-Bessel-Derived Window

Create a 1024-point Kaiser-Bessel-derived (KBD) window. Visualize the KBD window in the time and
frequency domains using wvtool.

wdw = kbdwin(1024);
wvtool(wdw)

2 Functions

2-62

Effect of Tuning Parameter Beta

Create three 512-point KBD windows, with Beta set to 1, 10, and 100. Display the windows for
comparison using wvtool.

N = 512;
beta1 = kbdwin(N,1);
beta10 = kbdwin(N,10);
beta100 = kbdwin(N,100);

wvtool(beta1,beta10,beta100)

 kbdwin

2-63

Input Arguments
N — Number of points in KBD window
even positive integer scalar

Number of points in the KBD window, specified as an even positive integer scalar.
Data Types: single | double

Beta — Tuning parameter
5 (default) | nonnegative real scalar

Tuning parameter, specified as a nonnegative real scalar. If unspecified, Beta defaults to 5.
Data Types: single | double

Output Arguments
wdw — Kaiser-Bessel-derived window
N-point column vector

Kaiser-Bessel-derived window, returned as an N-point column vector.

2 Functions

2-64

Algorithms
The coefficients of a Kaiser-Bessel-derived window are computed using the equation:

wdw[n] =

∑i = 1
n w[i]

∑i = 1
N 2 + 1w[i]

if 1 ≤ n < N 2

∑i = 1
N − nw[i]

∑i = 1
N 2 + 1w[i]

if N 2 + 1 ≤ n < N

where w is a Kaiser window designed using the kaiser function:

w = kaiser(N/2+1,Beta*pi)

where N is the number of points in the KBD window and Beta is the tuning parameter.

References
[1] Bosi, Marina, and Richard E. Goldberg. Introduction to Digital Audio Coding and Standards.

Dordrecht: Kluwer, 2003.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
kaiser | mdct | window

Introduced in R2019a

 kbdwin

2-65

mdct
Modified discrete cosine transform

Syntax
Y = mdct(X,win)
Y = mdct(X,win,Name,Value)
[Y,S,Z] = mdct(___)

Description
Y = mdct(X,win) returns the modified discrete cosine transform (MDCT) of X. Before the MDCT is
calculated, X is buffered into 50% overlapping frames that are each multiplied by the time window
win. The function treats each column of X as an independent channel.

Y = mdct(X,win,Name,Value) sets each property Name to the specified Value. Unspecified
properties have default values.

[Y,S,Z] = mdct(___) returns the modified discrete sine transform (MDST), S, and the odd
discrete Fourier transform (ODFT), Z.

Examples

Calculate MDCT

Read in an audio file and then calculate the MDCT using a 1024-point Kaiser-Bessel-derived window.

audioIn = audioread('Counting-16-44p1-mono-15secs.wav');

coef = mdct(audioIn,kbdwin(1024));

Plot the power of the MDCT coefficients over time.

surf(20*log10(coef.^2),'EdgeColor','none');
view([0 90])
xlabel('Frame')
ylabel('Frequency')
axis([0 size(coef,2) 0 size(coef,1)])
colorbar

2 Functions

2-66

Effect of Input Padding on Perfect Reconstruction

To enable perfect reconstruction, the mdct function zero-pads the front and back of the audio input
signal. The signal returned from imdct removes the zero padding added for perfect reconstruction.

Read in an audio file, create a 2048-point Kaiser-Bessel-derived window, and then clip the audio
signal so that its length is a multiple of 2048.

[x,fs] = audioread('Click-16-44p1-mono-0.2secs.wav');
win = kbdwin(2048);

xClipped = x(1:end - rem(size(x,1),numel(win)));

Convert the signal to the frequency domain, and then reconstruct it back in the time domain. Plot the
original and reconstructed signals and display the reconstruction error.

C = mdct(xClipped,win);
y = imdct(C,win);

figure(1)
t = (0:size(xClipped,1)-1)'/fs;
plot(t,xClipped,'bo',t,y,'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error = ",num2str(mean((xClipped-y).^2))))

 mdct

2-67

xlabel('Time (s)')
ylabel('Amplitude')

You can perform the MDCT and IMDCT without input padding using the PadInput name-value pair.
However, there will be a reconstruction error in the first half-frame and last half-frame of the signal.

C = mdct(xClipped,win,'PadInput',false);
y = imdct(C,win,'PadInput',false);

figure(2)
t = (0:size(xClipped,1)-1)'/fs;
plot(t,xClipped,'bo',t,y,'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error (Without Input Padding) = ",num2str(mean((xClipped-y).^2))))
xlabel('Time (s)')
ylabel('Amplitude')

2 Functions

2-68

If you specify an input signal to the mdct that is not a multiple of the window length, then the input
signal is padded with zeros. Pass the original unclipped signal through the transform pair and
compare the original signal and the reconstructed signal.

C = mdct(x,win);
y = imdct(C,win);

figure(3)

subplot(2,1,1)
plot(x)
title('Original Signal')
ylabel('Amplitude')
axis([0,max(size(y,1),size(x,1)),-0.5,0.5])

subplot(2,1,2)
plot(y)
title('Reconstructed Signal')
xlabel('Time (s)')
ylabel('Amplitude')
axis([0,max(size(y,1),size(x,1)),-0.5,0.5])

 mdct

2-69

The reconstructed signal is padded with zeros at the back end. Remove the zero-padding from the
reconstructed signal, plot the original and reconstructed signal, and then display the reconstruction
error.

figure(4)
y = y(1:size(x,1));
t = (0:size(x,1)-1)'/fs;
plot(t,x,'bo',t,y,'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error = ",num2str(mean((x-y).^2))))
xlabel('Time (s)')
ylabel('Amplitude')

2 Functions

2-70

MDCT and IMDCT for Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the reconstructed signal for comparison. Create a dsp.AsyncBuffer to
buffer the input stream.

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
logger = dsp.SignalSink;
buff = dsp.AsyncBuffer;

Create a 512-point Kaiser-Bessel-derived window.

N = 512;
win = kbdwin(N);

In an audio stream loop:

1 Read a frame of data from the file.
2 Write the frame of data to the async buffer.
3 If half a frame of data is present, read from the buffer and then perform the transform pair.

Overlap-add the current output from imdct with the previous output, and log the results. Update
the memory.

mem = zeros(N/2,2); % initialize an empty memory

 mdct

2-71

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= N/2
 x = read(buff,N,N/2);
 C = mdct(x,win,'PadInput',false);
 y = imdct(C,win,'PadInput',false);

 logger(y(1:N/2,:)+mem)
 mem = y(N/2+1:end,:);
 end

end

% Perform the transform pair one last time with a zero-padded final signal.
x = read(buff,N,N/2);
C = mdct(x,win,'PadInput',false);
y = imdct(C,win,'PadInput',false);
logger(y(1:N/2,:)+mem)

reconstructedSignal = logger.Buffer;

Read in the entire original audio signal. Trim the front and back zero padding from the reconstructed
signal for comparison. Plot one channel of the original and reconstructed signals and display the
reconstruction error.

[originalSignal,fs] = audioread(fileReader.Filename);
signalLength = size(originalSignal,1);
reconstructedSignal = reconstructedSignal((N/2+1):(N/2+1)+signalLength-1,:);

t = (0:size(originalSignal,1)-1)'/fs;
plot(t,originalSignal(:,1),'bo',t,reconstructedSignal(:,1),'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error = ", ...
 num2str(mean((originalSignal-reconstructedSignal).^2,'all'))))
xlabel('Time (s)')
ylabel('Amplitude')

2 Functions

2-72

Input Arguments
X — Input array
column vector | matrix

Input array, specified as a column vector or matrix. If specified as a matrix, the columns are treated
as independent audio channels.
Data Types: single | double

win — Window applied in time domain
even-length vector

Window applied in the time domain, specified as an even-length vector. The transform performed by
mdct has the same number of points as win. To enable perfect reconstruction, use a window that
satisfies the Princen-Bradley condition (wn

2 + wn + N
2 = 1), such as a sine window or kbdwin.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'PadInput',false

 mdct

2-73

PadInput — Flag to pad input array
true (default) | false

Flag to pad input array, specified as the comma-separated pair consisting of 'PadInput' and true or
false. If set to true, zero-padding is added to the input X at both ends to enable perfect
reconstruction. The number of zeros at each end is numel(win)/2.
Data Types: logical

Output Arguments
Y — Modified discrete cosine transform
vector | matrix | 3-D array

Modified discrete cosine transform (MDCT), returned as a vector, matrix, or 3-D array. The
dimensions of Y are L-by-M-by-N, where:

• L –– Number of points in the frequency-domain representation of each frame, equal to
numel(win)/2.

• M –– Number of frames the input array is partitioned into.

• If PadInput is set to true, M = ceil(2*size(X,1)/numel(win))+1.
• If PadInput is set to false, M = ceil(2*size(X,1)/numel(win))-1.

• N –– Number of channels, equal to size(X,2).

Trailing singleton dimensions are removed from the output Y.
Data Types: single | double

S — Modified discrete sine transform
vector | matrix | 3-D array

Modified discrete sine transform (MDST), returned as a vector, matrix, or 3-D array. The dimensions
of S are the same as the MDCT output, Y.
Data Types: single | double

Z — Half-sided odd discrete Fourier transform
vector | matrix | 3-D array

Half-sided odd discrete Fourier transform (ODFT), returned as a vector, matrix, or 3-D array of
complex numbers. The dimensions of Z are the same as the MDCT output, Y.

To construct the complete (two-sided) ODFT, mirror the half-sided ODFT:
cat(1,Z,conj(flip(Z,1))).
Data Types: single | double
Complex Number Support: Yes

Algorithms
The modified discrete cosine transform is a time-frequency transform. Given an input signal X and
window win, the mdct function performs the following steps for each independent channel:

2 Functions

2-74

1 The frame size is the number of elements in the specified window, N = numel(win). By default,
PadInput is set to true, so the input signal X is padded with N/2 zeros on the front and back. If
the input signal is not divisible by N, additional padding is added on the back. After padding, the
input signal is buffered into 50% overlapped frames.

2 Each frame of the buffered and padded input signal is multiplied by the window, win.
3 The input is converted into a frequency representation using the modified discrete cosine

transform:

Y(k) = ∑
n = 0

N − 1
X n cos π

N 2
n +

N 2 + 1
2 k + 1

2 , k = 0, 1, ..., N 2 − 1

To take advantage of the FFT algorithm, the MDCT is calculated by first calculating the odd DFT:

YO(k) = ∑
n = 0

N − 1
X n e− jπn

N 2k + 1 , k = 0, 1, ..., N − 1

and then calculating the MDCT:

Y(k) = ℜe Yo(k) cos π
N k + 1

2 1 + N
2 , k = 0, 1, ..., N 2 − 1

If a second argument is requested from the mdct function, the modified discrete sine transform
(MDST) is also computed and returned:

X(k) = ℑm Xo(k) sin π
N k + 1

2 1 + N
2 , k = 0, 1, ..., N 2 − 1

References
[1] Princen, J., A. Johnson, and A. Bradley. "Subband/Transform Coding Using Filter Bank Designs

Based on Time Domain Aliasing Cancellation." IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP). 1987, pp. 2161–2164.

[2] Princen, J., and A. Bradley. "Analysis/Synthesis Filter Bank Design Based on Time Domain Aliasing
Cancellation." IEEE Transactions on Acoustics, Speech, and Signal Processing. Vol. 34, Issue
5, 1986, pp. 1153–1161.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
imdct | kbdwin | spectrogram

Topics
“Vorbis Decoder”

Introduced in R2019a

 mdct

2-75

imdct
Inverse modified discrete cosine transform

Syntax
X = imdct(Y,win)
X = imdct(Y,win,Name,Value)

Description
X = imdct(Y,win) returns the inverse modified discrete cosine transform (IMDCT) of Y, followed
by multiplication with time window win and overlap-addition of the frames with 50% overlap.

X = imdct(Y,win,Name,Value) sets each property Name to the specified Value. Unspecified
properties have default values.

Examples

Calculate IMDCT

Read in an audio file, convert it to mono, and then plot it.

audioIn = audioread('FunkyDrums-44p1-stereo-25secs.mp3');
audioIn = mean(audioIn,2);

figure(1)
plot(audioIn,'bo')
ylabel('Amplitude')
xlabel('Sample Number')

2 Functions

2-76

Calculate the MDCT using a 4096-point sine window. Plot the power of the MDCT coefficients over
time.

N = 4096;
wdw = sin(pi*((1:N)-0.5)/N);

C = mdct(audioIn,wdw);

figure(2)
surf(20*log10(C.*conj(C)),'EdgeColor','none');
view([0 90])
xlabel('Frame')
ylabel('Frequency')
axis([0 size(C,2) 0 size(C,1)])
colorbar

 imdct

2-77

Transform the representation back to the time domain. Verify the perfect reconstruction property by
computing the mean squared error. Plot the reconstructed signal over the original signal.

audioReconstructed = imdct(C,wdw);
err = mean((audioIn-audioReconstructed(1:size(audioIn,1),:)).^2)

err = 9.5889e-31

figure(1)
hold on
plot(audioReconstructed,'r.')
ylabel('Amplitude')
xlabel('Sample Number')

2 Functions

2-78

Effect of Input Padding on Perfect Reconstruction

To enable perfect reconstruction, the mdct function zero-pads the front and back of the audio input
signal. The signal returned from imdct removes the zero padding added for perfect reconstruction.

Read in an audio file, create a 2048-point Kaiser-Bessel-derived window, and then clip the audio
signal so that its length is a multiple of 2048.

[x,fs] = audioread('Click-16-44p1-mono-0.2secs.wav');
win = kbdwin(2048);

xClipped = x(1:end - rem(size(x,1),numel(win)));

Convert the signal to the frequency domain, and then reconstruct it back in the time domain. Plot the
original and reconstructed signals and display the reconstruction error.

C = mdct(xClipped,win);
y = imdct(C,win);

figure(1)
t = (0:size(xClipped,1)-1)'/fs;
plot(t,xClipped,'bo',t,y,'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error = ",num2str(mean((xClipped-y).^2))))

 imdct

2-79

xlabel('Time (s)')
ylabel('Amplitude')

You can perform the MDCT and IMDCT without input padding using the PadInput name-value pair.
However, there will be a reconstruction error in the first half-frame and last half-frame of the signal.

C = mdct(xClipped,win,'PadInput',false);
y = imdct(C,win,'PadInput',false);

figure(2)
t = (0:size(xClipped,1)-1)'/fs;
plot(t,xClipped,'bo',t,y,'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error (Without Input Padding) = ",num2str(mean((xClipped-y).^2))))
xlabel('Time (s)')
ylabel('Amplitude')

2 Functions

2-80

If you specify an input signal to the mdct that is not a multiple of the window length, then the input
signal is padded with zeros. Pass the original unclipped signal through the transform pair and
compare the original signal and the reconstructed signal.

C = mdct(x,win);
y = imdct(C,win);

figure(3)

subplot(2,1,1)
plot(x)
title('Original Signal')
ylabel('Amplitude')
axis([0,max(size(y,1),size(x,1)),-0.5,0.5])

subplot(2,1,2)
plot(y)
title('Reconstructed Signal')
xlabel('Time (s)')
ylabel('Amplitude')
axis([0,max(size(y,1),size(x,1)),-0.5,0.5])

 imdct

2-81

The reconstructed signal is padded with zeros at the back end. Remove the zero-padding from the
reconstructed signal, plot the original and reconstructed signal, and then display the reconstruction
error.

figure(4)
y = y(1:size(x,1));
t = (0:size(x,1)-1)'/fs;
plot(t,x,'bo',t,y,'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error = ",num2str(mean((x-y).^2))))
xlabel('Time (s)')
ylabel('Amplitude')

2 Functions

2-82

MDCT and IMDCT for Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the reconstructed signal for comparison. Create a dsp.AsyncBuffer to
buffer the input stream.

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
logger = dsp.SignalSink;
buff = dsp.AsyncBuffer;

Create a 512-point Kaiser-Bessel-derived window.

N = 512;
win = kbdwin(N);

In an audio stream loop:

1 Read a frame of data from the file.
2 Write the frame of data to the async buffer.
3 If half a frame of data is present, read from the buffer and then perform the transform pair.

Overlap-add the current output from imdct with the previous output, and log the results. Update
the memory.

mem = zeros(N/2,2); % initialize an empty memory

 imdct

2-83

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= N/2
 x = read(buff,N,N/2);
 C = mdct(x,win,'PadInput',false);
 y = imdct(C,win,'PadInput',false);

 logger(y(1:N/2,:)+mem)
 mem = y(N/2+1:end,:);
 end

end

% Perform the transform pair one last time with a zero-padded final signal.
x = read(buff,N,N/2);
C = mdct(x,win,'PadInput',false);
y = imdct(C,win,'PadInput',false);
logger(y(1:N/2,:)+mem)

reconstructedSignal = logger.Buffer;

Read in the entire original audio signal. Trim the front and back zero padding from the reconstructed
signal for comparison. Plot one channel of the original and reconstructed signals and display the
reconstruction error.

[originalSignal,fs] = audioread(fileReader.Filename);
signalLength = size(originalSignal,1);
reconstructedSignal = reconstructedSignal((N/2+1):(N/2+1)+signalLength-1,:);

t = (0:size(originalSignal,1)-1)'/fs;
plot(t,originalSignal(:,1),'bo',t,reconstructedSignal(:,1),'r.')
legend('Original Signal','Reconstructed Signal')
title(strcat("Reconstruction Error = ", ...
 num2str(mean((originalSignal-reconstructedSignal).^2,'all'))))
xlabel('Time (s)')
ylabel('Amplitude')

2 Functions

2-84

Input Arguments
Y — Modified discrete cosine transform
vector | matrix | 3-D array

Modified discrete cosine transform (MDCT), specified as a vector, matrix, or 3-D array. The
dimensions of Y are interpreted as output from the mdct function. If Y is an L-by-M-by-N array, the
dimensions are interpreted as:

• L –– Number of points in the frequency-domain representation of each frame. L must be half the
number of points in the window, win.

• M –– Number of frames.
• N –– Number of channels.

Data Types: single | double

win — Window applied in time domain
vector

Window applied in the time domain, specified as vector. The length of win must be twice the number
of rows of Y: numel(win)==2*size(Y,1). To enable perfect reconstruction, use the same window
used in the forward transformation mdct.
Data Types: single | double

 imdct

2-85

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'PadInput',false

PadInput — Flag if input was padded
true (default) | false

Flag if input to the forward mdct was padded. If set to true, the output is truncated at both ends to
remove the zero-padding that the forward mdct added.
Data Types: logical

Output Arguments
X — Inverse modified discrete cosine transform
column vector | matrix

Inverse modified discrete cosine transform (IMDCT) of input array Y, returned as a column vector or
matrix of independent channels.
Data Types: single | double

Algorithms
The inverse modified discrete cosine transform is a time-frequency transform. Given a frequency
domain input signal Y and window win, the imdct function performs the follows steps for each
independent channel:

1 Each frame of the input is converted into a time-domain representation:

X(n) = ∑
k = 0

N
2 − 1

Y k cos π
N 2

n +
N 2 + 1

2 k + 1
2 , n = 0, 1, ..., N − 1

where N is the number of elements in win.
2 Each frame of the time-domain signal is multiplied by the window, win.
3 The frames are overlap-added with 50% overlap to construct a contiguous time-domain signal. If

PadInput is set to true, the imdct function assumes the original input signal in the forward
transform (mdct) was padded with N/2 zeros on the front and back and removes the padding. By
default, PadInput is set to true.

References
[1] Princen, J., A. Johnson, and A. Bradley. "Subband/Transform Coding Using Filter Bank Designs

Based on Time Domain Aliasing Cancellation." IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP). 1987, pp. 2161–2164.

2 Functions

2-86

[2] Princen, J., and A. Bradley. "Analysis/Synthesis Filter Bank Design Based on Time Domain Aliasing
Cancellation." IEEE Transactions on Acoustics, Speech, and Signal Processing. Vol. 34, Issue
5, 1986, pp. 1153–1161.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
kbdwin | mdct | spectrogram

Topics
“Vorbis Decoder”

Introduced in R2019a

 imdct

2-87

harmonicRatio
Harmonic ratio

Syntax
hr = harmonicRatio(audioIn,fs)
hr = harmonicRatio(audioIn,fs,Name,Value)

Description
hr = harmonicRatio(audioIn,fs) returns the harmonic ratio of the signal, audioIn, over time.
Columns of the input are treated as individual channels.

hr = harmonicRatio(audioIn,fs,Name,Value) specifies options using one or more
Name,Value pair arguments.
Example: hr =
harmonicRatio(audioIn,fs,'Window',rectwin(round(fs*0.1)),'OverlapLength',roun
d(fs*0.05)) returns the harmonic ratio for the audio input signal sampled at fs Hz. The harmonic
ratio is calculated for 100 ms rectangular windows with 50 ms overlap.

Examples

Calculate Harmonic Ratio

Read in an audio file, calculate the harmonic ratio using default parameters, and then plot the results.

[audioIn,fs] = audioread('RandomOscThree-24-96-stereo-13secs.aif');
audioInMono = mean(audioIn,2);

hr = harmonicRatio(audioInMono,fs);

t = (0:length(audioInMono)-1)/fs;
subplot(2,1,1)
plot(t,audioInMono)
ylabel('Amplitude')

t = linspace(0,size(audioInMono,1)/fs,size(hr,1));
subplot(2,1,2)
plot(t,hr)
xlabel('Time (s)')
ylabel('Harmonic Ratio')

2 Functions

2-88

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the harmonic ratio of the audio file using 50 ms Hann windows with 25 ms overlap. Plot the
results.

hr = harmonicRatio(audioIn,fs, ...
 'Window',hann(round(fs.*0.05),'periodic'), ...
 'OverlapLength',round(fs.*0.025));

t = linspace(0,size(audioIn,1)/fs,size(hr,1));
plot(t,hr)
xlabel('Time (s)')
ylabel('Harmonic Ratio')

 harmonicRatio

2-89

The harmonic ratio indicates the ratio of energy in the harmonic portion of audio to the total energy
of the audio. Because the audio signal in this example has regions of near silence, where the total
energy is very low, the harmonic ratio does a poor job discriminating between regions of speech and
regions of silence. Add white noise to the audio signal and then calculate and plot the harmonic ratio.

audioIn = audioIn + 0.1*randn(size(audioIn));
hr = harmonicRatio(audioIn,fs, ...
 'Window',hann(round(fs.*0.05),'periodic'), ...
 'OverlapLength',round(fs.*0.025));

t = linspace(0,size(audioIn,1)/fs,size(hr,1));
plot(t,hr)
xlabel('Time (s)')
ylabel('Harmonic Ratio')

2 Functions

2-90

Calculate Harmonic Ratio of Streaming Audio

Create a dsp.AudioFileReader object to read in stereo audio data frame-by-frame. Create a
dsp.SignalSink object to log the harmonic ratio calculation.

fileReader = dsp.AudioFileReader('RandomOscThree-24-96-stereo-13secs.aif');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the harmonic ratio for each channel of the frame of audio.
3 Log the harmonic ratio for later plotting.

To calculate the harmonic ratio for only a given input frame, specify a window with the same number
of samples as the input, and set the overlap length to zero. Plot the logged data.

win = hamming(fileReader.SamplesPerFrame,'periodic');
while ~isDone(fileReader)
 audioIn = fileReader();

 hr = harmonicRatio(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);

 harmonicRatio

2-91

 logger(hr)
end

plot(logger.Buffer)
ylabel('Harmonic Ratio')
legend('Left Channel','Right Channel')

If the input to your audio stream loop has a variable samples-per-frame, an inconsistent samples-per-
frame with the analysis window size of harmonicRatio, or if you want to calculate the harmonic
ratio of overlapped data, use dsp.AsyncBuffer.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Calculate the harmonic ratio using 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

2 Functions

2-92

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 hr = harmonicRatio(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(hr)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Harmonic Ratio')
legend('Left Channel','Right Channel')

 harmonicRatio

2-93

Harmonic Ratio of Tones and White Noise

The harmonic ratio measures the amount of energy in the tonal part of the signal compared to the
amount of energy in the total signal.

Harmonic Ratio of Pure Tone

Create a pure tone and then calculate the harmonic ratio using default parameters. By default, the
harmonic ratio is calculated for 30 ms Hamming windows with 10 ms hops. Plot the results. The
harmonic ratio is near 1, which is the theoretical maximum.

fs = 48e3;
osc = audioOscillator('Frequency',500, ...
 'SamplesPerFrame',192e3,'SampleRate',fs);
sinewave = osc();

hr = harmonicRatio(sinewave,fs);

t = linspace(0,size(sinewave,1)/fs,size(hr,1));
plot(t,hr)
xlabel('Time (s)')
ylabel('Harmonic Ratio')
title('Sinusoid - Default Parameters')

The short-time analysis required for windowing lowers the harmonic ratio from the theoretical value
of 1. To diminish the effect of windowing, you can increase the window size. Use a 100 ms Hamming

2 Functions

2-94

window and a 10 ms hop, and observe that the harmonic ratio is closer to one than when using the
default window length.

win = hamming(round(fs*0.1),'periodic');
overlap = round(fs*0.099);

hr = harmonicRatio(sinewave,fs,'Window',win,'OverlapLength',overlap);

t = linspace(0,size(sinewave,1)/fs,size(hr,1));
plot(t,hr)
xlabel('Time (s)')
ylabel('Harmonic Ratio')
title('Sinusoid - 100 ms Window')

Harmonic Ratio of White Noise

Create 5 seconds of white noise and then calculate the harmonic ratio using default parameters. By
default, the harmonic ratio is calculated for 30 ms Hamming windows with 10 ms hops. Plot the
results. The harmonic ratio is 0.

fs = 48e3;
noise = rand(fs*5,1);

hr = harmonicRatio(noise,fs);

t = linspace(0,size(noise,1)/fs,size(hr,1));
plot(t,hr)
xlabel('Time (s)')

 harmonicRatio

2-95

ylabel('Harmonic Ratio')
title('Noise - Default Parameters')

Input Arguments
audioIn — Input signal
column vector | matrix

Input signal, specified as a column vector or matrix. If specified as a matrix, harmonicRatio treats
the columns of the matrix as individual audio channels.
Data Types: single | double

fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

2 Functions

2-96

Window — Window applied in time domain
hamming(round(fs*0.03),'periodic') (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of 'Window'
and a real vector. The number of elements in the vector must be in the range [1, size(audioIn,1)].
The number of elements in the vector must also be greater than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(fs*0.02) (default) | nonnegative integer scalar

Number of samples overlapped between adjacent windows, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, size(Window,1)).
Data Types: single | double

Output Arguments
hr — Harmonic ratio
scalar | vector | matrix

Harmonic ratio, returned as a scalar, vector, or matrix. Each row of hr corresponds to the harmonic
ratio of a window of audioIn. The harmonic ratio is returned with values in the range [0,1]. A value
of 0 represents low harmonicity, and a value of 1 represents high harmonicity.
Data Types: single | double

Algorithms
The harmonic ratio is calculated as described in [1]. The following algorithm is applied independently
to each window of audio data. The normalized autocorrelation of the signal is determined as:

Γ(m) =
∑

n = 1

N
s n s n−m

∑
n = 1

N
s n 2 ∑

n = 0

N
s(n−m)2

for 1 ≤ m ≤ M

where

• s is a single frame of audio data with N elements.
• M is the maximum lag in the calculation. The maximum lag is 40 ms, which corresponds to a

minimum fundamental frequency of 25 Hz.

A first estimate of the harmonic ratio is determined as the maximum of the normalized
autocorrelation, within a given range:

βHR =
max

M0 ≤ m ≤ M Γ(m)

where M0 is the lower edge of the search range, determined as the first zero crossing of the
normalized autocorrelation.

Finally, the harmonic ratio estimate is improved using parabolic interpolation, as described in [2].

 harmonicRatio

2-97

References
[1] Kim, Hyoung-Gook, Nicholas Moreau, and Thomas Sikora. MPEG-7 Audio and Beyond: Audio

Content Indexing and Retrieval. John Wiley & Sons, 2005.

[2] Quadratic Interpolation of Spectral Peaks. Accessed October 11, 2018. https://ccrma.stanford.edu/
~jos/sasp/Quadratic_Interpolation_Spectral_Peaks.html

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
pitch | spectralCentroid | voiceActivityDetector

Introduced in R2019a

2 Functions

2-98

gtcc
Extract gammatone cepstral coefficients, log-energy, delta, and delta-delta

Syntax
coeffs = gtcc(audioIn,fs)
coeffs = gtcc(___ ,Name,Value)
[coeffs,delta,deltaDelta,loc] = gtcc(___)

Description
coeffs = gtcc(audioIn,fs) returns the gammatone cepstral coefficients (GTCCs) for the audio
input, sampled at a frequency of fs Hz.

coeffs = gtcc(___ ,Name,Value) specifies options using one or more Name,Value pair
arguments.

[coeffs,delta,deltaDelta,loc] = gtcc(___) returns the delta, delta-delta, and location in
samples corresponding to each window of data. This output syntax can be used with any of the
previous input syntaxes.

Examples

Extract GTCC from Audio Signal

Get the gammatone cepstral coefficients for an audio file using default settings. Plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

[coeffs,~,~,loc] = gtcc(audioIn,fs);

t = loc./fs;

plot(t,coeffs)
xlabel('Time (s)')
title('Gammatone Cepstral Coefficients')
legend('logE','0','1','2','3','4','5','6','7','8','9','10','11','12', ...
 'Location','northeastoutside')

 gtcc

2-99

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Turbine-16-44p1-mono-22secs.wav');

Calculate 20 GTCC using filters equally spaced on the ERB scale between hz2erb(62.5) and
hz2erb(12000). Calculate the coefficients using 50 ms windows with 25 ms overlap. Replace the
0th coefficient with the log-energy. Use time-domain filtering.

[coeffs,~,~,loc] = gtcc(audioIn,fs, ...
 'NumCoeffs',20, ...
 'FrequencyRange',[62.5,12000], ...
 'WindowLength',round(0.05*fs), ...
 'OverlapLength',round(0.025*fs), ...
 'LogEnergy','Replace', ...
 'FilterDomain','Time');

Plot the results.

t = loc./fs;

plot(t,coeffs)
xlabel('Time (s)')
title('Gammatone Cepstral Coefficients')

2 Functions

2-100

legend('logE','1','2','3','4','5','6','7','8','9','10','11','12','13', ...
 '14','15','16','17','18','19','Location','northeastoutside');

Extract GTCC from Frequency-Domain Audio

Read in an audio file and convert it to a frequency representation.

[audioIn,fs] = audioread("Rainbow-16-8-mono-114secs.wav");

win = hann(1024,"periodic");
S = stft(audioIn,"Window",win,"OverlapLength",512,"Centered",false);

To extract the gammatone cepstral coefficients, call gtcc with the frequency-domain audio. Ignore
the log-energy.

coeffs = gtcc(S,fs,"LogEnergy","Ignore");

In many applications, GTCC observations are converted to summary statistics for use in classification
tasks. Plot probability density functions of each of the gammatone cepstral coefficients to observe
their distributions.

nbins = 60;
for i = 1:size(coeffs,2)
 figure
 histogram(coeffs(:,i),nbins,'Normalization','pdf')

 gtcc

2-101

 title(sprintf("Coefficient %d",i-1))
end

2 Functions

2-102

 gtcc

2-103

2 Functions

2-104

 gtcc

2-105

2 Functions

2-106

 gtcc

2-107

2 Functions

2-108

 gtcc

2-109

2 Functions

2-110

 gtcc

2-111

2 Functions

2-112

 gtcc

2-113

Input Arguments
audioIn — Input signal
vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array.

If 'FilterDomain' is set to 'Frequency' (default), then audioIn can be real or complex.

• If audioIn is real, it is interpreted as a time-domain signal and must be a column vector or a
matrix. Columns of the matrix are treated as independent audio channels.

• If audioIn is complex, it is interpreted as a frequency-domain signal. In this case, audioIn must
be an L-by-M-by-N array, where L is the number of DFT points, M is the number of individual
spectrums, and N is the number of individual channels.

If 'FilterDomain' is set to 'Time', then audioIn must be a real column vector or matrix. Columns
of the matrix are treated as independent audio channels.
Data Types: single | double
Complex Number Support: Yes

fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.

2 Functions

2-114

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: coeffs = gtcc(audioIn,fs,'LogEnergy','Replace') returns gammatone cepstral
coefficients for the audio input signal sampled at fs Hz. For each analysis window, the first
coefficient in the coeffs vector is replaced with the log energy of the input signal.

WindowLength — Number of samples in analysis window
round(0.03*fs) (default) | positive scalar integer

Number of samples in analysis window used to calculate the coefficients, specified as the comma-
separated pair consisting of 'WindowLength' and an integer in the range [2, size(audioIn,1)]. If
unspecified, WindowLength defaults to round(0.03*fs).
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(0.02*fs) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, WindowLength). If unspecified,
OverlapLength defaults to round(0.02*fs).
Data Types: single | double

NumCoeffs — Number of coefficients returned
13 (default) | positive scalar integer

Number of coefficients returned for each window of data, specified as the comma-separated pair
consisting of 'NumCoeffs' and an integer in the range [2, v]. v is the number of valid passbands. If
unspecified, NumCoeffs defaults to 13.

The number of valid passbands is defined as the number of ERB steps (ERBN) in the frequency range
of the filter bank. The frequency range of the filter bank is specified by FrequencyRange.
Data Types: single | double

FilterDomain — Domain in which to apply filtering
'Frequency' (default) | 'Time'

Domain in which to apply filtering, specified as the comma-separated pair consisting of
'FilterDomain' and 'Frequency' or 'Time'. If unspecified, FilterDomain defaults to
Frequency.
Data Types: string | char

FrequencyRange — Frequency range of gammatone filter bank (Hz)
[50 fs/2] (default) | two-element row vector

Frequency range of gammatone filter bank in Hz, specified as the comma-separated pair consisting of
'FrequencyRange' and a two-element row vector of increasing values in the range [0, fs/2]. If
unspecified, FrequencyRange defaults to [50, fs/2]

 gtcc

2-115

Data Types: single | double

FFTLength — Number of bins in DFT
WindowLength (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the comma-
separated pair consisting of 'FFTLength' and a positive scalar integer. If unspecified, FFTLength
defaults to WindowLength.
Data Types: single | double

Rectification — Type of nonlinear rectification
'log' (default) | 'cubic-root'

Type of nonlinear rectification applied prior to the discrete cosine transform, specified as 'log' or
'cubic-root'.
Data Types: char | string

DeltaWindowLength — Number of coefficients used to calculate delta and delta-delta
2 (default) | odd integer greater than two

Number of coefficients used to calculate the delta and the delta-delta values, specified as the comma-
separated pair consisting of 'DeltaWindowLength' and two or an odd integer greater than two. If
unspecified, DeltaWindowLength defaults to 2.

If DeltaWindowLength is set to 2, the delta is given by the difference between the current
coefficients and the previous coefficients.

If DeltaWindowLength is set to an odd integer greater than 2, the following equation defines their
values:

delta =
∑

k = −M

M
k ⋅ coef f s(k, :)

∑
k = −M

M
k2

The function uses a least-squares approximation of the local slope over a region around the
coefficients of the current analysis window. The delta cepstral values are computed by fitting the
cepstral coefficients of neighboring analysis windows (M analysis windows before the current
analysis window and M analysis windows after the current analysis window) to a straight line. For
details, see [3].
Data Types: single | double

LogEnergy — Log energy usage
'Append' (default) | 'Replace' | 'Ignore'

Log energy usage, specified as the comma-separated pair consisting of 'LogEnergy' and 'Append',
'Replace', or 'Ignore'. If unspecified, LogEnergy defaults to 'Append'.

• 'Append' –– The function prepends the log energy to the coefficients vector. The length of the
coefficients vector is 1 + NumCoeffs.

• 'Replace' –– The function replaces the first coefficient with the log energy of the signal. The
length of the coefficients vector is NumCoeffs.

2 Functions

2-116

• 'Ignore' –– The function does not calculate or return the log energy.

Data Types: char | string

Output Arguments
coeffs — Gammatone cepstral coefficients
matrix | array

Gammatone cepstral coefficients, returned as an L-by-M matrix or an L-by-M-by-N array, where:

• L –– Number of analysis windows the audio signal is partitioned into. The input size,
WindowLength, and OverlapLength control this dimension: L = floor((size(audioIn,1)
− WindowLength))/(WindowLength − OverlapLength) + 1.

• M –– Number of coefficients returned per frame. This value is determined by NumCoeffs and
LogEnergy.

When LogEnergy is set to:

• 'Append' –– The object prepends the log energy value to the coefficients vector. The length of
the coefficients vector is 1 + NumCoeffs.

• 'Replace' –– The object replaces the first coefficient with the log energy of the signal. The
length of the coefficients vector is NumCoeffs.

• 'Ignore' –– The object does not calculate or return the log energy. The length of the
coefficients vector is NumCoeffs.

• N –– Number of input channels (columns). This value is size(audioIn,2).

Data Types: single | double

delta — Change in coefficients
matrix | array

Change in coefficients from one analysis window to another, returned as an L-by-M matrix or an L-by-
M-by-N array. The delta array is the same size and data type as the coeffs array. See coeffs for
the definitions of L, M, and N.

The function uses a least-squares approximation of the local slope over a region around the current
time sample. For details, see [3].
Data Types: single | double

deltaDelta — Change in delta values
matrix | array

Change in delta values, returned as an L-by-M matrix or an L-by-M-by-N array. The deltaDelta
array is the same size and data type as the coeffs and delta arrays. See coeffs for the definitions
of L, M, and N.

The function uses a least-squares approximation of the local slope over a region around the current
time sample. For details, see [3].
Data Types: single | double

 gtcc

2-117

loc — Location of the last sample in each analysis window
column vector

Location of last sample in each analysis window, returned as a column vector with the same number
of rows as coeffs.
Data Types: single | double

Algorithms
The gtcc function splits the entire data into overlapping segments. The length of each analysis
window is determined by WindowLength. The length of overlap between analysis windows is
determined by OverlapLength. The algorithm to determine the gammatone cepstral coefficients
depends on the filter domain, specified by FilterDomain. The default filter domain is frequency.

Frequency-Domain Filtering

gtcc computes the gammatone cepstral coefficients, log energy values, delta, and delta-delta values
for each analysis window as per the algorithm described in cepstralFeatureExtractor.

Time-Domain Filtering

If FilterDomain is specified as 'Time', the gtcc function uses the gammatoneFilterBank to
apply time-domain filtering. The basic steps of the gtcc algorithm are outlined by the diagram.

The FrequencyRange and sample rate (fs) parameters are set on the filter bank using the name-
value pairs input to the gtcc function. The number of filters in the gammatone filter bank is defined
as hz2erb(FrequencyRange(2)) − hz2erb(FrequencyRange(1)).This roughly corresponds to
placing a gammatone filter every 0.9 mm in the cochlea.

The output from the gammatone filter bank is a multichannel signal. Each channel output from the
gammatone filter bank is buffered into overlapped analysis windows, as specified by WindowLength
and OverlapLength. Then a periodic Hamming window is applied to each analysis window. The
energy for each analysis window of data is calculated. The STE of the channels are concatenated. The
concatenated signal is then passed through a logarithm function and transformed to the cepstral
domain using a discrete cosine transform (DCT).

The log-energy is calculated on the original audio signal using the same buffering scheme applied to
the gammatone filter bank output.

2 Functions

2-118

References
[1] Shao, Yang, Zhaozhang Jin, Deliang Wang, and Soundararajan Srinivasan. "An Auditory-Based

Feature for Robust Speech Recognition." IEEE International Conference on Acoustics, Speech
and Signal Processing. 2009.

[2] Valero, X., and F. Alias. "Gammatone Cepstral Coefficients: Biologically Inspired Features for Non-
Speech Audio Classification." IEEE Transactions on Multimedia. Vol. 14, Issue 6, 2012, pp.
1684–1689.

[3] Rabiner, Lawrence R., and Ronald W. Schafer. Theory and Applications of Digital Speech
Processing. Upper Saddle River, NJ: Pearson, 2010.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cepstralFeatureExtractor | mfcc | pitch | voiceActivityDetector

Introduced in R2019a

 gtcc

2-119

spectralSpread
Spectral spread for audio signals and auditory spectrograms

Syntax
spread = spectralSpread(x,f)
spread = spectralSpread(x,f,Name,Value)
[spread,centroid] = spectralSpread(___)

Description
spread = spectralSpread(x,f) returns the spectral spread of the signal, x, over time. How the
function interprets x depends on the shape of f.

spread = spectralSpread(x,f,Name,Value) specifies options using one or more Name,Value
pair arguments.

[spread,centroid] = spectralSpread(___) returns the spectral centroid.

Examples

Spectral Spread of Time-Domain Audio

Read in an audio file, calculate the spread using default parameters, and then plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
spread = spectralSpread(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(spread,1));
plot(t,spread)
xlabel('Time (s)')
ylabel('Spread (Hz)')

2 Functions

2-120

Spectral Spread of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.
Calculate the spread of the mel spectrums over time. Plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

[s,cf,t] = melSpectrogram(audioIn,fs);

spread = spectralSpread(s,cf);

plot(t,spread)
xlabel('Time (s)')
ylabel('Spread (Hz)')

 spectralSpread

2-121

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the spread of the power spectrum over time. Calculate the spread for 50 ms Hamming
windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the spread calculation.
Plot the results.

spread = spectralSpread(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(spread,1));
plot(t,spread)
xlabel('Time (s)')
ylabel('Spread (Hz)')

2 Functions

2-122

Calculate Spectral Spread of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral spread calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral spread for the frame of audio.
3 Log the spectral spread for later plotting.

To calculate the spectral spread for only a given input frame, specify a window with the same number
of samples as the input, and set the overlap length to zero. Plot the logged data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
 audioIn = fileReader();
 spread = spectralSpread(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(spread)

 spectralSpread

2-123

end

plot(logger.Buffer)
ylabel('Spread (Hz)')

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the analysis

window of spectralSpread.
• You want to calculate the spectral spread for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral spread is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

2 Functions

2-124

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 spread = spectralSpread(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(spread)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Spread (Hz)')

 spectralSpread

2-125

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of 'Window'
and a real vector. The number of elements in the vector must be in the range [1, size(x,1)]. The
number of elements in the vector must also be greater than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, size(Window,1)).
Data Types: single | double

2 Functions

2-126

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the comma-
separated pair consisting of 'FFTLength' and a positive scalar integer. If unspecified, FFTLength
defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and a two-
element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'power' (default) | 'magnitude'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType' and 'power'
or 'magnitude':

• 'power' –– The spectral spread is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral spread is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
spread — Spectral spread (Hz)
scalar | vector | matrix

Spectral spread in Hz, returned as a scalar, vector, or matrix. Each row of centroid corresponds to
the spectral spread of a window of x. Each column of spread corresponds to an independent
channel.

centroid — Spectral centroid (Hz)
scalar | vector | matrix

Spectral centroid in Hz, returned as a scalar, vector, or matrix. Each row of centroid corresponds to
the spectral centroid of a window of x. Each column of centroid corresponds to an independent
channel.

Algorithms
The spectral spread is calculated as described in [1]:

spread =
∑

k = b1

b2
fk− μ1

2sk

∑
k = b1

b2
sk

 spectralSpread

2-127

where

• fk is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral spread.
• μ1 is the spectral centroid, calculated as described by the spectralCentroid function.

References
[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and Classification) in

the CUIDADO Project." Technical Report; IRCAM: Paris, France, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralCentroid | spectralKurtosis | spectralSkewness

Topics
“Spectral Descriptors”

Introduced in R2019a

2 Functions

2-128

spectralSlope
Spectral slope for audio signals and auditory spectrograms

Syntax
slope = spectralSlope(x,f)
slope = spectralSlope(x,f,Name,Value)

Description
slope = spectralSlope(x,f) returns the spectral slope of the signal, x, over time. How the
function interprets x depends on the shape of f.

slope = spectralSlope(x,f,Name,Value) specifies options using one or more Name,Value
pair arguments.

Examples

Spectral Slope of Time-Domain Audio

Read in an audio file, calculate the slope using default parameters, and then plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
slope = spectralSlope(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(slope,1));
plot(t,slope)
xlabel('Time (s)')
ylabel('Slope')

 spectralSlope

2-129

Spectral Slope of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.
Calculate the slope of the mel spectrogram over time. Plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

[s,cf,t] = melSpectrogram(audioIn,fs);

slope = spectralSlope(s,cf);

plot(t,slope)
xlabel('Time (s)')
ylabel('Slope')

2 Functions

2-130

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the slope of the magnitude spectrum over time. Calculate the slope for 50 ms Hamming
windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the slope calculation.
Plot the results.

slope = spectralSlope(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(slope,1));
plot(t,slope)
xlabel('Time (s)')
ylabel('Slope')

 spectralSlope

2-131

Calculate Spectral Slope of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral slope calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral slope for the frame of audio.
3 Log the spectral slope for later plotting.

To calculate the spectral slope for only a given input frame, specify a window with the same number
of samples as the input, and set the overlap length to zero. Plot the logged data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
 audioIn = fileReader();
 slope = spectralSlope(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(slope)

2 Functions

2-132

end

plot(logger.Buffer)
ylabel('Slope')

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the analysis

window of spectralSlope.
• You want to calculate the spectral slope for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral slope is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

 spectralSlope

2-133

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 slope = spectralSlope(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(slope)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Slope')

2 Functions

2-134

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of 'Window'
and a real vector. The number of elements in the vector must be in the range [1, size(x,1)]. The
number of elements in the vector must also be greater than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, size(Window,1)).
Data Types: single | double

 spectralSlope

2-135

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the comma-
separated pair consisting of 'FFTLength' and a positive scalar integer. If unspecified, FFTLength
defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and a two-
element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'magnitude' (default) | 'power'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType' and 'power'
or 'magnitude':

• 'power' –– The spectral slope is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral slope is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
slope — Spectral slope
scalar | vector | matrix

Spectral slope in Hz, returned as a scalar, vector, or matrix. Each row of slope corresponds to the
spectral slope of a window of x. Each column of slope corresponds to an independent channel.

Algorithms
The spectral slope is calculated as described in [1]:

slope =
∑

k = b1

b2
fk− μf sk− μS

∑
k = b1

b2
fk− μf

2

where

• fk is the frequency in Hz corresponding to bin k.
• μf is the mean frequency.
• sk is the spectral value at bin k.
• μs is the mean spectral value.

2 Functions

2-136

• b1 and b2 are the band edges, in bins, over which to calculate the spectral slope.

References
[1] Lerch, Alexander. An Introduction to Audio Content Analysis Applications in Signal Processing and

Music Informatics. Piscataway, NJ: IEEE Press, 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralCrest | spectralDecrease

Topics
“Spectral Descriptors”

Introduced in R2019a

 spectralSlope

2-137

spectralSkewness
Spectral skewness for audio signals and auditory spectrograms

Syntax
skewness = spectralSkewness(x,f)
skewness = spectralSkewness(x,f,Name,Value)
[skewness,spread,centroid] = spectralSkewness(___)

Description
skewness = spectralSkewness(x,f) returns the spectral skewness of the signal, x, over time.
How the function interprets x depends on the shape of f.

skewness = spectralSkewness(x,f,Name,Value) specifies options using one or more
Name,Value pair arguments.

[skewness,spread,centroid] = spectralSkewness(___) returns the spectral spread and
spectral centroid.

Examples

Spectral Skewness of Time-Domain Audio

Read in an audio file, calculate the skewness using default parameters, and then plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
skewness = spectralSkewness(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(skewness,1));
plot(t,skewness)
xlabel('Time (s)')
ylabel('Skewness')

2 Functions

2-138

Spectral Skewness of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.
Calculate the skewness of the mel spectrogram over time. Plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

[s,cf,t] = melSpectrogram(audioIn,fs);

skewness = spectralSkewness(s,cf);

plot(t,skewness)
xlabel('Time (s)')
ylabel('Skewness')

 spectralSkewness

2-139

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the skewness of the power spectrum over time. Calculate the skewness for 50 ms Hamming
windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the skewness
calculation. Plot the results.

skewness = spectralSkewness(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(skewness,1));
plot(t,skewness)
xlabel('Time (s)')
ylabel('Skewness')

2 Functions

2-140

Calculate Spectral Skewness of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral skewness calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral skewness for the frame of audio.
3 Log the spectral skewness for later plotting.

To calculate the spectral skewness for only a given input frame, specify a window with the same
number of samples as the input, and set the overlap length to zero. Plot the logged data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
 audioIn = fileReader();
 skewness = spectralSkewness(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(skewness)

 spectralSkewness

2-141

end

plot(logger.Buffer)
ylabel('Skewness')

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the analysis

window of spectralSkewness.
• You want to calculate the spectral skewness for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral skewness is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

2 Functions

2-142

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 skewness = spectralSkewness(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(skewness)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Skewness')

 spectralSkewness

2-143

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of 'Window'
and a real vector. The number of elements in the vector must be in the range [1, size(x,1)]. The
number of elements in the vector must also be greater than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, size(Window,1)).
Data Types: single | double

2 Functions

2-144

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the comma-
separated pair consisting of 'FFTLength' and a positive scalar integer. If unspecified, FFTLength
defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and a two-
element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'power' (default) | 'magnitude'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType' and 'power'
or 'magnitude':

• 'power' –– The spectral skewness is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral skewness is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
skewness — Spectral skewness
scalar | vector | matrix

Spectral skewness, returned as a scalar, vector, or matrix. Each row of skewness corresponds to the
spectral skewness of a window of x. Each column of skewness corresponds to an independent
channel.

spread — Spectral spread
scalar | vector | matrix

Spectral spread, returned as a scalar, vector, or matrix. Each row of spread corresponds to the
spectral spread of a window of x. Each column of spread corresponds to an independent channel.

centroid — Spectral centroid (Hz)
scalar | vector | matrix

Spectral centroid in Hz, returned as a scalar, vector, or matrix. Each row of centroid corresponds to
the spectral centroid of a window of x. Each column of centroid corresponds to an independent
channel.

Algorithms
The spectral skewness is calculated as described in [1]:

 spectralSkewness

2-145

skewness =
∑

k = b1

b2
fk− μ1

3sk

μ2
3 ∑

k = b1

b2
sk

where

• fk is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral skewness.
• μ1 is the spectral centroid, calculated as described by the spectralCentroid function.
• μ2 is the spectral spread, calculated as described by the spectralSpread function.

References
[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and Classification) in

the CUIDADO Project." Technical Report; IRCAM: Paris, France, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralCentroid | spectralKurtosis | spectralSpread

Topics
“Spectral Descriptors”

Introduced in R2019a

2 Functions

2-146

spectralRolloffPoint
Spectral rolloff point for audio signals and auditory spectrograms

Syntax
rolloffPoint = spectralRolloffPoint(x,f)
rolloffPoint = spectralRolloffPoint(x,f,Name,Value)

Description
rolloffPoint = spectralRolloffPoint(x,f) returns the spectral rolloff point of the signal, x,
over time. How the function interprets x depends on the shape of f.

rolloffPoint = spectralRolloffPoint(x,f,Name,Value) specifies options using one or
more Name,Value pair arguments.

Examples

Spectral Rolloff Point of Time-Domain Audio

Read in an audio file, calculate the rolloff point using default parameters, and then plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
rolloffPoint = spectralRolloffPoint(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(rolloffPoint,1));
plot(t,rolloffPoint)
xlabel('Time (s)')
ylabel('Rolloff Point (Hz)')

 spectralRolloffPoint

2-147

Spectral Rolloff Point of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.
Calculate the rolloff point of the mel spectrogram over time. Plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

[s,cf,t] = melSpectrogram(audioIn,fs);

rolloffPoint = spectralRolloffPoint(s,cf);

plot(t,rolloffPoint)
xlabel('Time (s)')
ylabel('Rolloff Point (Hz)')

2 Functions

2-148

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the rolloff point of the power spectrum over time. Calculate the rolloff point for 50 ms
Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the rolloff
point calculation. Plot the results.

rolloffPoint = spectralRolloffPoint(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(rolloffPoint,1));
plot(t,rolloffPoint)
xlabel('Time (s)')
ylabel('Rolloff Point (Hz)')

 spectralRolloffPoint

2-149

Calculate Spectral Rolloff Point of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral rolloff point calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral rolloff point for the frame of audio.
3 Log the spectral rolloff point for later plotting.

To calculate the spectral rolloff point for only a given input frame, specify a window with the same
number of samples as the input, and set the overlap length to zero. Plot the logged data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
 audioIn = fileReader();
 rolloffPoint = spectralRolloffPoint(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(rolloffPoint)

2 Functions

2-150

end

plot(logger.Buffer)
ylabel('Rolloff Point (Hz)')

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the analysis

window of spectralRolloffPoint.
• You want to calculate the spectral rolloff point for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral rolloff point is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

 spectralRolloffPoint

2-151

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 rolloffPoint = spectralRolloffPoint(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(rolloffPoint)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Rolloff Point (Hz)')

2 Functions

2-152

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Threshold — Threshold of rolloff point
0.95 (default) | scalar in the range (0,1)

Threshold of rolloff point, specified as the comma-separated pair consisting of 'Threshold' and a
scalar between zero and one, exclusive.
Data Types: single | double

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value pair arguments are ignored.

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of 'Window'
and a real vector. The number of elements in the vector must be in the range [1, size(x,1)]. The
number of elements in the vector must also be greater than OverlapLength.
Data Types: single | double

 spectralRolloffPoint

2-153

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the comma-
separated pair consisting of 'FFTLength' and a positive scalar integer. If unspecified, FFTLength
defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and a two-
element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'power' (default) | 'magnitude'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType' and 'power'
or 'magnitude':

• 'power' –– The spectral rolloff point is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral rolloff point is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
rolloffPoint — Spectral rolloff point (Hz)
scalar | vector | matrix

Spectral rolloff point in Hz, returned as a scalar, vector, or matrix. Each row of rolloffPoint
corresponds to the spectral rolloff point of a window of x. Each column of rolloffPoint
corresponds to an independent channel.

Algorithms
The spectral rolloff point is calculated as described in [1]:

rolloffPoint = i

such that

∑
k = b1

i
sk = κ ∑

k = b1

b2
sk

2 Functions

2-154

where

• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral spread.
• κ is the percentage of total energy contained between b1 and i. You can set κ using Threshold.

References
[1] Scheirer, E., and M. Slaney, "Construction and Evaluation of a Robust Multifeature Speech/Music

Discriminator," IEEE International Conference on Acoustics, Speech, and Signal Processing.
Volume 2, 1997, pp. 1221–1224.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralKurtosis | spectralSkewness | spectralSpread

Topics
“Spectral Descriptors”

Introduced in R2019a

 spectralRolloffPoint

2-155

spectralKurtosis
Spectral kurtosis for audio signals and auditory spectrograms

Syntax
kurtosis = spectralKurtosis(x,f)
kurtosis = spectralKurtosis(x,f,Name,Value)
[kurtosis,spread,centroid] = spectralKurtosis(___)

Description
kurtosis = spectralKurtosis(x,f) returns the spectral kurtosis of the signal, x, over time.
How the function interprets x depends on the shape of f.

kurtosis = spectralKurtosis(x,f,Name,Value) specifies options using one or more
Name,Value pair arguments.

[kurtosis,spread,centroid] = spectralKurtosis(___) returns the spectral spread and
spectral centroid.

Examples

Spectral Kurtosis of Time-Domain Audio

Read in an audio file, calculate the kurtosis using default parameters, and then plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
kurtosis = spectralKurtosis(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(kurtosis,1));
plot(t,kurtosis)
xlabel('Time (s)')
ylabel('Kurtosis')

2 Functions

2-156

Spectral Kurtosis of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.
Calculate the kurtosis of the mel spectrogram over time. Plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

[s,cf,t] = melSpectrogram(audioIn,fs);

kurtosis = spectralKurtosis(s,cf);

plot(t,kurtosis)
xlabel('Time (s)')
ylabel('Kurtosis')

 spectralKurtosis

2-157

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the kurtosis of the power spectrum over time. Calculate the kurtosis for 50 ms Hamming
windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the kurtosis calculation.
Plot the results.

kurtosis = spectralKurtosis(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(kurtosis,1));
plot(t,kurtosis)
xlabel('Time (s)')
ylabel('Kurtosis')

2 Functions

2-158

Calculate Spectral Kurtosis of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral kurtosis calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral kurtosis for the frame of audio.
3 Log the spectral kurtosis for later plotting.

To calculate the spectral kurtosis for only a given input frame, specify a window with the same
number of samples as the input, and set the overlap length to zero. Plot the logged data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
 audioIn = fileReader();
 kurtosis = spectralKurtosis(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(kurtosis)

 spectralKurtosis

2-159

end

plot(logger.Buffer)
ylabel('Kurtosis')

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the analysis

window of spectralKurtosis.
• You want to calculate the spectral kurtosis for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral kurtosis is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

2 Functions

2-160

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 kurtosis = spectralKurtosis(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(kurtosis)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Kurtosis')

 spectralKurtosis

2-161

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of 'Window'
and a real vector. The number of elements in the vector must be in the range [1, size(x,1)]. The
number of elements in the vector must also be greater than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, size(Window,1)).
Data Types: single | double

2 Functions

2-162

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the comma-
separated pair consisting of 'FFTLength' and a positive scalar integer. If unspecified, FFTLength
defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and a two-
element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'power' (default) | 'magnitude'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType' and 'power'
or 'magnitude':

• 'power' –– The spectral kurtosis is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral kurtosis is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
kurtosis — Spectral kurtosis
scalar | vector | matrix

Spectral kurtosis, returned as a scalar, vector, or matrix. Each row of kurtosis corresponds to the
spectral kurtosis of a window of x. Each column of kurtosis corresponds to an independent
channel.

spread — Spectral spread
scalar | vector | matrix

Spectral spread, returned as a scalar, vector, or matrix. Each row of spread corresponds to the
spectral spread of a window of x. Each column of spread corresponds to an independent channel.

centroid — Spectral centroid (Hz)
scalar | vector | matrix

Spectral centroid in Hz, returned as a scalar, vector, or matrix. Each row of centroid corresponds to
the spectral centroid of a window of x. Each column of centroid corresponds to an independent
channel.

Algorithms
The spectral kurtosis is calculated as described in [1]:

 spectralKurtosis

2-163

kurtosis =
∑

k = b1

b2
fk− μ1

4sk

μ2
4 ∑

k = b1

b2
sk

where

• fk is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral skewness.
• μ1 is the spectral centroid, calculated as described by the spectralCentroid function.
• μ2 is the spectral spread, calculated as described by the spectralSpread function.

References
[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and Classification) in

the CUIDADO Project." Technical Report; IRCAM: Paris, France, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralCentroid | spectralSkewness | spectralSpread

Topics
“Spectral Descriptors”

Introduced in R2019a

2 Functions

2-164

spectralFlux
Spectral flux for audio signals and auditory spectrograms

Syntax
flux = spectralFlux(x,f)
flux = spectralFlux(x,f,Name,Value)

Description
flux = spectralFlux(x,f) returns the spectral flux of the signal, x, over time. How the function
interprets x depends on the shape of f.

flux = spectralFlux(x,f,Name,Value) specifies options using one or more Name,Value pair
arguments.

Examples

Spectral Flux of Time-Domain Audio

Read in an audio file, calculate the flux using default parameters, and then plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
flux = spectralFlux(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(flux,1));
plot(t,flux)
xlabel('Time (s)')
ylabel('Flux')

 spectralFlux

2-165

Spectral Flux of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.
Calculate the flux of the mel spectrogram over time. Plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

[s,cf,t] = melSpectrogram(audioIn,fs);

flux = spectralFlux(s,cf);

plot(t,flux)
xlabel('Time (s)')
ylabel('Flux')

2 Functions

2-166

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the flux of the power spectrum over time. Calculate the flux for 50 ms Hamming windows of
data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the flux calculation. Plot the results.

flux = spectralFlux(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(flux,1));
plot(t,flux)
xlabel('Time (s)')
ylabel('Flux')

 spectralFlux

2-167

Calculate Spectral Flux of Streaming Audio

Spectral flux measures the change in consecutive spectrums. To calculate spectral flux for a
streaming audio signal, you must input at least two frames of audio data.

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.AsyncBuffer to buffer audio into overlapped frames. Create a dsp.SignalSink to log the
spectral flux calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
buff = dsp.AsyncBuffer;
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data from your source.
2 Write the audio data to a dsp.AsyncBuffer
3 If a frame of data is available from the buffer, read a frame and one hop of data, with overlap

equal to samples per frame. This represents the two most recent audio frames.
4 Calculate the spectral flux for the two most recent audio frames.
5 Log the spectral flux for later plotting. Because flux is defined by a current frame and a previous

frame, and because the condition before the first frame is unknown to the function, spectral flux
outputs a flux of zero for the first frame. Log only the second value output from spectralFlux.

2 Functions

2-168

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame+samplesPerHop,samplesPerFrame);
 flux = spectralFlux(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',samplesOverlap);
 logger(flux(end))
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Flux')

 spectralFlux

2-169

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

NormType — Norm type
2 (default) | 1

Norm type used to calculate, specified as the comma-separated pair consisting of 'NormType' and 2
or 1.
Data Types: single | double

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value pair arguments are ignored.

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of 'Window'
and a real vector. The number of elements in the vector must be in the range [1, size(x,1)]. The
number of elements in the vector must also be greater than OverlapLength.

2 Functions

2-170

Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the comma-
separated pair consisting of 'FFTLength' and a positive scalar integer. If unspecified, FFTLength
defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and a two-
element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'power' (default) | 'magnitude'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType' and 'power'
or 'magnitude':

• 'power' –– The spectral flux is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral flux is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
flux — Spectral flux (Hz)
scalar | vector | matrix

Spectral flux in Hz, returned as a scalar, vector, or matrix. Each row of flux corresponds to the
spectral flux of a window of x. Each column of flux corresponds to an independent channel.

Algorithms
The spectral flux is calculated as described in [1]:

flux(t) = ∑
k = b1

b2
sk(t)− sk(t − 1) P

1 P

where

 spectralFlux

2-171

• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral flux.
• P is the norm type. You can specify the norm type using NormType.

References
[1] Scheirer, E., and M. Slaney. "Construction and Evaluation of a Robust Multifeature Speech/Music

Discriminator." IEEE International Conference on Acoustics, Speech, and Signal Processing.
Volume 2, 1997, pp. 1221–1224.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
integratedLoudness | spectralCentroid | splMeter

Topics
“Spectral Descriptors”

Introduced in R2019a

2 Functions

2-172

spectralFlatness
Spectral flatness for audio signals and auditory spectrograms

Syntax
flatness = spectralFlatness(x,f)
flatness = spectralFlatness(x,f,Name,Value)
[flatness,arithmeticMean,geometricMean] = spectralFlatness(___)

Description
flatness = spectralFlatness(x,f) returns the spectral flatness of the signal, x, over time.
How the function interprets x depends on the shape of f.

flatness = spectralFlatness(x,f,Name,Value) specifies options using one or more
Name,Value pair arguments.

[flatness,arithmeticMean,geometricMean] = spectralFlatness(___) returns the
spectral arithmetic mean and spectral geometric mean.

Examples

Spectral Flatness of Time-Domain Audio

Read in an audio file, calculate the flatness using default parameters, and then plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
flatness = spectralFlatness(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(flatness,1));
plot(t,flatness)
xlabel('Time (s)')
ylabel('Flatness')

 spectralFlatness

2-173

Spectral Flatness of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
[s,cf,t] = melSpectrogram(audioIn,fs);

Calculate the flatness of the mel spectrogram over time. Plot the results.

flatness = spectralFlatness(s,cf);

plot(t,flatness)
xlabel('Time (s)')
ylabel('Flatness')

2 Functions

2-174

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the flatness of the power spectrum over time. Calculate the flatness for 50 ms Hamming
windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the flatness calculation.
Plot the results.

flatness = spectralFlatness(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(flatness,1));
plot(t,flatness)
xlabel('Time (s)')
ylabel('Flatness')

 spectralFlatness

2-175

Calculate Spectral Flatness of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral flatness calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral flatness for the frame of audio.
3 Log the spectral flatness for later plotting.

To calculate the spectral flatness for only a given input frame, specify a window with the same
number of samples as the input, and set the overlap length to zero. Plot the logged data.

win = hamming(fileReader.SamplesPerFrame);
while ~isDone(fileReader)
 audioIn = fileReader();
 flatness = spectralFlatness(audioIn,fileReader.SampleRate, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(flatness)

2 Functions

2-176

end

plot(logger.Buffer)
ylabel('Flatness')

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the analysis

window of spectralFlatness.
• You want to calculate the spectral flatness for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral flatness is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

 spectralFlatness

2-177

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 flatness = spectralFlatness(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(flatness)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Flatness')

2 Functions

2-178

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of 'Window'
and a real vector. The number of elements in the vector must be in the range [1, size(x,1)]. The
number of elements in the vector must also be greater than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, size(Window,1)).
Data Types: single | double

 spectralFlatness

2-179

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the comma-
separated pair consisting of 'FFTLength' and a positive scalar integer. If unspecified, FFTLength
defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and a two-
element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'power' (default) | 'magnitude'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType' and 'power'
or 'magnitude':

• 'power' –– The spectral flatness is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral flatness is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
flatness — Spectral flatness
scalar | vector | matrix

Spectral flatness, returned as a scalar, vector, or matrix. Each row of flatness corresponds to the
spectral flatness of a window of x. Each column of flatness corresponds to an independent channel.

arithmeticMean — Spectral arithmetic mean
scalar | vector | matrix

Spectral arithmetic mean, returned as a scalar, vector, or matrix. Each row of arithmeticMean
corresponds to the arithmetic mean of the spectrum of a window of x. Each column of
arithmeticMean corresponds to an independent channel.

geometricMean — Spectral geometric mean
scalar | vector | matrix

Spectral geometric mean, returned as a scalar, vector, or matrix. Each row of geometricMean
corresponds to the geometric mean of the spectrum of a window of x. Each column of
geometricMean corresponds to an independent channel.

Algorithms
The spectral flatness is calculated as described in [1]:

2 Functions

2-180

flatness =
∏

k = b1

b2
sk

1
b2− b1

1
b2− b1 ∑k = b1

b2
sk

where

• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral spread.

References
[1] Johnston, J.d. "Transform Coding of Audio Signals Using Perceptual Noise Criteria." IEEE Journal

on Selected Areas in Communications. Vol. 6, Number 2, 1988, pp. 314–323.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralCrest

Topics
“Spectral Descriptors”

Introduced in R2019a

 spectralFlatness

2-181

spectralEntropy
Spectral entropy for audio signals and auditory spectrograms

Syntax
entropy = spectralEntropy(x,f)
entropy = spectralEntropy(x,f,Name,Value)

Description
entropy = spectralEntropy(x,f) returns the spectral entropy of the signal, x, over time. How
the function interprets x depends on the shape of f.

entropy = spectralEntropy(x,f,Name,Value) specifies options using one or more
Name,Value pair arguments.

Examples

Spectral Entropy of Time-Domain Audio

Read in an audio file, calculate the entropy using default parameters, and then plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
entropy = spectralEntropy(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(entropy,1));
plot(t,entropy)
xlabel('Time (s)')
ylabel('Entropy')

2 Functions

2-182

Spectral Entropy of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
[s,cf,t] = melSpectrogram(audioIn,fs);

Calculate the entropy of the mel spectrogram over time. Plot the results.

entropy = spectralEntropy(s,cf);

plot(t,entropy)
xlabel('Time (s)')
ylabel('Entropy')

 spectralEntropy

2-183

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the entropy of the power spectrum over time. Calculate the entropy for 50 ms Hamming
windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the entropy calculation.
Plot the results.

entropy = spectralEntropy(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(entropy,1));
plot(t,entropy)
xlabel('Time (s)')
ylabel('Entropy')

2 Functions

2-184

Calculate Spectral Entropy of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral entropy calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral entropy for the frame of audio.
3 Log the spectral entropy for later plotting.

To calculate the spectral entropy for only a given input frame, specify a window with the same
number of samples as the input, and set the overlap length to zero. Plot the logged data.

while ~isDone(fileReader)
 audioIn = fileReader();
 entropy = spectralEntropy(audioIn,fileReader.SampleRate, ...
 'Window',hamming(size(audioIn,1)), ...
 'OverlapLength',0);
 logger(entropy)
end

 spectralEntropy

2-185

plot(logger.Buffer)
ylabel('Entropy')

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the analysis

window of spectralEntropy.
• You want to calculate the spectral entropy for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral entropy is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

2 Functions

2-186

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 entropy = spectralEntropy(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(entropy)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Entropy')

Input Arguments
x — Input signal
column vector | matrix | 3-D array

 spectralEntropy

2-187

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of 'Window'
and a real vector. The number of elements in the vector must be in the range [1, size(x,1)]. The
number of elements in the vector must also be greater than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

2 Functions

2-188

Number of bins used to calculate the DFT of windowed input samples, specified as the comma-
separated pair consisting of 'FFTLength' and a positive scalar integer. If unspecified, FFTLength
defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and a two-
element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'power' (default) | 'magnitude'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType' and 'power'
or 'magnitude':

• 'power' –– The spectral entropy is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral entropy is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
entropy — Spectral entropy
scalar | vector | matrix

Spectral entropy, returned as a scalar, vector, or matrix. Each row of entropy corresponds to the
spectral entropy of a window of x. Each column of entropy corresponds to an independent channel.

Algorithms
The spectral entropy is calculated as described in [1]:

entropy =
− ∑

k = b1

b2
sklog sk

log b2− b1

where

• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral entropy.

References
[1] Misra, H., S. Ikbal, H. Bourlard, and H. Hermansky. "Spectral Entropy Based Feature for Robust

ASR." 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

 spectralEntropy

2-189

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralKurtosis | spectralSkewness | spectralSpread

Topics
“Spectral Descriptors”

Introduced in R2019a

2 Functions

2-190

spectralDecrease
Spectral decrease for audio signals and auditory spectrograms

Syntax
decrease = spectralDecrease(x,f)
decrease = spectralDecrease(x,f,Name,Value)

Description
decrease = spectralDecrease(x,f) returns the spectral decrease of the signal, x, over time.
How the function interprets x depends on the shape of f.

decrease = spectralDecrease(x,f,Name,Value) specifies options using one or more
Name,Value pair arguments.

Examples

Spectral Decrease of Time-Domain Audio

Read in an audio file, calculate the decrease using default parameters, and then plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
decrease = spectralDecrease(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(decrease,1));
plot(t,decrease)
xlabel('Time (s)')
ylabel('Decrease')

 spectralDecrease

2-191

Spectral Decrease of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
[s,cf] = melSpectrogram(audioIn,fs);

Calculate the decrease of the mel spectrogram over time. Plot the results.

decrease = spectralDecrease(s,cf);

t = linspace(0,size(audioIn,1)/fs,size(decrease,1));
plot(t,decrease)
xlabel('Time (s)')
ylabel('Decrease')

2 Functions

2-192

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the decrease of the magnitude spectrum over time. Calculate the decrease for 50 ms
Hamming windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the decrease
calculation. Plot the results.

decrease = spectralDecrease(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(decrease,1));
plot(t,decrease)
xlabel('Time (s)')
ylabel('Decrease')

 spectralDecrease

2-193

Calculate Spectral Decrease of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral decrease calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral decrease for the frame of audio.
3 Log the spectral decrease for later plotting.

To calculate the spectral decrease for only a given input frame, specify a window with the same
number of samples as the input, and set the overlap length to zero. Plot the logged data.

while ~isDone(fileReader)
 audioIn = fileReader();
 decrease = spectralDecrease(audioIn,fileReader.SampleRate, ...
 'Window',hamming(size(audioIn,1)), ...
 'OverlapLength',0);
 logger(decrease)
end

2 Functions

2-194

plot(logger.Buffer)
ylabel('Decrease')

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the analysis

window of spectralDecrease.
• You want to calculate the spectral decrease for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral decrease is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

 spectralDecrease

2-195

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 decrease = spectralDecrease(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(decrease)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Decrease')

Input Arguments
x — Input signal
column vector | matrix | 3-D array

2 Functions

2-196

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of 'Window'
and a real vector. The number of elements in the vector must be in the range [1, size(x,1)]. The
number of elements in the vector must also be greater than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

 spectralDecrease

2-197

Number of bins used to calculate the DFT of windowed input samples, specified as the comma-
separated pair consisting of 'FFTLength' and a positive scalar integer. If unspecified, FFTLength
defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and a two-
element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'magnitude' (default) | 'power'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType' and 'power'
or 'magnitude':

• 'power' –– The spectral decrease is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral decrease is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
decrease — Spectral decrease
scalar | vector | matrix

Spectral decrease in Hz, returned as a scalar, vector, or matrix. Each row of decrease corresponds
to the spectral centroid of a window of x. Each column of decrease corresponds to an independent
channel.

Algorithms
The spectral decrease is calculated as described in [1]:

decrease =
∑

k = b1 + 1

b2 sk− sb1
k− 1

∑
k = b1 + 1

b2
sk

where

• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral decrease.

References
[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and Classification) in

the CUIDADO Project." Technical Report; IRCAM: Paris, France, 2004.

2 Functions

2-198

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralCrest | spectralSlope

Topics
“Spectral Descriptors”

Introduced in R2019a

 spectralDecrease

2-199

spectralCrest
Spectral crest for audio signals and auditory spectrograms

Syntax
crest = spectralCrest(x,f)
crest = spectralCrest(x,f,Name,Value)
[crest,spectralPeak,spectralMean] = spectralCrest(___)

Description
crest = spectralCrest(x,f) returns the spectral crest of the signal, x, over time. How the
function interprets x depends on the shape of f.

crest = spectralCrest(x,f,Name,Value) specifies options using one or more Name,Value
pair arguments.

[crest,spectralPeak,spectralMean] = spectralCrest(___) returns the spectral peak and
spectral mean.

Examples

Spectral Crest of Time-Domain Audio

Read in an audio file, calculate the crest using default parameters, and then plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
crest = spectralCrest(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(crest,1));
plot(t,crest)
xlabel('Time (s)')
ylabel('Crest')

2 Functions

2-200

Spectral Crest of Frequency-Domain Audio Data

Read in an audio file and then calculate the mel spectrogram using the melSpectrogram function.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
[s,cf] = melSpectrogram(audioIn,fs);

Calculate the crest of the mel spectrogram over time. Plot the results.

crest = spectralCrest(s,cf);

t = linspace(0,size(audioIn,1)/fs,size(crest,1));
plot(t,crest)
xlabel('Time (s)')
ylabel('Crest')

 spectralCrest

2-201

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the crest of the power spectrum over time. Calculate the crest for 50 ms Hamming windows
of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the crest calculation. Plot the
results.

crest = spectralCrest(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(crest,1));
plot(t,crest)
xlabel('Time (s)')
ylabel('Crest')

2 Functions

2-202

Calculate Spectral Crest of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral crest calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral crest for the frame of audio.
3 Log the spectral crest for later plotting.

To calculate the spectral crest for only a given input frame, specify a window with the same number
of samples as the input, and set the overlap length to zero.

Plot the logged data.

while ~isDone(fileReader)
 audioIn = fileReader();
 crest = spectralCrest(audioIn,fileReader.SampleRate, ...
 'Window',hamming(size(audioIn,1)), ...
 'OverlapLength',0);

 spectralCrest

2-203

 logger(crest)
end

plot(logger.Buffer)
ylabel('Crest')

Use dsp.AsyncBuffer if

• The input to your audio stream loop has a variable samples-per-frame.
• The input to your audio stream loop has an inconsistent samples-per-frame with the analysis

window of spectralCrest.
• You want to calculate the spectral crest for overlapped data.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral crest is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

2 Functions

2-204

win = hamming(samplesPerFrame);

while ~isDone(fileReader)
 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 crest = spectralCrest(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(crest)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Crest (Hz)')

 spectralCrest

2-205

Input Arguments
x — Input signal
column vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of 'Window'
and a real vector. The number of elements in the vector must be in the range [1, size(x,1)]. The
number of elements in the vector must also be greater than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, size(Window,1)).
Data Types: single | double

2 Functions

2-206

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

Number of bins used to calculate the DFT of windowed input samples, specified as the comma-
separated pair consisting of 'FFTLength' and a positive scalar integer. If unspecified, FFTLength
defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and a two-
element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'power' (default) | 'magnitude'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType' and 'power'
or 'magnitude':

• 'power' –– The spectral crest is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral crest is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
crest — Spectral crest
scalar | vector | matrix

Spectral crest, returned as a scalar, vector, or matrix. Each row of crest corresponds to the spectral
crest of a window of x. Each column of crest corresponds to an independent channel.

spectralPeak — Spectral peak
scalar | vector | matrix

Spectral peak, returned as a scalar, vector, or matrix. Each row of spectralPeak corresponds to the
spectral crest of a window of x. Each column of spectralPeak corresponds to an independent
channel.

spectralMean — Spectral mean
scalar | vector | matrix

Spectral mean, returned as a scalar, vector, or matrix. Each row of spectralMean corresponds to
the spectral crest of a window of x. Each column of spectralMean corresponds to an independent
channel.

Algorithms
The spectral crest is calculated as described in [1]:

 spectralCrest

2-207

crest =
max sk ∈ [b1, b2]

1
b2− b1 ∑k = b1

b2
sk

where

• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral crest.

References
[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and Classification) in

the CUIDADO Project." Technical Report; IRCAM: Paris, France, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralFlatness | spectralSkewness | spectralSpread

Topics
“Spectral Descriptors”

Introduced in R2019a

2 Functions

2-208

spectralCentroid
Spectral centroid for audio signals and auditory spectrograms

Syntax
centroid = spectralCentroid(x,f)
centroid = spectralCentroid(x,f,Name,Value)

Description
centroid = spectralCentroid(x,f) returns the spectral centroid of the signal, x, over time.
How the function interprets x depends on the shape of f.

centroid = spectralCentroid(x,f,Name,Value) specifies options using one or more
Name,Value pair arguments.

Examples

Spectral Centroid of Time-Domain Audio

Read in an audio file, calculate the centroid using default parameters, and then plot the results.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
centroid = spectralCentroid(audioIn,fs);

t = linspace(0,size(audioIn,1)/fs,size(centroid,1));
plot(t,centroid)
xlabel('Time (s)')
ylabel('Centroid (Hz)')

 spectralCentroid

2-209

Spectral Centroid of Frequency-Domain Audio Data

Read in an audio file and then buffer the signal into 30 ms frames with 20 ms overlap. Calculate the
octave power spectrum using the poctave function.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
audioBuffered = buffer(audioIn,round(fs*0.03),round(fs*0.02),'nodelay');
[p,cf] = poctave(audioBuffered,fs);

Calculate the centroid of the octave power spectrum over time. Plot the results.

centroid = spectralCentroid(p,cf);

t = linspace(0,size(audioIn,1)/fs,size(centroid,1));
plot(t,centroid)
xlabel('Time (s)')
ylabel('Centroid (Hz)')

2 Functions

2-210

Specify Nondefault Parameters

Read in an audio file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Calculate the centroid of the power spectrum over time. Calculate the centroid for 50 ms Hamming
windows of data with 25 ms overlap. Use the range from 62.5 Hz to fs/2 for the centroid calculation.
Plot the results.

centroid = spectralCentroid(audioIn,fs, ...
 'Window',hamming(round(0.05*fs)), ...
 'OverlapLength',round(0.025*fs), ...
 'Range',[62.5,fs/2]);

t = linspace(0,size(audioIn,1)/fs,size(centroid,1));
plot(t,centroid)
xlabel('Time (s)')
ylabel('Centroid (Hz)')

 spectralCentroid

2-211

Calculate Spectral Centroid of Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create a
dsp.SignalSink to log the spectral centroid calculation.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
logger = dsp.SignalSink;

In an audio stream loop:

1 Read in a frame of audio data.
2 Calculate the spectral centroid for the frame of audio.
3 Log the spectral centroid for later plotting.

To calculate the spectral centroid for only a given input frame, specify a window with the same
number of samples as the input, and set the overlap length to zero.

Plot the logged data.

while ~isDone(fileReader)
 audioIn = fileReader();
 centroid = spectralCentroid(audioIn,fileReader.SampleRate, ...
 'Window',hamming(size(audioIn,1)), ...
 'OverlapLength',0);

2 Functions

2-212

 logger(centroid)
end

plot(logger.Buffer)
ylabel('Centroid (Hz)')

If the input to your audio stream loop has a variable samples-per-frame, an inconsistent samples-per-
frame with the analysis window size of spectralCentroid, or if you want to calculate the spectral
centroid for overlapped data, use dsp.AsyncBuffer.

Create a dsp.AsyncBuffer object, reset the logger, and release the file reader.

buff = dsp.AsyncBuffer;
reset(logger)
release(fileReader)

Specify that the spectral centroid is calculated for 50 ms frames with a 25 ms overlap.

fs = fileReader.SampleRate;

samplesPerFrame = round(fs*0.05);
samplesOverlap = round(fs*0.025);

samplesPerHop = samplesPerFrame - samplesOverlap;

win = hamming(samplesPerFrame);

while ~isDone(fileReader)

 spectralCentroid

2-213

 audioIn = fileReader();
 write(buff,audioIn);

 while buff.NumUnreadSamples >= samplesPerHop
 audioBuffered = read(buff,samplesPerFrame,samplesOverlap);

 centroid = spectralCentroid(audioBuffered,fs, ...
 'Window',win, ...
 'OverlapLength',0);
 logger(centroid)
 end

end
release(fileReader)

Plot the logged data.

plot(logger.Buffer)
ylabel('Centroid (Hz)')

Input Arguments
x — Input signal
column vector | matrix | 3-D array

2 Functions

2-214

Input signal, specified as a vector, matrix, or 3-D array. How the function interprets x depends on the
shape of f.
Data Types: single | double

f — Sample rate or frequency vector (Hz)
scalar | vector

Sample rate or frequency vector in Hz, specified as a scalar or vector, respectively. How the function
interprets x depends on the shape of f:

• If f is a scalar, x is interpreted as a time-domain signal, and f is interpreted as the sample rate. In
this case, x must be a real vector or matrix. If x is specified as a matrix, the columns are
interpreted as individual channels.

• If f is a vector, x is interpreted as a frequency-domain signal, and f is interpreted as the
frequencies, in Hz, corresponding to the rows of x. In this case, x must be a real L-by-M-by-N
array, where L is the number of spectral values at given frequencies of f, M is the number of
individual spectrums, and N is the number of channels.

• The number of rows of x, L, must be equal to the number of elements of f.

Data Types: single | double

Name-Value Pair Arguments

Note The following name-value pair arguments apply if x is a time-domain signal. If x is a frequency-
domain signal, name-value pair arguments are ignored.

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Window',hamming(256)

Window — Window applied in time domain
rectwin(round(f*0.03)) (default) | vector

Window applied in the time domain, specified as the comma-separated pair consisting of 'Window'
and a real vector. The number of elements in the vector must be in the range [1, size(x,1)]. The
number of elements in the vector must also be greater than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapped between adjacent windows
round(f*0.02) (default) | non-negative scalar

Number of samples overlapped between adjacent windows, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, size(Window,1)).
Data Types: single | double

FFTLength — Number of bins in DFT
numel(Window) (default) | positive scalar integer

 spectralCentroid

2-215

Number of bins used to calculate the DFT of windowed input samples, specified as the comma-
separated pair consisting of 'FFTLength' and a positive scalar integer. If unspecified, FFTLength
defaults to the number of elements in the Window.
Data Types: single | double

Range — Frequency range (Hz)
[0,f/2] (default) | two-element row vector

Frequency range in Hz, specified as the comma-separated pair consisting of 'Range' and a two-
element row vector of increasing real values in the range [0, f/2].
Data Types: single | double

SpectrumType — Spectrum type
'power' (default) | 'magnitude'

Spectrum type, specified as the comma-separated pair consisting of 'SpectrumType' and 'power'
or 'magnitude':

• 'power' –– The spectral centroid is calculated for the one-sided power spectrum.
• 'magnitude' –– The spectral centroid is calculated for the one-sided magnitude spectrum.

Data Types: char | string

Output Arguments
centroid — Spectral centroid (Hz)
scalar | vector | matrix

Spectral centroid in Hz, returned as a scalar, vector, or matrix. Each row of centroid corresponds to
the spectral centroid of a window of x. Each column of centroid corresponds to an independent
channel.

Algorithms
The spectral centroid is calculated as described in [1]:

centroid =
∑

k = b1

b2
fksk

∑
k = b1

b2
sk

where

• fk is the frequency in Hz corresponding to bin k.
• sk is the spectral value at bin k.
• b1 and b2 are the band edges, in bins, over which to calculate the spectral centroid.

2 Functions

2-216

References
[1] Peeters, G. "A Large Set of Audio Features for Sound Description (Similarity and Classification) in

the CUIDADO Project." Technical Report; IRCAM: Paris, France, 2004.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
spectralKurtosis | spectralSkewness | spectralSpread

Topics
“Spectral Descriptors”

Introduced in R2019a

 spectralCentroid

2-217

hz2mel
Convert from hertz to mel scale

Syntax
mel = hz2erb(hz)

Description
mel = hz2erb(hz) converts values in hertz to values on the mel frequency scale.

Examples

Convert Between Mel Scale and Hz

Set two bounding frequencies in Hz and then convert them to the mel scale.

b = hz2mel([20,8000]);

Generate a row vector of 32 values uniformly spaced on the mel scale.

melVect = linspace(b(1),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = mel2hz(melVect);

Plot the two vectors for comparison. As mel values increase linearly, Hz values increase exponentially.

plot(melVect,hzVect,'o')
title('Mel vs Hz')
xlabel('Mel')
ylabel('Hz')
grid on

2 Functions

2-218

Input Arguments
hz — Input frequency in Hz
scalar | vector | matrix | multidimensional array

Input frequency in Hz, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Output Arguments
mel — Output frequency on mel scale
scalar | vector | matrix | multidimensional array

Output frequency on the mel scale, returned as a scalar, vector, matrix, or multidimensional array the
same size as hz.
Data Types: single | double

Algorithms
The frequency conversion from Hz to the mel scale uses the following formula:

mel = 2595log10 1 + hz
700

 hz2mel

2-219

References
[1] O'Shaghnessy, Douglas. Speech Communication: Human and Machine. Reading, MA: Addison-

Wesley Publishing Company, 1987.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bark2hz | erb2hz | hz2bark | hz2erb | mel2hz

Introduced in R2019a

2 Functions

2-220

hz2bark
Convert from hertz to Bark scale

Syntax
bark = hz2erb(hz)

Description
bark = hz2erb(hz) converts values in hertz to values on the Bark frequency scale.

Examples

Convert Between Bark Scale and Hz

Set two bounding frequencies in Hz and then convert them to the Bark scale.

b = hz2bark([20,8000]);

Generate a row vector of 32 values uniformly spaced on the Bark scale.

barkVect = linspace(b(1),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = bark2hz(barkVect);

Plot the two vectors for comparison. As Bark values increase linearly, Hz values increase
exponentially.

plot(barkVect,hzVect,'o')
title('Bark vs Hz')
xlabel('Bark')
ylabel('Hz')
grid on

 hz2bark

2-221

Input Arguments
hz — Input frequency in Hz
scalar | vector | matrix | multidimensional array

Input frequency in Hz, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Output Arguments
bark — Output frequency on Bark scale
scalar | vector | matrix | multidimensional array

Output frequency on the Bark scale, returned as a scalar, vector, matrix, or multidimensional array
the same size as hz.
Data Types: single | double

Algorithms
The frequency conversion from Hz to the Bark scale uses the following formula:

2 Functions

2-222

bark = 26.81 hz
1960 + hz − 0.53

if :bark < 2 bark = bark + 0.15 (2− bark)
if :bark > 20.1 bark = bark + 0.22 (bark− 20.1)

The Bark value correction occurs after the conversion from Hz to the Bark scale.

References
[1] Traunmüller, Hartmut. "Analytical Expressions for the Tonotopic Sensory Scale." Journal of the

Acoustical Society of America. Vol. 88, Issue 1, 1990, pp. 97–100.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bark2hz | erb2hz | hz2erb | hz2mel | mel2hz

Introduced in R2019a

 hz2bark

2-223

hz2erb
Convert from hertz to equivalent rectangular bandwidth (ERB) scale

Syntax
erb = hz2erb(hz)

Description
erb = hz2erb(hz) converts values in hertz to values on the ERB frequency scale.

Examples

Convert Between ERB Scale and Hz

Set two bounding frequencies in Hz and then convert them to the ERB scale.

b = hz2erb([20,8000]);

Generate a row vector of 32 values uniformly spaced on the ERB scale.

erbVect = linspace(b(1),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = erb2hz(erbVect);

Plot the two vectors for comparison. As ERB values increase linearly, Hz values increase
exponentially.

plot(erbVect,hzVect,'o')
title('ERB vs Hz')
xlabel('ERB')
ylabel('Hz')
grid on

2 Functions

2-224

Input Arguments
hz — Input frequency in Hz
scalar | vector | matrix | multidimensional array

Input frequency in Hz, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Output Arguments
erb — Output frequency on ERB scale
scalar | vector | matrix | multidimensional array

Output frequency on the ERB scale, returned as a scalar, vector, matrix, or multidimensional array
the same size as hz.
Data Types: single | double

Algorithms
The frequency conversion from Hz to the ERB scale uses the following formula:

 hz2erb

2-225

erb = Alog10 1 + hz 0.00437
where

A =
1000loge(10)

24.7 4.37

References
[1] Glasberg, Brian R., and Brian C. J. Moore. "Derivation of Auditory Filter Shapes from Notched-

Noise Data." Hearing Research. Vol. 47, Issues 1–2, 1990, pp. 103–138.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bark2hz | erb2hz | hz2bark | hz2mel | mel2hz

Introduced in R2019a

2 Functions

2-226

mel2hz
Convert from mel scale to hertz

Syntax
hz = mel2hz(mel)

Description
hz = mel2hz(mel) converts values on the mel frequency scale to values in hertz.

Examples

Convert Between Mel Scale and Hz

Set two bounding frequencies in Hz and then convert them to the mel scale.

b = hz2mel([20,8000]);

Generate a row vector of 32 values uniformly spaced on the mel scale.

melVect = linspace(b(1),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = mel2hz(melVect);

Plot the two vectors for comparison. As mel values increase linearly, Hz values increase exponentially.

plot(melVect,hzVect,'o')
title('Mel vs Hz')
xlabel('Mel')
ylabel('Hz')
grid on

 mel2hz

2-227

Input Arguments
mel — Input frequency on mel scale
scalar | vector | matrix | multidimensional array

Input frequency on the mel scale, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Output Arguments
hz — Output frequency in Hz
scalar | vector | matrix | multidimensional array

Output frequency in Hz, returned as a scalar, vector, matrix, or multidimensional array the same size
as mel.
Data Types: single | double

Algorithms
The frequency conversion from the mel scale to Hz uses the following formula:

hz = 700 10
mel

2595 − 1

2 Functions

2-228

References
[1] O'Shaghnessy, Douglas. Speech Communication: Human and Machine. Reading, MA: Addison-

Wesley Publishing Company, 1987.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bark2hz | erb2hz | hz2bark | hz2erb | hz2mel

Introduced in R2019a

 mel2hz

2-229

bark2hz
Convert from Bark scale to hertz

Syntax
hz = bark2hz(bark)

Description
hz = bark2hz(bark) converts values on the Bark frequency scale to values in hertz.

Examples

Convert Between Bark Scale and Hz

Set two bounding frequencies in Hz and then convert them to the Bark scale.

b = hz2bark([20,8000]);

Generate a row vector of 32 values uniformly spaced on the Bark scale.

barkVect = linspace(b(1),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = bark2hz(barkVect);

Plot the two vectors for comparison. As Bark values increase linearly, Hz values increase
exponentially.

plot(barkVect,hzVect,'o')
title('Bark vs Hz')
xlabel('Bark')
ylabel('Hz')
grid on

2 Functions

2-230

Input Arguments
bark — Input frequency on Bark scale
scalar | vector | matrix | multidimensional array

Input frequency on the Bark scale, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Output Arguments
hz — Output frequency in Hz
scalar | vector | matrix | multidimensional array

Output frequency in Hz, returned as a scalar, vector, matrix, or multidimensional array the same size
as bark.
Data Types: single | double

Algorithms
The frequency conversion from the Bark scale to Hz uses the following formula:

 bark2hz

2-231

if :bark < 2 bark = bark− 0.3
0.85

if :bark > 20.1 bark = bark + 4.422
1.22

hz = 1960 bark + 0.53
26.28− bark

The Bark value correction occurs before the conversion from the Bark scale to Hz.

References
[1] Traunmüller, Hartmut. "Analytical Expressions for the Tonotopic Sensory Scale." Journal of the

Acoustical Society of America. Vol. 88, Issue 1, 1990, pp. 97–100.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
erb2hz | hz2bark | hz2erb | hz2mel | mel2hz

Introduced in R2019a

2 Functions

2-232

erb2hz
Convert from equivalent rectangular bandwidth (ERB) scale to hertz

Syntax
hz = erb2hz(erb)

Description
hz = erb2hz(erb) converts values on the ERB frequency scale to values in hertz.

Examples

Convert Between ERB Scale and Hz

Set two bounding frequencies in Hz and then convert them to the ERB scale.

b = hz2erb([20,8000]);

Generate a row vector of 32 values uniformly spaced on the ERB scale.

erbVect = linspace(b(1),b(2),32);

Convert the row vector of values into equivalent frequencies in Hz.

hzVect = erb2hz(erbVect);

Plot the two vectors for comparison. As ERB values increase linearly, Hz values increase
exponentially.

plot(erbVect,hzVect,'o')
title('ERB vs Hz')
xlabel('ERB')
ylabel('Hz')
grid on

 erb2hz

2-233

Input Arguments
erb — Input frequency on ERB scale
scalar | vector | matrix | multidimensional array

Input frequency on the equivalent rectangular band (ERB) scale, specified as a scalar, vector, matrix,
or multidimensional array.
Data Types: single | double

Output Arguments
hz — Output frequency in Hz
scalar | vector | matrix | multidimensional array

Output frequency in Hz, returned as a scalar, vector, matrix, or multidimensional array the same size
as erb.
Data Types: single | double

Algorithms
The frequency conversion from the ERB scale to Hz uses the following formula:

2 Functions

2-234

hz = 10
erb
A − 1

0.00437
where

A =
1000loge(10)

24.7 4.37

References
[1] Glasberg, Brian R., and Brian C. J. Moore. "Derivation of Auditory Filter Shapes from Notched-

Noise Data." Hearing Research. Vol. 47, Issues 1–2, 1990, pp. 103–138.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bark2hz | hz2bark | hz2erb | hz2mel | mel2hz

Introduced in R2019a

 erb2hz

2-235

mls
Maximum length sequence

Syntax
excitation = mls
excitation = mls(L)
excitation = mls(L,Name,Value)

Description
excitation = mls returns an excitation signal generated using the maximum length sequence
(MLS) technique. This type of sequence is a pseudo-random binary sequence.

excitation = mls(L) specifies the output length L of the excitation signal.

excitation = mls(L,Name,Value) specifies options using one or more Name,Value pair
arguments, in addition to the input arguments in the previous syntaxes.

Examples

Estimate Impulse Response Using MLS Excitation

Use audioread to read in an impulse response recording. Create a
dsp.FrequencyDomainFIRFilter object to perform frequency domain filtering using the known
impulse response.

[irKnown,fs] = audioread('ChurchImpulseResponse-16-44p1-mono-5secs.wav');
systemModel = dsp.FrequencyDomainFIRFilter(irKnown');

Create an MLS excitation signal by using the mls function. The MLS excitation signal must be longer
than the impulse response. Note that the length of the MLS excitation is extended to the next power
of two minus one.

excitation = mls(numel(irKnown)+1);

plot(excitation)
title('Excitation')

2 Functions

2-236

Replicate the excitation signal four times to measure the average of three measurements. The
recording of the first MLS sequence does include all the impulse response information, so impzest
discards it as a warmup run. Pad the excitation signal with zeros to account for the filter latency.

numRuns = 4;
excrep = repmat(excitation,numRuns,1);
excrep = [excrep;zeros(numel(irKnown)+1,1)];

Pass the excitation signal through the known filter and then add noise to model a real-word recording
(system response). Cut the delay introduced at the beginning by the filter.

rec = systemModel(excrep);
rec = rec + 0.1*randn(size(rec));

rec = rec(numel(irKnown)+2:end,:);

plot(rec)
title('System Response')

 mls

2-237

In a real-world scenario, the MLS sequence is played back in the system under test while recording.
The recording would be cut so that it begins at the moment the MLS sequence is picked-up and
truncated to last the duration of the repeated sequence.

Pass the excitation signal and the system response to the impzest function to estimate the impulse
response. Plot the known impulse response and the simulation of the estimated impulse response for
comparison.

irEstimate = impzest(excitation,rec);

samples = 1:numel(irKnown);
plot(samples,irEstimate(samples),'bo', ...
 samples,irKnown(samples),'m.')

legend('Known impulse response','Simulation of estimated impulse response')

2 Functions

2-238

Generate MLS Signal

Generate an MLS signal that is 2^14-1 samples long and has a level of -5 dB.

L = 2^14-1;
level = -5;
excitation = mls(L,'ExcitationLevel',level);

Visualize the excitation in time and time-frequency. For the time-domain plot, plot only the first 200
samples for visibility. The pattern is constant.

plot(excitation(1:200))

 mls

2-239

spectrogram(excitation,512,0,1024,'yaxis')

2 Functions

2-240

Input Arguments
L — Length of excitation signal
32767 (default) | scalar in the range [3,229)

Length of excitation signal to generate, specified as a scalar in the range [3,229).

The requested output length L must be a power of two minus one. Otherwise, the output length
increases to the next valid length.

Note If you use the excitation signal generated by the mls function to record and estimate the
impulse response of a system, then the length of the excitation signal must be at least as long as the
impulse response that you want to estimate.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ExcitationLevel',-5

 mls

2-241

ExcitationLevel — Level of the excitation signal to generate (dB)
scalar in the range [-42,0]

Level of the excitation signal to generate in dB, specified as a scalar in the range [-42,0].
Data Types: single | double

Output Arguments
excitation — Excitation signal
column vector

Excitation signal generated using the maximum length sequence (MLS) technique, returned as a
column vector.
Data Types: single | double

References
[1] Guy-Bart, Stan, Jean-Jacques Embrachts, and Dominique Archambeau. "Comparison of Different

Impulse Response Measurement Techniques." Journal of Audio Engineering Society. Vol. 50,
Issue 4, 2002, pp. 246–262.

See Also
Impulse Response Measurer | impzest | sweeptone

Introduced in R2018b

2 Functions

2-242

sweeptone
Exponential swept sine

Syntax
excitation = sweeptone()
excitation = sweeptone(swDur)
excitation = sweeptone(swDur,silDur)
excitation = sweeptone(swDur,silDur,fs)
excitation = sweeptone(___ ,Name,Value)

Description
excitation = sweeptone() returns an excitation signal generated using the exponential swept
sine (ESS) technique. By default, the signal has a 6-second duration, followed by 4 seconds of silence,
for a sample rate of 44100 Hz.

excitation = sweeptone(swDur) specifies the duration of the exponential swept sine signal.

excitation = sweeptone(swDur,silDur) specifies the duration of the silence following the
exponential swept sine signal.

excitation = sweeptone(swDur,silDur,fs) specifies the sample rate of the sweep tone as fs
Hz.

excitation = sweeptone(___ ,Name,Value) specifies options using one or more Name,Value
pair arguments, in addition to the input arguments in the previous syntaxes.

Examples

Estimate Impulse Response Using Sweep Tone Excitation

Create a sweep tone excitation signal by using the sweeptone function.

excitation = sweeptone(2,1,44100);

plot(excitation)
title('Excitation')

 sweeptone

2-243

Pass the excitation signal through an infinite impulse response (IIR) filter and add noise to model a
real-world recording (system response).

[B,A] = butter(10,[.1 .7]);
rec = filter(B,A,excitation);
nrec = rec + 0.12*randn(size(rec));

plot(nrec)
title('System Response')

2 Functions

2-244

Pass the excitation signal and the system response to the impzest function to estimate the impulse
response. Truncate the estimate to 100 points. Use impz to determine the true impulse response of
the system. Plot the true impulse response and the estimated impulse response for comparison.

irEstimate = impzest(excitation,nrec);
irEstimate = irEstimate(1:101);

irTrue = impz(B,A,101);
plot(0:100,irEstimate, ...
 0:100,irTrue,'ro')

legend('True impulse response','Estimated impulse response')

 sweeptone

2-245

Generate ESS Signal

Generate an exponential swept sine (ESS) signal with a 3-second sweep that goes from 20 Hz to 20
kHz, and ends with a 2-second silence. Specify the sample rate as 48 kHz.

fs = 48e3;
excitation = sweeptone(3,2,fs,'SweepFrequencyRange',[20 20e3]);

Visualize the excitation in time and time-frequency.

t = (0:numel(excitation)-1)/fs;
plot(t,excitation)
xlabel('Time (s)')

2 Functions

2-246

spectrogram(excitation,512,0,1024,fs,'yaxis')

 sweeptone

2-247

Input Arguments
swDur — Duration of exponential swept sine signal (s)
6 (default) | scalar in the range [0.5,15]

Duration of exponential swept sine signal in seconds, specified as a scalar in the range [0.5,15].

The total duration of the excitation signal must be less than or equal to 15 seconds: swDur + silDur
≤ 15.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

silDur — Duration of silence after exponential swept sine signal (s)
4 (default) | scalar in the range (0,14.5]

Duration of silence after exponential swept sine, specified as a scalar in the range (0,14.5].

The total duration of the excitation signal must be less than or equal to 15 seconds: swDur + silDur
≤ 15.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

fs — Sample rate (Hz)
44100 (default) | positive scalar

Sample rate in Hz, specified as a positive scalar.

2 Functions

2-248

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ExcitationLevel',-5

ExcitationLevel — Level of excitation signal to generate (dB)
-6 (default) | scalar in the range [-42,0]

Level of the excitation signal to generate in dB, specified as a scalar in the range [-42,0].
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SweepFrequencyRange — Range of sweep frequency (Hz)
[10 22000] | two-element positive row vector

Range of sweep frequency in Hz, specified as a two-element row vector. The sweep frequency range
can be specified low to high or high to low. That is, [10 22000] and [22000 10] are both valid
inputs. The largest value of the sweep frequency range must be less than or equal to fs/2.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
excitation — Excitation signal
column vector

Excitation signal generated using the ESS technique, returned as a column vector. The length of the
column vector is approximately (swDur+silDur)*fs samples.
Data Types: double

References
[1] Farino, Angelo. "Advancements in Impulse Response Measurements by Sine Sweeps." Presented

at the Audio Engineering Society 122nd Convention, Vienna, Austria, 2007.

See Also
Impulse Response Measurer | impzest | mls

Introduced in R2018b

 sweeptone

2-249

interpolateHRTF
3-D head-related transfer function (HRTF) interpolation

Syntax
interpolatedHRTF = interpolateHRTF(HRTF,sourcePositions,
desiredSourcePositions)
interpolatedHRTF = interpolateHRTF(___ ,Name,Value)

Description
interpolatedHRTF = interpolateHRTF(HRTF,sourcePositions,
desiredSourcePositions) returns the interpolated head-related transfer function (HRTF) at the
desired position.

interpolatedHRTF = interpolateHRTF(___ ,Name,Value) specifies options using one or
more Name,Value pair arguments.

Examples

Render 3-D Audio on Headphones

Modify the 3-D audio image of a sound file by filtering it through a head-related transfer function
(HRTF). Set the location of the sound source by specifying the desired azimuth and elevation.

load 'ReferenceHRTF.mat' hrtfData sourcePosition

hrtfData = permute(double(hrtfData),[2,3,1]);

sourcePosition = sourcePosition(:,[1,2]);

Calculate the head-related impulse response (HRIR) using the VBAP algorithm at a desired source
position. Separate the output, interpolatedIR, into the impulse responses for the left and right
ears.

desiredAz = 110;
desiredEl = -45;
desiredPosition = [desiredAz desiredEl];

interpolatedIR = interpolateHRTF(hrtfData,sourcePosition,desiredPosition, ...
 "Algorithm","VBAP");

leftIR = squeeze(interpolatedIR(:,1,:))';
rightIR = squeeze(interpolatedIR(:,2,:))';

Create a dsp.AudioFileReader object to read in a file frame by frame. Create an
audioDeviceWriter object to play audio to your sound card frame by frame. Create two
dsp.FIRFilter objects and specify the filter coefficients using the head-related transfer function
interpolated impulse responses.

2 Functions

2-250

fileReader = dsp.AudioFileReader('RockDrums-48-stereo-11secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

leftFilter = dsp.FIRFilter('Numerator',leftIR);
rightFilter = dsp.FIRFilter('Numerator',rightIR);

In an audio stream loop:

1 Read in a frame of audio data.
2 Feed the stereo audio data through the left and right HRIR filters, respectively.
3 Concatenate the left and right channels and write the audio to your output device.

while ~isDone(fileReader)
 audioIn = fileReader();

 leftChannel = leftFilter(audioIn(:,1));
 rightChannel = rightFilter(audioIn(:,2));

 deviceWriter([leftChannel,rightChannel]);
end

As a best practice, release your System objects when complete.

release(deviceWriter)
release(fileReader)

Model Moving Source Using HRIR Filtering

Create arrays of head-related impulse responses corresponding to desired source positions. Filter
mono input to model a moving source.

Load the ARI HRTF dataset. Cast the hrtfData to type double, and reshape it to the required
dimensions: (number of source positions)-by-2-by-(number of HRTF samples). Use the first two
columns of the sourcePosition matrix only, which correspond to the azimuth and elevation of the
source in degrees.

load 'ReferenceHRTF.mat' hrtfData sourcePosition

hrtfData = permute(double(hrtfData),[2,3,1]);

sourcePosition = sourcePosition(:,[1,2]);

Specify the desired source positions and then calculate the HRTF at these locations using the
interpolateHRTF function. Separate the output, interpolatedIR, into the impulse responses for
the left and right ears.

desiredAz = [-120;-60;0;60;120;0;-120;120];
desiredEl = [-90;90;45;0;-45;0;45;45];
desiredPosition = [desiredAz desiredEl];

interpolatedIR = interpolateHRTF(hrtfData,sourcePosition,desiredPosition);

leftIR = squeeze(interpolatedIR(:,1,:));
rightIR = squeeze(interpolatedIR(:,2,:));

 interpolateHRTF

2-251

Create an audio file sampled at 48 kHz for compatibility with the HRTF dataset.

desiredFs = 48e3;
[audio,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
audio = 0.8*resample(audio,desiredFs,fs);
audiowrite('Counting-16-48-mono-15secs.wav',audio,desiredFs);

Create a dsp.AudioFileReader object to read in a file frame by frame. Create an
audioDeviceWriter object to play audio to your sound card frame by frame. Create two
dsp.FIRFilter objects with NumeratorSource set to Input port. Setting NumeratorSource to
Input port enables you to modify the filter coefficients while streaming.

fileReader = dsp.AudioFileReader('Counting-16-48-mono-15secs.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

leftFilter = dsp.FIRFilter('NumeratorSource','Input port');
rightFilter = dsp.FIRFilter('NumeratorSource','Input port');

In an audio stream loop:

1 Read in a frame of audio data.
2 Feed the audio data through the left and right HRIR filters.
3 Concatenate the left and right channels and write the audio to your output device. If you have a

stereo output hardware, such as headphones, you can hear the source shifting position over time.
4 Modify the desired source position in 2-second intervals by updating the filter coefficients.

durationPerPosition = 2;
samplesPerPosition = durationPerPosition*fileReader.SampleRate;
samplesPerPosition = samplesPerPosition - rem(samplesPerPosition,fileReader.SamplesPerFrame);

sourcePositionIndex = 1;
samplesRead = 0;
while ~isDone(fileReader)
 audioIn = fileReader();
 samplesRead = samplesRead + fileReader.SamplesPerFrame;

 leftChannel = leftFilter(audioIn,leftIR(sourcePositionIndex,:));
 rightChannel = rightFilter(audioIn,rightIR(sourcePositionIndex,:));

 deviceWriter([leftChannel,rightChannel]);

 if mod(samplesRead,samplesPerPosition) == 0
 sourcePositionIndex = sourcePositionIndex + 1;
 end
end

As a best practice, release your System objects when complete.

release(deviceWriter)
release(fileReader)

Input Arguments
HRTF — HRTF values measured at source positions
N-by-2-by-M array

2 Functions

2-252

HRTF values measured at the source positions, specified as a N-by-2-by-M array.

• N –– Number of known HRTF pairs
• M –– Number of samples in each known HRTF

If you specify HRTF with real numbers, the function assumes that the input represents an impulse
response, and M corresponds to the length of the impulse response. If you specify HRTF with complex
numbers, the function assumes that the input represents a transfer function, and M corresponds to
the number of bins in the frequency response. The output of the interpolateHRTF function has the
same complexity and interpretation as the input.
Data Types: single | double
Complex Number Support: Yes

sourcePositions — Source positions corresponding to measured HRTF values
N-by-2 matrix

Source positions corresponding to measured HRTF values, specified as a N-by-2 matrix. N is the
number of known HRTF pairs. The two columns correspond to the azimuth and elevation of the
source in degrees, respectively.

Azimuth must be in the range [−180,360]. You can use the −180 to 180 convention or the 0 to 360
convention.

Elevation must be in the range [−90,180]. You can use the −90 to 90 convention or the 0 to 180
convention.
Data Types: single | double

desiredSourcePositions — Desired source positions for HRTF interpolation
P-by-2 matrix

 interpolateHRTF

2-253

Desired source position for HRTF interpolation, specified as a P-by-2 matrix. P is the number of
desired source positions. The columns correspond to the desired azimuth and elevation of the source
in degrees, respectively.

Azimuth must be in the range [−180,360]. You can use the −180 to 180 convention or the 0 to 360
convention.

Elevation must be in the range [−90,180]. You can use the −90 to 90 convention or the 0 to 180
convention.

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Algorithm','VBAP'

Algorithm — Interpolation algorithm
'Bilinear' (default) | 'VBAP'

Interpolation algorithm, specified as "Bilinear" or "VBAP".

• Bilinear –– 3-D bilinear interpolation, as specified by [1].
• VBAP –– Vector base amplitude panning interpolation, as specified by [2].

Data Types: char | string

2 Functions

2-254

Output Arguments
interpolatedHRTF — Interpolated HRTF
P-by-2-by-M

Interpolated HRTF, returned as a P-by-2-by-M array.

• P –– Number of desired source positions, specified by the number of rows in the
desiredSourcePositions input argument.

• M –– Number of samples in each known HRTF, specified by the number of pages in the HRTF input
argument.

interpolatedHRTF has the same complexity and interpretation as the input. If you specify the
input, HRTF, with real numbers, the function assumes that the input represents an impulse response.
If you specify the input with complex numbers, the function assumes that the input represents a
transfer function.
Data Types: single | double
Complex Number Support: Yes

References
[1] F.P. Freeland, L.W.P. Biscainho and P.S.R. Diniz, "Interpolation of Head-Related Transfer Functions

(HRTFS): A multi-source approach." 2004 12th European Signal Processing Conference.
Vienna, 2004, pp. 1761–1764.

[2] Pulkki, Ville. "Virtual Sound Source Positing Using Vector Base Amplitude Panning." Journal of
Audio Engineering Society. Vol. 45. Issue 6, pp. 456–466.

 interpolateHRTF

2-255

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dsp.FIRFilter | dsp.FrequencyDomainFIRFilter

External Websites
Acoustics Research Institute HRTF Database

Introduced in R2018b

2 Functions

2-256

https://www.kfs.oeaw.ac.at/index.php?view=article&id=608&lang=en

impzest
Estimate impulse response of audio system

Syntax
ir = impzest(excitation,response)
ir = impzest(excitation,response,Name,Value)

Description
ir = impzest(excitation,response) returns an estimate of the impulse response (IR) based on
the excitation and response.

ir = impzest(excitation,response,Name,Value) specifies options using one or more
Name,Value pair arguments.

Examples

Estimate Impulse Response Using Sweep Tone Excitation

Create a sweep tone excitation signal by using the sweeptone function.

excitation = sweeptone(2,1,44100);

plot(excitation)
title('Excitation')

 impzest

2-257

Pass the excitation signal through an infinite impulse response (IIR) filter and add noise to model a
real-world recording (system response).

[B,A] = butter(10,[.1 .7]);
rec = filter(B,A,excitation);
nrec = rec + 0.12*randn(size(rec));

plot(nrec)
title('System Response')

2 Functions

2-258

Pass the excitation signal and the system response to the impzest function to estimate the impulse
response. Truncate the estimate to 100 points. Use impz to determine the true impulse response of
the system. Plot the true impulse response and the estimated impulse response for comparison.

irEstimate = impzest(excitation,nrec);
irEstimate = irEstimate(1:101);

irTrue = impz(B,A,101);
plot(0:100,irEstimate, ...
 0:100,irTrue,'ro')

legend('True impulse response','Estimated impulse response')

 impzest

2-259

Estimate Impulse Response Using MLS Excitation

Use audioread to read in an impulse response recording. Create a
dsp.FrequencyDomainFIRFilter object to perform frequency domain filtering using the known
impulse response.

[irKnown,fs] = audioread('ChurchImpulseResponse-16-44p1-mono-5secs.wav');
systemModel = dsp.FrequencyDomainFIRFilter(irKnown');

Create an MLS excitation signal by using the mls function. The MLS excitation signal must be longer
than the impulse response. Note that the length of the MLS excitation is extended to the next power
of two minus one.

excitation = mls(numel(irKnown)+1);

plot(excitation)
title('Excitation')

2 Functions

2-260

Replicate the excitation signal four times to measure the average of three measurements. The
recording of the first MLS sequence does include all the impulse response information, so impzest
discards it as a warmup run. Pad the excitation signal with zeros to account for the filter latency.

numRuns = 4;
excrep = repmat(excitation,numRuns,1);
excrep = [excrep;zeros(numel(irKnown)+1,1)];

Pass the excitation signal through the known filter and then add noise to model a real-word recording
(system response). Cut the delay introduced at the beginning by the filter.

rec = systemModel(excrep);
rec = rec + 0.1*randn(size(rec));

rec = rec(numel(irKnown)+2:end,:);

plot(rec)
title('System Response')

 impzest

2-261

In a real-world scenario, the MLS sequence is played back in the system under test while recording.
The recording would be cut so that it begins at the moment the MLS sequence is picked-up and
truncated to last the duration of the repeated sequence.

Pass the excitation signal and the system response to the impzest function to estimate the impulse
response. Plot the known impulse response and the simulation of the estimated impulse response for
comparison.

irEstimate = impzest(excitation,rec);

samples = 1:numel(irKnown);
plot(samples,irEstimate(samples),'bo', ...
 samples,irKnown(samples),'m.')

legend('Known impulse response','Simulation of estimated impulse response')

2 Functions

2-262

Input Arguments
excitation — Single period of excitation signal input to audio system
column vector

Single period of excitation signal input to audio system, specified as a column vector.

You can generate excitation signals by using mls (maximum length sequence) or sweeptone
(exponential sine sweep).
Data Types: single | double

response — Recorded signal output from audio system
column vector | matrix

Recorded signal output from audio system, specified as a column vector or matrix. If specified as a
matrix, each column of the matrix is treated as an independent channel.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

 impzest

2-263

Example: 'WarmupRuns',2

WarmupRuns — Number of warmup runs in response
nonnegative integer

Number of warmup runs in the response, specified as a nonnegative integer. The impzest function
estimates the impulse response after discarding the specified number of warmup runs from the
response.

The default number of warmup runs depends on whether the excitation signal was generated using
the mls or sweeptone function:

• mls –– 1
• sweeptone –– 0

Data Types: single | double

Output Arguments
ir — Estimate of the impulse response of an audio system
column vector | matrix

Estimate of the impulse response of an audio system, returned as a column vector or matrix. The size
of ir is L-by-C, where:

• L –– MLS length or duration of sweep tone silence
• C –– Number of columns (channels) in the response signal

Data Types: single | double

References
[1] Farino, Angelo. "Advancements in Impulse Response Measurements by Sine Sweeps." Presented

at the Audio Engineering Society 122nd Convention, Vienna, Austria, 2007.

[2] Guy-Bart, Stan, Jean-Jacques Embrachts, and Dominique Archambeau. "Comparison of Different
Impulse Response Measurement Techniques." Journal of Audio Engineering Society. Vol. 50,
Issue 4, 2002, pp. 246–262.

[3] Armelloni, Enrico, Christian Giottoli, and Angelo Farina. "Implementation of Real-Time Partitioned
Convolution on a DSP Board." Application of Signal Processing to Audio and Acoustics, 2003
IEEE Workshop, pp. 71–74. IEEE, 2003.

See Also
Impulse Response Measurer | mls | sweeptone

Introduced in R2018b

2 Functions

2-264

mididevinfo
MIDI device information

Syntax
mididevinfo
deviceInformation = mididevinfo

Description
mididevinfo displays a table containing information about the MIDI devices attached to the system.

deviceInformation = mididevinfo returns a structure, deviceInformation, containing
information about the MIDI devices attached to the system.

Note Before starting MATLAB, connect your MIDI device to your computer and turn on the device.
For connection instructions, see the instructions for your MIDI device. If you start MATLAB before
connecting your device, MATLAB might not recognize your device when you connect it. To correct the
problem, restart MATLAB with the device already connected.

Examples

Display MIDI Device Connections

Call mididevinfo to display a table containing information about the MIDI devices attached to your
system.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'BCF2000'
 2 input MMSystem 'MIDIIN2 (BCF2000)'
 3 output MMSystem 'Microsoft GS Wavetable Synth'
 4 output MMSystem 'BCF2000'
 5 output MMSystem 'MIDIOUT2 (BCF2000)'
 6 output MMSystem 'MIDIOUT3 (BCF2000)'

Return Structure of MIDI Device Connections

Call mididevinfo with an output argument to return a structure containing MIDI device
information.

deviceInformation = mididevinfo

 mididevinfo

2-265

deviceInformation = struct with fields:
 input: [0×0 struct]
 output: [1×2 struct]

The deviceInformation structure has two fields: input and output. Both input and output
contain arrays of structures. Each member has three fields: Name, Interface, and ID. Get the
device information for the output Microsoft GS Wavetable Synth device.

deviceInformation.output(2)

ans = struct with fields:
 Name: 'Microsoft GS Wavetable Synth'
 Interface: 'MMSystem'
 ID: 1

Output Arguments
deviceInformation — Description of available devices
struct

Description of available devices, returned as nested structures. The outer structure has two fields:
input and output. The input and output values are arrays of structures, and each member has three
fields: Name, Interface, and ID.
Data Types: struct

See Also
mididevice | midimsg | midireceive | midisend

Topics
“MIDI Device Interface”

External Websites
MIDI Manufacturers Association

Introduced in R2018a

2 Functions

2-266

https://www.midi.org/

pitch
Estimate fundamental frequency of audio signal

Syntax
f0 = pitch(audioIn,fs)
f0 = pitch(audioIn,fs,Name,Value)
[f0,loc] = pitch(___)

Description
f0 = pitch(audioIn,fs) returns estimates of the fundamental frequency over time for the audio
input, audioIn, with sample rate fs. Columns of the input are treated as individual channels.

f0 = pitch(audioIn,fs,Name,Value) specifies options using one or more Name,Value pair
arguments.

[f0,loc] = pitch(___) returns the locations, loc, associated with fundamental frequency
estimates.

Examples

Estimate Pitch of Speech Signal Using Default Parameters

Read in an audio file and then call the pitch function with default parameters.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
[f0,idx] = pitch(audioIn,fs);

Plot the audio signal and pitch contour.

subplot(2,1,1)
plot(audioIn)
ylabel('Amplitude')

subplot(2,1,2)
plot(idx,f0)
ylabel('Pitch (Hz)')
xlabel('Sample Number')

 pitch

2-267

The pitch function estimates the fundamental frequency of the input signal at locations determined
by the WindowLength and OverlapLength name-value pairs.

Estimate Pitch of Musical Signal Using Nondefault Parameters

Load an audio file of the introduction to Für Elise and the sample rate of the audio. Call the pitch
function using the pitch estimate filter (PEF), a search range from 50 Hz to 800 Hz, a window length
of 80 ms, and an overlap of 50 ms. Plot the results and listen to the song to verify the fundamental
frequency estimates returned by the pitch function.

load FurElise.mat song fs

[f0,loc] = pitch(song,fs, ...
 'Method','PEF', ...
 'Range',[50 800], ...
 'WindowLength',round(fs*0.08), ...
 'OverlapLength',round(fs*0.05));

t = loc/fs;
plot(t,f0)
ylabel('Pitch (Hz)')
xlabel('Time (s)')

2 Functions

2-268

sound(song,fs)

Compare Pitch Detection Algorithms

The different methods of estimating pitch provide trade-offs in terms of noise robustness, accuracy,
optimal lag, and computation expense. In this example, you compare the performance of different
pitch detection algorithms in terms of gross pitch error (GPE) and computation time under different
noise conditions.

Prepare Test Signals

Load an audio file and determine the number of samples it has. Also load the true pitch
corresponding to the audio file. The true pitch was determined as an average of several third-party
algorithms on the clean speech file.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
numSamples = size(audioIn,1);
load TruePitch.mat truePitch

Create test signals by adding noise to the audio signal at given SNRs. The mixSNR function is a
convenience function local to this example, which takes a signal, noise, and requested SNR and
returns a noisy signal at the request SNR.

testSignals = zeros(numSamples,4);

 pitch

2-269

turbine = audioread('Turbine-16-44p1-mono-22secs.wav');
testSignals(:,1) = mixSNR(audioIn,turbine,20);
testSignals(:,2) = mixSNR(audioIn,turbine,0);

whiteNoiseMaker = dsp.ColoredNoise('Color','white','SamplesPerFrame',size(audioIn,1));
testSignals(:,3) = mixSNR(audioIn,whiteNoiseMaker(),20);
testSignals(:,4) = mixSNR(audioIn,whiteNoiseMaker(),0);

Save the noise conditions and algorithm names as cell arrays for labeling and indexing.

noiseConditions = {'Turbine (20 dB)','Turbine (0 dB)','WhiteNoise (20 dB)','WhiteNoise (0 dB)'};
algorithms = {'NCF','PEF','CEP','LHS','SRH'};

Run Pitch Detection Algorithms

Preallocate arrays to hold pitch decisions for each algorithm and noise condition pair, and the timing
information. In a loop, call the pitch function on each combination of algorithm and noise condition.
Each algorithm has an optimal window length associated with it. In this example, for simplicity, you
use the default window length for all algorithms. Use a 3-element median filter to smooth the pitch
decisions.

f0 = zeros(numel(truePitch),numel(algorithms),numel(noiseConditions));
algorithmTimer = zeros(numel(noiseConditions),numel(algorithms));

for k = 1:numel(noiseConditions)
 x = testSignals(:,k);
 for i = 1:numel(algorithms)
 tic
 f0temp = pitch(x,fs, ...
 'Range',[50 300], ...
 'Method',algorithms{i}, ...
 'MedianFilterLength',3);
 algorithmTimer(k,i) = toc;
 f0(1:max(numel(f0temp),numel(truePitch)),i,k) = f0temp;
 end
end

Compare Gross Pitch Error

Gross pitch error (GPE) is a popular metric when comparing pitch detection algorithms. GPE is
defined as the proportion of pitch decisions for which the relative error is higher than a given
threshold, traditionally 20% in speech studies. Calculate the GPE and print it to the Command
Window.

idxToCompare = ~isnan(truePitch);
truePitch = truePitch(idxToCompare);
f0 = f0(idxToCompare,:,:);

p = 0.20;
GPE = mean(abs(f0(1:numel(truePitch),:,:) - truePitch) > truePitch.*p).*100;

for ik = 1:numel(noiseConditions)
 fprintf('\nGPE (p = %0.2f), Noise = %s.\n',p,noiseConditions{ik});
 for i = 1:size(GPE,2)
 fprintf('- %s : %0.1f %%\n',algorithms{i},GPE(1,i,ik))
 end
end

2 Functions

2-270

GPE (p = 0.20), Noise = Turbine (20 dB).
- NCF : 0.9 %
- PEF : 0.4 %
- CEP : 8.2 %
- LHS : 8.2 %
- SRH : 6.0 %

GPE (p = 0.20), Noise = Turbine (0 dB).
- NCF : 5.6 %
- PEF : 24.5 %
- CEP : 11.6 %
- LHS : 9.4 %
- SRH : 46.8 %

GPE (p = 0.20), Noise = WhiteNoise (20 dB).
- NCF : 0.9 %
- PEF : 0.0 %
- CEP : 12.9 %
- LHS : 6.9 %
- SRH : 2.6 %

GPE (p = 0.20), Noise = WhiteNoise (0 dB).
- NCF : 0.4 %
- PEF : 0.0 %
- CEP : 23.6 %
- LHS : 7.3 %
- SRH : 1.7 %

Calculate the average time it takes to process one second of data for each of the algorithms and print
the results.

aT = sum(algorithmTimer)./((numSamples/fs)*numel(noiseConditions));
for ik = 1:numel(algorithms)
 fprintf('- %s : %0.3f (s)\n',algorithms{ik},aT(ik))
end

- NCF : 0.056 (s)
- PEF : 0.185 (s)
- CEP : 0.069 (s)
- LHS : 0.116 (s)
- SRH : 0.186 (s)

Determine Pitch Contour using pitch and voiceActivityDetector

Read in an entire speech file and determine the fundamental frequency of the audio using the pitch
function. Then use the voiceActivityDetector to remove irrelevant pitch information that does
not correspond to the speaker.

Read in the audio file and associated sample rate.

[audio,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Specify pitch detection using a 50 ms window length and 40 ms overlap (10 ms hop). Specify that the
pitch function searches for the fundamental frequency over the range 50-150 Hz and postprocesses
the results with a median filter. Plot the results.

 pitch

2-271

windowLength = round(0.05*fs);
overlapLength = round(0.04*fs);
hopLength = windowLength - overlapLength;

[f0,loc] = pitch(audio,fs, ...
 'WindowLength',windowLength, ...
 'OverlapLength',overlapLength, ...
 'Range',[50 150], ...
 'MedianFilterLength',3);

plot(loc/fs,f0)
ylabel('Fundamental Frequency (Hz)')
xlabel('Time (s)')

Create a dsp.AsyncBuffer System object™ to chunk the audio signal into overlapped frames. Also
create a voiceActivityDetector System object™ to determine if the frames contain speech.

buffer = dsp.AsyncBuffer(numel(audio));
write(buffer,audio);
VAD = voiceActivityDetector;

While there are enough samples to hop, read from the buffer and determine the probability that the
frame contains speech. To mimic the decision spacing in time of the pitch function, the first frame
read from the buffer has no overlap.

n = 1;
probabilityVector = zeros(numel(loc),1);
while buffer.NumUnreadSamples >= hopLength

2 Functions

2-272

 if n==1
 x = read(buffer,windowLength);
 else
 x = read(buffer,windowLength,overlapLength);
 end
 probabilityVector(n) = VAD(x);
 n = n+1;
end

Use the probability vector determined by the voiceActivityDetector to plot a pitch contour for
the speech file that corresponds to regions of speech.

validIdx = probabilityVector>0.99;
loc(~validIdx) = nan;
f0(~validIdx) = nan;
plot(loc/fs,f0)
ylabel('Fundamental Frequency (Hz)')
xlabel('Time (s)')

Input Arguments
audioIn — Audio input signal
vector | matrix

Audio input signal, specified as a vector or matrix. The columns of the matrix are treated as individual
audio channels.

 pitch

2-273

Data Types: single | double

fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.

The sample rate must be greater than or equal to twice the upper bound of the search range. Specify
the search range using the Range name-value pair.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: pitch(audioIn,fs,'Range',[50,150],'Method','PEF')

Range — Search range for pitch estimates
[50,400] (default) | two-element row vector with increasing positive integer values

Search range for pitch estimates, specified as the comma-separated pair consisting of 'Range' and a
two-element row vector with increasing positive integer values. The function searches for a best
estimate of the fundamental frequency within the upper and lower band edges specified by the vector,
according to the algorithm specified by Method. The range is inclusive and units are in Hz.

Valid values for the search range depend on the sample rate, fs, and on the values of WindowLength
and Method:

Method Minimum Range Maximum Range
'NCF' fs/WindowLength <

Range(1)
Range(2) < fs/2

'PEF' 10 < Range(1) Range(2) <
min(4000,fs/2)

'CEP' fs/
(2^nextpow2(2*WindowLeng
th-1)) < Range(1)

Range(2) < fs/2

'LHS' 1 < Range(1) Range(2) < fs/5 - 1
'SRH' 1 < Range(1) Range(2) < fs/5 - 1

Data Types: single | double

WindowLength — Number of samples in analysis window
round(fs*0.052) (default) | integer

Number of samples in the analysis window, specified as the comma-separated pair consisting of
'WindowLength' and an integer in the range [1, min(size(audioIn,1), 192000)]. Typical analysis
windows are in the range 20–100 ms. The default window length is 52 ms.
Data Types: single | double

OverlapLength — Number of samples of overlap between adjacent analysis windows
round(fs*0.042) (default) | integer

2 Functions

2-274

Number of samples of overlap between adjacent analysis windows, specified as the comma-separated
pair consisting of 'OverlapLength' and an integer in the range (-inf,WindowLength). A negative
overlap length indicates non-overlapping analysis windows.
Data Types: single | double

Method — Method used to estimate pitch
'NCF' (default) | 'PEF' | 'CEP' | 'LHS' | 'SRH'

Method used to estimate pitch, specified as the comma-separated pair consisting of 'Method' and
'NCF', 'PEF','CEP', 'LHS', or 'SRH'. The different methods of calculating pitch provide trade-offs
in terms of noise robustness, accuracy, and computation expense. The algorithms used to calculate
pitch are based on the following papers:

• 'NCF' –– Normalized Correlation Function [1]
• 'PEF' –– Pitch Estimation Filter [2]. The function does not use the amplitude compression

described by the paper.
• 'CEP' –– Cepstrum Pitch Determination [3]
• 'LHS' –– Log-Harmonic Summation [4]
• 'SRH' –– Summation of Residual Harmonics [5]

Data Types: char | string

MedianFilterLength — Median filter length used to smooth pitch estimates over time
1 (default) | positive integer

Median filter length used to smooth pitch estimates over time, specified as the comma-separated pair
consisting of 'MedianFilterLength' and a positive integer. The default, 1, corresponds to no
median filtering. Median filtering is a postprocessing technique used to remove outliers while
estimating pitch. The function uses movmedian after estimating the pitch using the specified
Method.
Data Types: single | double

Output Arguments
f0 — Estimated fundamental frequency (Hz)
scalar | vector | matrix

Estimated fundamental frequency, in Hz, returned as a scalar, vector, or matrix. The number of rows
returned depends on the values of the WindowLength and OverlapLength name-value pairs, and on
the input signal size. The number of columns (channels) returned depends on the number of columns
of the input signal size.
Data Types: single | double

loc — Locations associated with fundamental frequency estimations
scalar | vector | matrix

Locations associated with fundamental frequency estimations, returned as a scalar, vector, or matrix
the same size as f0.

 pitch

2-275

Fundamental frequency is estimated locally over a region of WindowLength samples. The values of
loc correspond to the most recent sample (largest sample number) used to estimate fundamental
frequency.
Data Types: single | double

Algorithms
The pitch function segments the audio input according to the WindowLength and OverlapLength
arguments. The fundamental frequency is estimated for each frame. The locations output, loc
contains the most recent samples (largest sample numbers) of the corresponding frame.

For a description of the algorithms used to estimate the fundamental frequency, consult the
corresponding references:

• 'NCF' –– Normalized Correlation Function [1]
• 'PEF' –– Pitch Estimation Filter [2]. The function does not use the amplitude compression

described by the paper.
• 'CEP' –– Cepstrum Pitch Determination [3]
• 'LHS' –– Log-Harmonic Summation [4]
• 'SRH' –– Summation of Residual Harmonics [5]

References
[1] Atal, B.S. "Automatic Speaker Recognition Based on Pitch Contours." The Journal of the Acoustical

Society of America. Vol. 52, No. 6B, 1972, pp. 1687–1697.

[2] Gonzalez, Sira, and Mike Brookes. "A Pitch Estimation Filter robust to high levels of noise
(PEFAC)." 19th European Signal Processing Conference. Barcelona, 2011, pp. 451–455.

[3] Noll, Michael A. "Cepstrum Pitch Determination." The Journal of the Acoustical Society of
America. Vol. 31, No. 2, 1967, pp. 293–309.

[4] Hermes, Dik J. "Measurement of Pitch by Subharmonic Summation." The Journal of the Acoustical
Society of America. Vol. 83, No. 1, 1988, pp. 257–264.

2 Functions

2-276

[5] Drugman, Thomas, and Abeer Alwan. "Joint Robust Voicing Detection and Pitch Estimation Based
on Residual Harmonics." Proceedings of the Annual Conference of the International Speech
Communication Association, INTERSPEECH. 2011, pp. 1973–1976.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
audioFeatureExtractor | harmonicRatio | mfcc | voiceActivityDetector

Topics
“Speaker Identification Using Pitch and MFCC”

Introduced in R2018a

 pitch

2-277

mfcc
Extract mfcc, log energy, delta, and delta-delta of audio signal

Syntax
coeffs = mfcc(audioIn,fs)
coeffs = mfcc(___ ,Name,Value)
[coeffs,delta,deltaDelta,loc] = mfcc(___)

Description
coeffs = mfcc(audioIn,fs) returns the mel frequency cepstral coefficients (MFCCs) for the
audio input, sampled at a frequency of fs Hz.

coeffs = mfcc(___ ,Name,Value) sets each property Name to the specified Value. Unspecified
properties have default values..
Example: [coeffs] = mfcc(audioIn,fs,'LogEnergy','Replace') returns mel frequency
cepstral coefficients for the audio input signal sampled at fs Hz. The first coefficient in the coeffs
vector is replaced with the log energy value.

[coeffs,delta,deltaDelta,loc] = mfcc(___) returns the delta, delta-delta, and location of
samples corresponding to each window of data.

Examples

Compute Mel Frequency Cepstral Coefficients

Compute the mel frequency cepstral coefficients of a speech signal using the mfcc function. The
function returns delta, the change in coefficients, and deltaDelta, the change in delta values. The
log energy value that the function computes can prepend the coefficients vector or replace the first
element of the coefficients vector. This is done based on whether you set the 'LogEnergy' argument
to 'Append' or 'Replace'.

Read an audio signal from the 'Counting-16-44p1-mono-15secs.wav' file using the audioread
function. The mfcc function processes the entire speech data in a batch. The default
DeltaWindowLength is 2. Therefore, delta is computed as the difference between the current
coefficients and the previous coefficients. deltaDelta is computed as the difference between the
current and the previous delta values. Based on the number of input rows, the window length, and
the hop length, mfcc partitions the speech into 1551 frames and computes the cepstral features for
each frame. Each row in the coeffs matrix corresponds to the log-energy value followed by the 13
mel-frequency cepstral coefficients for the corresponding frame of the speech file. The function also
computes loc, the location of the last sample in each input frame.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
[coeffs,delta,deltaDelta,loc] = mfcc(audioIn,fs);

2 Functions

2-278

Extract MFCC from Frequency-Domain Audio

Read in an audio file and convert it to a frequency representation.

[audioIn,fs] = audioread("Rainbow-16-8-mono-114secs.wav");

win = hann(1024,"periodic");
S = stft(audioIn,"Window",win,"OverlapLength",512,"Centered",false);

To extract the mel-frequency cepstral coefficients, call mfcc with the frequency-domain audio. Ignore
the log-energy.

coeffs = mfcc(S,fs,"LogEnergy","Ignore");

In many applications, MFCC observations are converted to summary statistics for use in classification
tasks. Plot probability density functions of each of the mel-frequency cepstral coefficients to observe
their distributions.

nbins = 60;
for i = 1:size(coeffs,2)
 figure
 histogram(coeffs(:,i),nbins,"Normalization","pdf")
 title(sprintf("Coefficient %d",i-1))
end

 mfcc

2-279

2 Functions

2-280

 mfcc

2-281

2 Functions

2-282

 mfcc

2-283

2 Functions

2-284

 mfcc

2-285

2 Functions

2-286

 mfcc

2-287

2 Functions

2-288

 mfcc

2-289

2 Functions

2-290

Input Arguments
audioIn — Input signal
vector | matrix | 3-D array

Input signal, specified as a vector, matrix, or 3-D array.

• If audioIn is real, it is interpreted as a time-domain signal and must be a column vector or a
matrix. Columns of the matrix are treated as independent audio channels.

• If audioIn is complex, it is interpreted as a frequency-domain signal. In this case, audioIn must
be an L-by-M-by-N array, where L is the number of DFT points, M is the number of individual
spectrums, and N is the number of individual channels.

Data Types: single | double
Complex Number Support: Yes

fs — Sample rate in Hz
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

 mfcc

2-291

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [coeffs,delta,deltaDelta,loc] =
mfcc(audioIn,fs,'LogEnergy','Replace','DeltaWindowLength',5) returns mel frequency
cepstral coefficients for the audio input signal sampled at fs Hz. The first coefficient in the coeffs
vector is replaced with the log energy value. A set of 5 cepstral coefficients is used to compute the
delta and the delta-delta values.

WindowLength — Number of samples in analysis window
round(fs*0.03) (default) | positive scalar integer

Number of samples in analysis window used to calculate the coefficients, specified as an integer
greater than or equal to 2. If unspecified, the 'WindowLength' value defaults to round(fs*0.03).
Window length must be in the range [2,size(audioIn,1)].
Data Types: single | double

OverlapLength — Number of overlapping samples between adjacent windows
round(fs*0.02) (default) | integer

Number of samples which overlap or underlap between the adjacent windows. An 'OverlapLength'
value that is:

• Positive indicates an overlap between adjacent windows.
• Negative indicates an underlap between adjacent windows.
• Zero indicates no overlap between adjacent windows.

The 'OverlapLength' value must be set to less than the 'WindowLength'.

Here is how the overlapping frames look:

Here is how the underlapping frames look:

2 Functions

2-292

Data Types: single | double

NumCoeffs — Number of coefficients returned
13 (default) | positive scalar integer

Number of coefficients returned for each window of data, specified as an integer in the range [2 v],
where v is the number of valid passbands.

The number of valid passbands is defined as sum(BandEdges <= floor(fs/2))-2. A passband is
valid if its edges fall below fs/2, where fs is the sample rate of the input audio signal, specified as
the second argument, fs.
Data Types: single | double

BandEdges — Band edges of filter bank (Hz)
row vector

Band edges of the filter bank in Hz, specified as a nonnegative monotonically increasing row vector in
the range [0, fs/2]. The number of band edges must be in the range [4, 160]. The mfcc function
designs half-overlapped triangular filters based on BandEdges. This means that all band edges,
except for the first and last, are also center frequencies of the designed bandpass filters.

By default, BandEdges is a 42-element vector, which results in a 40-band filter bank that spans
approximately 133 Hz to 6864 Hz:

Filters Passband Edges (Hz)
Filter 1 [133 267]
Filter 2 [200 333]
Filter 3 [267 400]
Filter 4 [333 467]
Filter 5 [400 533]
Filter 6 [467 600]
Filter 7 [533 667]
Filter 8 [600 733]
Filter 9 [667 800]

 mfcc

2-293

Filters Passband Edges (Hz)
Filter 10 [733 867]
Filter 11 [800 933]
Filter 12 [867 999]
Filter 13 [933 1071]
Filter 14 [999 1147]
Filter 15 [1071 1229]
Filter 16 [1147 1316]
Filter 17 [1229 1410]
Filter 18 [1316 1510]
Filter 19 [1410 1618]
Filter 20 [1510 1733]
Filter 21 [1618 1856]
Filter 22 [1733 1988]
Filter 23 [1856 2130]
Filter 24 [1988 2281]
Filter 25 [2130 2444]
Filter 26 [2281 2618]
Filter 27 [2444 2804]
Filter 28 [2618 3004]
Filter 29 [2804 3217]
Filter 30 [3004 3446]
Filter 31 [3217 3692]
Filter 32 [3446 3954]
Filter 33 [3692 4236]
Filter 34 [3954 4537]
Filter 35 [4236 4860]
Filter 36 [4537 5206]
Filter 37 [4860 5577
Filter 38 [5206 5973]
Filter 39 [5577 6399]
Filter 40 [5973 6854]

The passband edges in the table are rounded for readability. For exact edges, see the default settings
of the cepstralFeatureExtractor.
Data Types: single | double

FFTLength — Number of bins for calculating DFT
WindowLength (default) | positive scalar integer

2 Functions

2-294

Number of bins used to calculate the DFT of windowed input samples. The FFT length value must be
greater than or equal to the 'WindowLength' value. The 'WindowLength' argument specifies the
number of rows in the windowed input. By default, the FFT length value is set to the
'WindowLength'.
Data Types: single | double

Rectification — Type of non-linear rectification
'log' (default) | 'cubic-root'

Type of nonlinear rectification applied prior to the discrete cosine transform, specified as 'log' or
'cubic-root'.
Data Types: char | string

DeltaWindowLength — Number of coefficients for calculating delta and delta-delta
2 (default) | odd integer greater than 2

Number of coefficients used to calculate the delta and the delta-delta values, specified as 2 or an odd
integer greater than 2.

If 'DeltaWindowLength' is set to 2, the delta is given by the difference between the current
coefficients and the previous coefficients, delta = currCoef f s− prevCoef f s.

If 'DeltaWindowLength' is set to an odd integer greater than 2, the delta values are given by the
following equation:

delta =
∑

k = −M

M
k ⋅ coef f s(k, :)

∑
k = −M

M
k2

The function uses a least-squares approximation of the local slope over a region around the current
time sample. The delta cepstral values are computed by fitting the cepstral coefficients of
neighboring frames (M frames before the current frame and M frames after the current frame) by a
straight line. For details, see [1].
Data Types: single | double

LogEnergy — Specify how the log energy is shown
'Append' (default) | 'Replace' | 'Ignore'

Specify how the log energy is shown in the coefficients vector output, specified as:

• 'Append' –– The function prepends the log energy to the coefficients vector. The length of the
coefficients vector is 1 + NumCoeffs.

• 'Replace' –– The function replaces the first coefficient with the log energy of the signal. The
length of the coefficients vector is NumCoeffs.

• 'Ignore' –– The object does not calculate or return the log energy.

Data Types: char | string

 mfcc

2-295

Output Arguments
coeffs — Mel frequency cepstral coefficients (MFCCs)
matrix | array

Mel frequency cepstral coefficients, returned as an L-by-M matrix or an L-by-M-by-N array, where,

• L –– Number of frames the audio signal is partitioned into. The 'WindowLength' and
'OverlapLength' properties control this dimension.

The number of audio frames, L, is computed using the following equation:
L = floor nRows−winLen /hopLen + 1.

• nRows –– Number of input rows.
• winLen –– Number of samples in the analysis window, specified by the 'WindowLength'

argument. If not specified, the window length is round(fs*0.03).
• hopLen –– Number of samples in the current frame before the start of the next frame. Hop

length is given by hopLen = WindowLength− OverlapLength.
• M –– Number of coefficients returned per frame. This value is determined by the NumCoeffs and

LogEnergy properties.

When the LogEnergy property is set to:

• 'Append' –– The object prepends the log energy value to the coefficients vector. The length of
the coefficients vector is 1 + NumCoeffs.

• 'Replace' –– The object replaces the first coefficient with the log energy of the signal. The
length of the coefficients vector is NumCoeffs.

• 'Ignore' –– The object does not calculate or return the log energy.
• N –– Number of input channels (columns).

Data Types: single | double

delta — Change in coefficients
matrix | array

Change in coefficients from one frame of data to another, returned as an L-by-M matrix or an L-by-M-
by-N array. The delta array is the same size and data type as the coeffs array.

2 Functions

2-296

If 'DeltaWindowLength' is set to 2, the delta is given by the difference between the current
coefficients and the previous coefficients, delta = currCoef f s− prevCoef f s.

Consider the example below which computes the mel frequency coefficients for the entire speech file.
The 'DeltaWindowLength' value is 2. The mfcc function partitions the speech into 1551 frames.
Each row in the coeffs matrix corresponds to the log energy value followed by the 13 mel frequency
cepstral coefficients for the corresponding segment of the speech file.
[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
[coeffs,delta,deltaDelta,loc] = mfcc(audioIn,fs);

The first row of the delta matrix, delta(1,:) is zeros. The second row, delta(2,:) equals the
difference in coefficients for the current frame, coeffs(2,:) and the previous frame,
coeffs(1,:).

If 'DeltaWindowLength' is set to an odd integer greater than 2, the delta values are given by the
following equation:

delta =
∑

k = −M

M
k ⋅ coef f s(k, :)

∑
k = −M

M
k2

The function uses a least-squares approximation of the local slope over a region around the current
time sample. For details, see [1].
Data Types: single | double

deltaDelta — Change in delta values
matrix | array

Change in delta values from one frame of data to another, returned as an L-by-M matrix or an L-by-
M-by-N array. The deltaDelta array is the same size and data type as the coeffs and delta
arrays.

If 'DeltaWindowLength' is set to 2, the deltaDelta is given by the difference between the
current delta values and the previous delta values, deltaDelta = currdelta− prevdelta

Consider the example below which computes the mel frequency coefficients for the entire speech file.
The 'DeltaWindowLength' value is 2.
[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
[coeffs,delta,deltaDelta,loc] = mfcc(audioIn,fs);

The first row of the deltaDelta matrix, deltaDelta(1,:) is zeros. The second row,
deltaDelta(2,:) equals the difference in delta values for the current frame, delta(2,:) and the
previous frame, delta(1,:).

If 'DeltaWindowLength' is set to an odd integer greater than 2, the deltaDelta values are given
by the following equation:

deltaDelta =
∑

k = −M

M
k ⋅ delta(k, :)

∑
k = −M

M
k2

 mfcc

2-297

The function uses a least-squares approximation of the local slope over a region around the current
time sample. For details, see [1].
Data Types: single | double

loc — Location of the last sample in each input frame
vector

Location of last sample in each input frame, returned as a vector. The loc vector is given by the [t1,
t2, t3,…,tn] elements in the following diagram, where n corresponds to the number of frames the input
is partitioned into, and tn is the last sample of the last frame.

Data Types: single | double

Algorithms
The mfcc function splits the entire data into overlapping segments. The length of each rolloff
segment is determined by the 'WindowLength' argument. The length of overlap between segments
is determined by the 'OverlapLength' argument.

The function computes the mel frequency cepstral coefficients, log energy values, cepstral delta, and
the cepstral delta-delta values for each segment as per the algorithm described in
cepstralFeatureExtractor.

2 Functions

2-298

References
[1] Rabiner, Lawrence R., and Ronald W. Schafer. Theory and Applications of Digital Speech

Processing. Upper Saddle River, NJ: Pearson, 2010.

[2] Auditory Toolbox. https://engineering.purdue.edu/~malcolm/interval/1998-010/
AuditoryToolboxTechReport.pdf

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

See Also
Cepstral Feature Extractor | Voice Activity Detector | audioFeatureExtractor |
cepstralFeatureExtractor | pitch | voiceActivityDetector

Topics
“Keyword Spotting in Noise Using MFCC and LSTM Networks”
“Speaker Identification Using Pitch and MFCC”

Introduced in R2018a

 mfcc

2-299

https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf
https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf

asiosettings
Open settings panel for ASIO driver

Syntax
asiosettings
asiosettings(deviceName)

Description
asiosettings opens the settings panel for the ASIO driver associated with the default audio device.

asiosettings(deviceName) opens the settings panel for the ASIO driver associated with the
audio device, deviceName.

Examples

Open ASIO Settings Panel for Specified Device

Create an audio I/O object, audioPlayerRecorder. Call asiosettings with the device associated
with audioPlayerRecorder as the argument.

playRec = audioPlayerRecorder;
asiosettings(playRec.Device)

Open ASIO Settings Panel for Default Device

Call the asiosettings function with no arguments.

asiosettings()

2 Functions

2-300

Optimize Latency

To optimize latency when using an ASIO driver, set the buffer size of the ASIO driver to the buffer size
of your audio I/O object. In this example, assume the input to your audio device writer is 64 samples
per frame. This example requires a Windows machine and an ASIO driver.

Create an audioDeviceWriter System object™. Open the ASIO settings panel for an ASIO-
compatible device associated with your device writer.

deviceWriter = audioDeviceWriter('Driver','ASIO');
asiosettings(deviceWriter.Device)

On the machine in this example, the following dialog opens:

 asiosettings

2-301

The dialog that opens is specific to your ASIO driver. Set the ASIO buffer size to the desired size, 64.

2 Functions

2-302

The latency is now minimized for the frame size of 64 samples. If you want to measure the reduction
in latency specific to your system, follow the steps in the “Measure Audio Latency” example.

Input Arguments
deviceName — Name of ASIO-compatible device
default ASIO-compatible device (default) | character vector | string

Name of ASIO-compatible device, specified as a character vector or string. If deviceName is not
specified, the default ASIO-compatible device is used.

To view a list of valid ASIO device names on your machine, use getAudioDevices on an
audioPlayerRecorder, audioDeviceReader('Driver','ASIO'), or
audioDeviceWriter('Driver','ASIO') object.
Data Types: char | string

Tips
• asiosettings is compatible only on Windows machines with ASIO drivers. ASIO drivers do not

come pre-installed with Windows.
• asiosettings returns an error if called with a locked audio device. For example:

 asiosettings

2-303

aDR = audioDeviceReader('Driver','ASIO');
aDR();
asiosettings(aDR.Device)

Error using audio_asiosettings
PortAudio Error: Device unavailable

Error in asiosettings (line 77)
 audio_asiosettings(ID);

See Also
audioDeviceReader | audioDeviceWriter | audioPlayerRecorder

Topics
“Audio I/O: Buffering, Latency, and Throughput”

Introduced in R2017b

2 Functions

2-304

getAudioDevices
List available audio devices

Syntax
devices = getAudioDevices(obj)

Description
devices = getAudioDevices(obj) returns a list of audio devices that are available and
compatible with your audio I/O object, obj.

Examples

List Audio Devices Available to audioDeviceReader

Create an audioDeviceReader object and then call getAudioDevices on your object.

deviceReader = audioDeviceReader;
devices = getAudioDevices(deviceReader)

devices = 1×4 cell
 {'Default'} {'Primary Sound Capture Driver'} {'Headset Microphone (Plantronics C325-M)'} {'HP 4120 Microphone (2- HP 4120)'}

List Audio Devices Available to audioDeviceWriter

Create an audioDeviceWriter object, and then call getAudioDevices on your object.

deviceWriter = audioDeviceWriter;
devices = getAudioDevices(deviceWriter)

devices = 1×6 cell
 {'Default'} {'Primary Sound Driver'} {'Headset Earphone (Plantronics C325-M)'} {'LEN LT2452pwC (NVIDIA High Definition Audio)'} {'Speakers (Realtek High Definition Audio)'} {'HP 4120 (2- HP 4120)'}

List Audio Devices Available to audioPlayerRecorder

Create an audioPlayerRecorder object, and then call getAudioDevices on your object.

playRec = audioPlayerRecorder;
devices = getAudioDevices(playRec)

devices = 1×2 cell
 {'Default'} {'ASIO4ALL v2'}

 getAudioDevices

2-305

Input Arguments
obj — Audio I/O object
object of audioDeviceReader | object of audioDeviceWriter | object of audioPlayerRecorder

Audio I/O object, specified as an object of audioDeviceReader, audioDeviceWriter, or
audioPlayerRecorder.
Data Types: object

Output Arguments
devices — List of available and compatible devices
array

List of available and compatible devices.

For audioDeviceReader and audioDeviceWriter, the list of audio devices depends on the
specified Driver property of your object.

For audioPlayerRecorder, the audio devices listed support full-duplex mode and have a platform-
appropriate driver:

• Windows® –– ASIO™
• Mac –– CoreAudio
• Linux® –– ALSA

Data Types: cell

Tips
Devices are persistent within a MATLAB session. To recognize new devices within your MATLAB
session, clear device data within your session using the command line. As an example, if you have
created an audioDeviceReader System object, you can type the following into your command line:

>> deviceReader = audioDeviceReader;
>> devices = getAudioDevices(deviceReader)

devices =

 1×1 cell array

 {'No audio input device detected'}

This displays a list of the devices connected to your computer. To add more devices, connect the
additional devices to your computer. Then, type the following into your command line:

>> clear mex
>> devices = getAudioDevices(deviceReader)

devices =

 1×3 cell array

2 Functions

2-306

 {'Default'} {'Primary Sound Capture Driver'} {'Headset Microphone (Plantro…'}

This displays an updated list of the devices connected to your computer, including the devices you
added during your current session. This process also works with the audioDeviceWriter and
audioPlayerRecorder System objects.

See Also
audioDeviceReader | audioDeviceWriter | audioPlayerRecorder

Topics
“Audio I/O: Buffering, Latency, and Throughput”

Introduced in R2016a

 getAudioDevices

2-307

audioPluginInterface
Specify audio plugin interface

Syntax
PluginInterface = audioPluginInterface
PluginInterface = audioPluginInterface(pluginParameters)
PluginInterface = audioPluginInterface(pluginParameters,gridLayout)
PluginInterface = audioPluginInterface(___ ,Name,Value)

Description
PluginInterface = audioPluginInterface returns an object, PluginInterface, that
specifies the interface of an audio plugin in a digital audio workstation (DAW) environment. It also
specifies interface attributes, such as naming.

PluginInterface = audioPluginInterface(pluginParameters) specifies audio plugin
parameters, which are user-facing values associated with audio plugin properties. See
audioPluginParameter for more details.

PluginInterface = audioPluginInterface(pluginParameters,gridLayout) specifies a
grid layout for audio plugin parameter UI controls.

PluginInterface = audioPluginInterface(___ ,Name,Value) specifies
audioPluginInterface properties using one or more Name,Value pair arguments.

Examples

Specify Default Audio Plugin Interface

Create a basic audio plugin class definition file.

classdef myAudioPlugin < audioPlugin
 methods
 function out = process(~,in)
 out = in;
 end
 end
end

Add a constant property, PluginInterface, which is specified as an audioPluginInterface
object.

classdef myAudioPlugin < audioPlugin
 properties (Constant)
 PluginInterface = audioPluginInterface;
 end
 methods
 function out = process(~,in)
 out = in;

2 Functions

2-308

 end
 end
end

Associate Property with Parameter

Create a basic audio plugin class definition file. Specify a property, Gain, and a processing function
that multiplies input by Gain.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Add a constant property, PluginInterface, which is specified as an audioPluginInterface
object.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface;
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Pass audioPluginParameter to audioPluginInterface. To associate the plugin property, Gain,
to a plugin parameter, specify the first argument of audioPluginParameter as the property name,
'Gain'.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain'));
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

 audioPluginInterface

2-309

If you generate and deploy myAudioPlugin to a digital audio workstation (DAW) environment, the
plugin property, Gain, synchronizes with a user-facing plugin parameter.

Specify Interface Properties

Create a basic audio plugin class definition file. Specify the plugin name, vendor name, vendor
version, unique identification, number of input channels, number of output channels, and a yellow
background.

classdef monoGain < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain'), ...
 'PluginName','Simple Gain', ...
 'VendorName','Cool Company', ...
 'VendorVersion','1.0.0', ...
 'UniqueId','1a1Z', ...
 'InputChannels',1, ...
 'OutputChannels',1, ...
 'BackgroundColor','y');
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Input Arguments
pluginParameters — Audio plugin parameters
none (default) | one or more audioPluginParameter objects

Audio plugin parameters, specified as one or more audioPluginParameter objects.

To create an audio plugin parameter, use the audioPluginParameter function. In a digital audio
workstation (DAW) environment, audio plugin parameters synchronize plugin class properties with
user-facing parameters.

gridLayout — Layout for plugin UI
none (default) | audioPluginGridLayout object

Audio plugin grid layout, specified as an audioPluginGridLayout object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'PluginName','cool effect','VendorVersion','1.0.2' specifies the name of the
generated audio plugin as 'cool effect' and the vendor version as '1.0.2'.

2 Functions

2-310

PluginName — Name of generated plugin
name of plugin class (default) | character vector | string

Name of your generated plugin, as seen by a host audio application, specified as a comma-separated
pair consisting of 'PluginName' and a character vector or string of up to 127 characters. If
'PluginName' is not specified, the generated plugin is given the name of the audio plugin class it is
generated from.

VendorName — Vendor name of plugin creator
' ' (default) | character vector

Vendor name of the plugin creator, specified as the comma-separated pair 'VendorName' and a
character vector of up to 127 characters.

VendorVersion — Vendor version
'1.0.0' (default) | dot-separated character vector or string

Vendor version used to track plugin releases, specified as a comma-separated pair consisting of
'VendorVersion' and a dot-separated character vector or string of 1–3 integers in the range 0 to 9.
Example: '1'
Example: '1.4'
Example: '1.3.5'

UniqueId — Unique identifier of plugin
'MWap' (default) | four-element character vector or string

Unique identifier for your plugin, specified as a comma-separated pair consisting of 'UniqueID' and
a four-element character vector or string, used for recognition in certain digital audio workstation
(DAW) environments.

InputChannels — Input channels
2 (default) | integer | vector of integers

Input channels, specified as a comma-separated pair consisting of 'InputChannels' and an integer
or vector of integers. The input channels are the number of input data arguments and associated
channels (columns) passed to the processing function of your audio plugin.
Example: 'InputChannels',3 calls the processing function with one data argument containing 3
channels.
Example: 'InputChannels',[2,4,1,5] calls the processing function with 4 data arguments. The
first argument contains 2 channels, the second contains 4 channels, the third contains 1 channel, and
the fourth contains 5 channels.

Note This property is not applicable for audio source plugins, and must be omitted.

OutputChannels — Output channels
2 (default) | integer | vector of integers

Output channels, specified a comma-separated pair consisting of 'OutputChannels' and an integer
or vector of integers. The output channels are the number of input data arguments and associated
channels (columns) passed from the processing function of your audio plugin.

 audioPluginInterface

2-311

Example: 'OutputChannels',3 specifies the processing function to output one data argument
containing 3 channels.
Example: 'OutputChannels',[2,4,1,5] specifies the processing function to output 4 data
arguments. The first argument contains 2 channels, the second contains 4 channels, the third
contains 1 channel, and the fourth contains 5 channels.

BackgroundColor — Color used for GUI background
RGB triplet | short name | long name

Color used for GUI background, specified as short or long color name string, or an RGB triplet. See
ColorSpec (Color Specification) for details.
Example: 'BackgroundColor',[1 1 0] specifies the GUI background to be yellow.
Example: 'BackgroundColor','y' specifies the GUI background to be yellow.
Example: 'BackgroundColor','yellow' specifies the GUI background to be yellow.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical | char | string

BackgroundImage — Image used for GUI background
char | string

Image used for GUI background, specified by its file name using either a character vector or string. If
the file is not on path, you must specify the full file path. Supported file types are PNG, GIF, and JPG.

The background image may include transparencies, in which case the BackgroundColor is used.
Example: 'BackgroundImage','Sunrise.png' specifies the GUI background image to be the
'Sunrise' image.
Example: 'BackgroundImage',fullfile(matlabroot,"mySkins","Sunset.jpg") specifies
the GUI background to be the 'Sunset' image.
Data Types: char | string

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
audioPlugin | audioPluginGridLayout | audioPluginParameter | audioPluginSource |
generateAudioPlugin | validateAudioPlugin

Topics
“Audio Plugins in MATLAB”

Introduced in R2016a

2 Functions

2-312

audioPluginParameter
Specify audio plugin parameters

Syntax
pluginParameter = audioPluginParameter(propertyName)
pluginParameter = audioPluginParameter(propertyName,Name,Value)

Description
pluginParameter = audioPluginParameter(propertyName) returns an object,
pluginParameter, that associates an audio plugin parameter to the audio plugin property specified
by propertyName. Use the plugin parameter object, pluginParameter, as an argument to
audioPluginInterface in your plugin class definition.

In a digital audio workstation (DAW) environment, or when using Audio Test Bench or
parameterTuner in the MATLAB environment, plugin parameters are tunable, user-facing values
with defined ranges mapped to controls. When you modify a parameter value using a control, the
associated plugin property is also modified. If the audio-processing algorithm of the plugin depends
on properties, the algorithm is also modified.

To visualize the relationship between plugin properties, parameters, and the environment in which a
plugin is run, see “Implementation of Audio Plugin Parameters” on page 2-326.

pluginParameter = audioPluginParameter(propertyName,Name,Value) specifies
audioPluginParameter properties using one or more Name,Value pair arguments.

Examples

Associate Property with Parameter

Create a basic audio plugin class definition file. Specify a property, Gain, and a processing function
that multiplies input by Gain.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Add a constant property, PluginInterface, which is specified as an audioPluginInterface
object.

classdef myAudioPlugin < audioPlugin
 properties

 audioPluginParameter

2-313

 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface;
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Pass audioPluginParameter to audioPluginInterface. To associate the plugin property, Gain,
to a plugin parameter, specify the first argument of audioPluginParameter as the property name,
'Gain'.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain'));
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

Specify Parameter Information

Create a basic plugin class definition file. Specify 'DisplayName' as 'Awesome Gain', 'Label' as
'linear', and 'Mapping' as {'lin',0,20}.

classdef myAudioPlugin < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain', ...
 'DisplayName','Awesome Gain', ...
 'Label','linear', ...
 'Mapping',{'lin',0,20}));
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

2 Functions

2-314

Integer Parameter Mapping

The following class definition uses integer parameter mapping to define the relationship between a
property and a parameter. You can use the plugin created from this class to tune the linear gain of an
audio signal in integer steps from 0 to 3.

classdef pluginWithIntegerMapping < audioPlugin
 properties
 Gain = 1;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain', ...
 'Mapping',{'int',0,4}, ...
 'Layout',[1,1], ...
 'Style','vslider'), ...
 audioPluginGridLayout('RowHeight',[400,20]));
 end
 methods
 function out = process(plugin,in)
 out = in*plugin.Gain;
 end
 end
end

To run the plugin, save the class definition to a local folder and then call the Audio Test Bench.

audioTestBench(pluginWithIntegerMapping)

 audioPluginParameter

2-315

Power Parameter Mapping

The following class definition uses power parameter mapping to define the relationship between a
property and a parameter. You can use the plugin created from this class to tune the gain of an audio
signal in dB.

classdef pluginWithPowerMapping < audioPlugin
 properties
 Gain = 0;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Gain', ...
 'Label','dB', ...
 'Mapping',{'pow', 1/3, -140, 12}, ...
 'Style','rotary', ...
 'Layout',[1,1]), ...
 audioPluginGridLayout);
 end
 methods
 function out = process(plugin,in)
 dBGain = 10^(plugin.Gain/20);
 out = in*dBGain;
 end
 end
end

To run the plugin, save the class definition to a local folder and then call the Audio Test Bench.

audioTestBench(pluginWithPowerMapping)

2 Functions

2-316

Logarithmic Parameter Mapping

The following class definition uses logarithmic parameter mapping to define the relationship between
a property and a parameter. You can use the plugin created from this class to tune the center
frequency of a single-band EQ filter from 100 to 10000.

classdef pluginWithLogMapping < audioPlugin
 properties
 EQ
 CenterFrequency = 1000;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('CenterFrequency', ...
 'Mapping', {'log',100,10000}));
 end
 methods
 function plugin = pluginWithLogMapping
 plugin.EQ = multibandParametricEQ('NumEQBands',1, ...
 'PeakGains',20, ...
 'Frequencies',plugin.CenterFrequency);
 end
 function out = process(plugin,in)
 out = plugin.EQ(in);
 end
 function set.CenterFrequency(plugin,val)
 plugin.CenterFrequency = val;
 plugin.EQ.Frequencies = val;
 end
 function reset(plugin)
 plugin.EQ.SampleRate = getSampleRate(plugin);
 end
 end
end

To run the plugin, save the class definition to a local folder and then call the Audio Test Bench.

audioTestBench(pluginWithLogMapping)

 audioPluginParameter

2-317

Enumeration for Logical Properties Parameter Mapping

The following class definition uses enumeration parameter mapping to define the relationship
between a property and a parameter. You can use the plugin created from this class to block or pass
through the audio signal by tuning the PassThrough parameter.

classdef pluginWithLogicalEnumMapping < audioPlugin
 properties
 PassThrough = true;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('PassThrough', ...
 'Mapping', {'enum','Block signal','Pass through'}, ...
 'Layout',[1,1], ...
 'Style','vtoggle', ...
 'DisplayNameLocation','none'), ...
 audioPluginGridLayout);
 end
 methods
 function out = process(plugin,in)
 if plugin.PassThrough
 out = in;
 else
 out = zeros(size(in));
 end
 end
 end
end

To run the plugin, save the class definition to a local folder and then create an audio I/O stream loop.

First, create objects to read from a file and write to your device.

2 Functions

2-318

fileReader = dsp.AudioFileReader('Engine-16-44p1-stereo-20sec.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Create a plugin object and set the sample rate to the sample rate of the file.

passThrough = pluginWithLogicalEnumMapping;
setSampleRate(passThrough,fileReader.SampleRate)

Open a parameterTuner so that you can toggle the logical parameter of the plugin while stream
processing.

parameterTuner(passThrough)

While the file contains unread data:

1 Read a frame from the file.
2 Feed the frame through the plugin
3 Write the processed audio to your device.

While the audio stream runs, toggle the PassThrough parameter and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();

 audioOut = process(passThrough,audioIn);

 deviceWriter(audioOut);

 drawnow limitrate
end

 audioPluginParameter

2-319

'enum' for Enumeration Class Parameter Mapping

The following class definitions comprise a simple example of enumeration parameter mapping for
properties defined by an enumeration class. You can specify the operating mode of the plugin created
from this class by tuning the Mode parameter.

Plugin Class Definition

classdef pluginWithEnumMapping < audioPlugin
 properties
 Mode = OperatingMode.boost;
 end
 properties (Constant)
 PluginInterface = audioPluginInterface(...
 audioPluginParameter('Mode',...
 'Mapping',{'enum','+6 dB','-6 dB','silence','white noise'}));
 end
 methods
 function out = process(plugin,in)
 switch (plugin.Mode)
 case OperatingMode.boost
 out = in * 2;
 case OperatingMode.cut
 out = in / 2;
 case OperatingMode.mute
 out = zeros(size(in));
 case OperatingMode.noise
 out = rand(size(in)) - 0.5;
 otherwise
 out = in;
 end
 end
 end
end

Enumeration Class Definition

classdef OperatingMode < int8
 enumeration
 boost (0)
 cut (1)
 mute (2)
 noise (3)
 end
end

To run the plugin, save the plugin and enumeration class definition files to a local folder. Then call the
Audio Test Bench on the plugin class.

audioTestBench(pluginWithEnumMapping)

2 Functions

2-320

Input Arguments
propertyName — Name of audio plugin property
character vector | string

Name of the audio plugin property that you want to associate with a parameter, specified as a
character vector or string. Enter the property name exactly as it is defined in the property section of
your audio plugin class.
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'DisplayName','Gain','Label','dB' specifies the display name of your parameter as
'Gain' and the display label for parameter value units as 'dB'.

Mappings

Mapping — Mapping between property and parameter range
cell array

Mapping between property and parameter range, specified as the comma-separated pair consisting of
'Mapping' and a cell array.

Parameter range mapping specifies a mapping between a property and the associated parameter
range.

The first element of the cell array is a character vector specifying the kind of mapping. The valid
values are 'lin', 'log', 'pow', 'int', and 'enum'. The subsequent elements of the cell array
depend on the kind of mapping. The valid mappings depend on the property data type.

 audioPluginParameter

2-321

Property Data Type Valid Mappings Default
double 'lin', 'log', 'pow', 'int' {'lin', 0, 1}
logical 'enum' {'enum', 'off', 'on'}
enumeration class 'enum' enumeration names

Mappin
g

Description Example

'lin' Specifies a linear relationship with given
minimum and maximum values.

property value = min + (max−min)
× parameter value

{'lin', 0, 24} specifies a linear
relationship with a minimum of 0 and
maximum of 24.

Example: “Specify Parameter Information”
on page 2-314

'log' Specifies a logarithmic relationship with
given minimum and maximum values, where
the control position maps to the logarithm of
the property value. The minimum value must
be greater than 0.

property value = min
× (max/min)(parameter value)

{'log', 1, 22050} specifies a logarithmic
relationship with a minimum of 1 and a
maximum of 22,050.

Example: “Logarithmic Parameter
Mapping” on page 2-316

'pow' Specifies a power law relationship with
given exponent, minimum, and maximum
values. The property value is related to the
control position raised to the exponent:

property value = min + (max−min)
× parameter value exp

{'pow', 1/3, -140, 12} specifies a power
law relationship with an exponent of 1/3, a
minimum of –140, and a maximum of 12.

Example: “Power Parameter Mapping” on
page 2-316

'int' Quantizes the control position and maps it to
the range of consecutive integers with given
minimum and maximum values.

property value = floor
0.5 + min + (max−min)

× parameter value

{'int', 0, 3} specifies a linear, quantized
relationship with a minimum of 0 and
maximum of 3. The property value is
mapped as an integer in the range [0, 3].

Example: “Integer Parameter Mapping” on
page 2-314

'enum'
(logical)

Optionally provides character vectors for
display on the plugin dialog box.

{'enum','Block
signal','Passthrough'} specifies the
character vector 'Block signal' if the
parameter value is false and
'Passthrough' if the parameter value is
true.

Example: “Enumeration for Logical
Properties Parameter Mapping” on page 2-
318

2 Functions

2-322

Mappin
g

Description Example

'enum'
(enumer
ation
class)

Optionally provides character vectors for the
members of the enumeration class.

{'enum', '+6 dB', '-6 dB', 'silence',
'white noise'} specifies the character
vectors '+6 dB', '-6 dB', 'silence',
and 'white noise'.

Example: “'enum' for Enumeration Class
Parameter Mapping” on page 2-319

Graphical User Interface

Layout — Grid cells occupied by parameter control
[row, column] (single-cell specification) | [upper, left; lower, right] (multi-cell specification)

Grid cells occupied by parameter control, specified as a comma-separated pair consisting of
'Layout' and a two-element row vector or 2-by-2 matrix. To use a single cell, specify [row, column]
of the cell. To span multiple cells, specify the upper left and lower right cells as [upper, left; lower,
right].
Example: 'Layout',[2,3]
Example: 'Layout',[2,3;3,6]

Dependencies

To enable this name-value pair, pass an audioPluginGridLayout object to
audioPluginInterface.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

DisplayName — Display name of parameter
associated property name (default) | character vector | string

Display name of your parameter, specified as a comma-separated pair consisting of 'DisplayName'
and a character vector or string. If 'DisplayName' is not specified, the name of the associated
property is used.
Data Types: char | string

DisplayNameLocation — Location of display name
'left' | 'right' | 'above' | 'below' | 'none'

Location of DisplayName, specified as a comma-separated pair consisting of
'DisplayNameLocation' and 'left', 'right', 'above', 'below', or 'none'. The location of
the display name is defined relative to the Layout:

1 'left' –– The display name is located in the column to the left of Layout and spans the same
rows as Layout.

2 'right' –– The display name is located in the column to the right of Layout and spans the same
rows as Layout.

3 'above' –– The display name is located in the row above Layout and spans the same columns
as Layout

4 'below' –– The display name is located in the row below Layout and spans the same columns
as Layout.

 audioPluginParameter

2-323

5 'none' –– DisplayName is suppressed.

Example: 'DisplayNameLocation','left'

Dependencies

To enable this name-value pair, pass an audioPluginGridLayout object to
audioPluginInterface.
Data Types: char | string

Label — Display label for parameter value units
' ' (default) | character vector | string

Display label for parameter value units, specified as a comma-separated pair consisting of 'Label'
and a character vector or string.

The 'Label' name-value pair is ignored for nonnumeric parameters.
Data Types: char | string

Style — Visual control for plugin parameter
'hslider' | 'vslider' | 'rotaryknob' | 'checkbox' | 'vrocker' | 'vtoggle' | 'dropdown'

Visual control for plugin parameter, specified as a comma-separated pair consisting of 'Style' and a
string or character vector:

Style Description
'hslider' Horizontal slider
'vslider' Vertical slider
'rotaryknob

'
Rotary knob

'checkbox' Check box
'vrocker' Vertical rocker switch
'vtoggle' Vertical toggle switch
'dropdown' Dropdown

Default and valid styles depends on the plugin parameter Mapping and corresponding property class:

Mapping Property Class Default Style Additional Valid Styles
lin

log

pow

int

single

double

hslider vslider

rotaryknob

enum logical checkbox dropdown

vrocker

vtoggle

2 Functions

2-324

Mapping Property Class Default Style Additional Valid Styles
enum enumeration with 2 values vrocker dropdown

vtoggle
enum enumeration dropdown

Dependencies

To enable this name-value pair, pass an audioPluginGridLayout object to
audioPluginInterface.
Data Types: char | string

Filmstrip — Name of PNG, GIF, or JPG graphics file
character vector | string

Name of PNG, GIF, or JPG graphics file, specified as the comma-separated pair consisting of
'Filmstrip' and a character vector or string. The graphics file contains a sequence of images of
controls.

Filmstrips enable you to replace default control graphics with your own custom images. Filmstrips
support all control Style values except for dropdowns. A filmstrip is a single image created by
concatenating smaller images called frames. Each frame is an image of a control in a particular
position. For example, a filmstrip for a switch contains two frames: one depicting the "off" state and
another depicting the "on" state. Frames can be concatenated vertically or horizontally. Suppose that
the switch frames are 50 pixels wide by 100 pixels high. Then vertical concatenation produces a 50-
by-200 pixel filmstrip image, with the top frame used for the switch "off" state. Horizontal
concatenation produces a 100-by-100 pixel image, with the left frame used for the switch "off" state.
Filmstrips for sliders and knobs typically contain many more frames. The top/left frame corresponds
to the minimum control position, and the bottom/right frame corresponds to the maximum control
position. The relative control position determines which frame is displayed for a given parameter
value.

Dependencies

To enable this name-value pair, pass an audioPluginGridLayout object to
audioPluginInterface and specify 'FilmstripFrameSize'.
Data Types: char | string

FilmstripFrameSize — Size of individual frames (pixels)
[width, height]

Size of individual frames in the film strip in pixels, specified as the comma-separated pair consisting
of 'FilmstripFrameSize' and a two-element row vector of integers that specify [width, height].

Dependencies

To enable this name-value pair, pass an audioPluginGridLayout object to
audioPluginInterface and specify a 'Filmstrip'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

To learn how to design a graphic user interface, see “Design User Interface for Audio Plugin”.

 audioPluginParameter

2-325

More About
Implementation of Audio Plugin Parameters

Audio plugin parameters are visible and tunable in both the MATLAB and digital audio workstation
(DAW) environments. The different environments and corresponding renderings of the audio plugin
parameters are outlined here. For an example describing how your class definition maps to the UI,
see “Design User Interface for Audio Plugin”.

MATLAB Environment Using Audio Test Bench. Use Audio Test Bench to interact with
plugin parameters in the MATLAB environment in a complete GUI-based workflow. Using the Audio
Test Bench, you can specify audio input and output, analyze your plugin using time- and frequency-
domain scopes, connect to MIDI controls, and validate and generate your plugin. The Audio Test
Bench honors the graphical user interface you specified in audioPluginParameter,
audioPluginGridLayout, and audioPluginInterface (except for filmstrips).

MATLAB Environment Using parameterTuner. Use parameterTuner to interact with plugin
parameters in the MATLAB environment while developing, analyzing, or using your plugin in a
programmatic workflow. The parameterTuner honors the graphical user interface you specified in
audioPluginParameter, audioPluginGridLayout, and audioPluginInterface (except for
filmstrips).

2 Functions

2-326

DAW Environment. Use generateAudioPlugin to deploy your audio plugin to a DAW
environment. The DAW environment determines the exact layout of plugin parameters as seen by the
plugin user.

 audioPluginParameter

2-327

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Audio Test Bench | audioPlugin | audioPluginInterface | audioPluginSource |
generateAudioPlugin | parameterTuner | validateAudioPlugin

Topics
“Design an Audio Plugin”
“Design User Interface for Audio Plugin”
“Export a MATLAB Plugin to a DAW”
“Audio Plugin Example Gallery”

Introduced in R2016a

2 Functions

2-328

configureMIDI
Configure MIDI connections between audio object and MIDI controller

Syntax
configureMIDI(audioObject)
configureMIDI(audioObject,propertyName)
configureMIDI(audioObject,propertyName,controlNumber)
configureMIDI(audioObject,propertyName,controlNumber,'DeviceName',
deviceNameValue)

Description
configureMIDI(audioObject) opens a MIDI configuration user interface (UI). Use the UI to
synchronize parameters of the plugin, audioObject, to MIDI controls on your default MIDI device.
You can also generate MATLAB code corresponding to the MIDI configuration developed using the
configureMIDI UI.

To set your default device, type this syntax in the command line:

setpref midi DefaultDevice deviceNameValue

deviceNameValue is the MIDI device name, assigned by the device manufacturer or host operating
system. Use midiid to get the device name corresponding to your MIDI device.

configureMIDI(audioObject,propertyName) makes the property, propertyName, respond to
any control on the default MIDI device.

configureMIDI(audioObject,propertyName,controlNumber) makes the property respond to
the MIDI control specified by controlNumber.

configureMIDI(audioObject,propertyName,controlNumber,'DeviceName',
deviceNameValue) makes the property respond to the MIDI control specified by controlNumber
on the device specified by deviceNameValue.

Examples

Synchronize Plugin Parameters to MIDI Controls

1 Open the MIDI configuration UI for a parametric equalizer plugin object.

parametricEQPlugin = audiopluginexample.ParametricEqualizerWithUDP;
configureMIDI(parametricEQPlugin)

2 In the UI, select a property to synchronize with your default MIDI device.

 configureMIDI

2-329

3 On your MIDI device, operate the control that you want to synchronize to the selected plugin
property. The control appears in the Operate MIDI control to synchronize box.

4 Repeat steps 2 and 3 as needed to synchronize multiple properties to multiple MIDI controls.

To disconnect the property and control currently displayed on your configureMIDI UI, click
Reset Control.

5 Click OK.

The specified MIDI controls and properties and now synchronized.

2 Functions

2-330

Generate MATLAB Code from configureMIDI UI

Generate MATLAB code corresponding to the MIDI configuration developed using the
configureMIDI UI. You can embed the MATLAB code in your simulation so that you do not need to
reopen the UI to restore your chosen MIDI connections.

1 Open the MIDI configuration UI for a parametric equalizer plugin object.

parametricEQPlugin = audiopluginexample.ParametricEqualizerWithUDP;
configureMIDI(parametricEQPlugin)

2 In the UI, select a property to synchronize with your default MIDI device.

3 On your MIDI device, operate the control that you want to synchronize to the selected plugin
property. The control appears in the Operate MIDI control to synchronize box.

4 Select the Generate MATLAB Code check box.

 configureMIDI

2-331

5 Click OK. The generated MATLAB code corresponds to the MIDI configuration that you
developed.

Make Plugin Property Respond to Any MIDI Control

Make a plugin property respond to any control on your default MIDI device.

2 Functions

2-332

parametricEQPlugin = audiopluginexample.ParametricEqualizerWithUDP;
configureMIDI(parametricEQPlugin,'CenterFrequency1');

Make Plugin Property Respond to Specific MIDI Control on Default MIDI Device

Make a plugin property respond to a specific MIDI control on your default MIDI device.

Create an object of the audio plugin example
audiopluginexample.ParametricEqualizerWithUDP.

parametricEQPlugin = audiopluginexample.ParametricEqualizerWithUDP;

Use midiid to identify a MIDI control to synchronize with your property.

[controlNumber,device] = midiid

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlNumber =

 1083

device =

 'BCF2000'

Use configureMIDI to synchronize your chosen MIDI control, specified by controlNumber, with a
property.

configureMIDI(parametricEQPlugin,'CenterFrequency1',controlNumber);

Make Plugin Property Respond to Specific MIDI Control on a Specific MIDI Device

Make a plugin property respond to any control on your default MIDI device.

Create an object of the audio plugin example,
audiopluginexample.ParametricEqualizerWithUDP.

parametricEQPlugin = audiopluginexample.ParametricEqualizerWithUDP;

Use midiid to identify a specific MIDI control on a specific MIDI device.

[controlNumber,device] = midiid

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlNumber =

 1087

device =

 configureMIDI

2-333

 'BCF2000'

Use configureMIDI to synchronize a property with your chosen MIDI control, specified by
controlNumber, on your chosen MIDI device, specified by device.
configureMIDI(parametricEQPlugin,'CenterFrequency1',controlNumber,'DeviceName',device)

Input Arguments
audioObject — Audio object
object

Audio plugin or compatible System object, specified as an object that inherits from the audioPlugin
class or an object of a compatible Audio Toolbox System object.

propertyName — Name of object property
character vector | string

Name of the object property, specified as a character vector. Enter the property name exactly as it is
defined in the property section of your audio plugin or Audio Toolbox System object.

controlNumber — MIDI device control number
integer

MIDI device control number, specified as an integer. The value is assigned to the control by the
device manufacturer. It is used for identification purposes.

deviceNameValue — MIDI device name
character vector | string

MIDI device name, assigned by the device manufacturer or host operating system, specified as a
character vector. If you do not specify a MIDI device name, the default MIDI device is used.

Limitations
For MIDI connections established by configureMIDI, moving a MIDI control sends a callback to
update the associated property values. To synchronize your MIDI device in an audio stream loop, you
might need to use the drawnow command for the callback to process immediately. For efficiency, use
the drawnow limitrate syntax.

For example, to synchronize your MIDI device and audio object, uncomment the drawnow
limitrate command from this code:

fileReader = dsp.AudioFileReader('Filename','RockDrums-44p1-stereo-11secs.mp3');
deviceWriter = audioDeviceWriter;
dRC = compressor;

configureMIDI(compressor,'Threshold')

while ~isDone(fileReader)
 input = fileReader();
 output = dRC(input);
 deviceWriter(output);
% drawnow limitrate;

2 Functions

2-334

end

release(fileReader);
release(deviceWriter);

If your audio stream loop includes visualizing data on a scope, such as dsp.SpectrumAnalyzer,
dsp.TimeScope, or dsp.ArrayPlot, the drawnow command is not required.

See Also
audioPlugin | disconnectMIDI | getMIDIConnections | midicallback | midicontrols |
midiid | midiread | midisync

Topics
“MIDI Control for Audio Plugins”
“MIDI Control Surface Interface”

Introduced in R2016a

 configureMIDI

2-335

designParamEQ
Design parametric equalizer

Syntax
[B,A] = designParamEQ(N,gain,centerFreq,bandwidth)
[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode)
[B,A] = designParamEQ(___ ,Name,Value)

Description
[B,A] = designParamEQ(N,gain,centerFreq,bandwidth) designs an Nth-order parametric
equalizer with specified gain, center frequency, and bandwidth. B and A are matrices of numerator
and denominator coefficients, with columns corresponding to cascaded second-order section (SOS)
filters.

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode) specifies whether the
parametric equalizer is implemented with second-order sections or fourth-order sections (FOS).

[B,A] = designParamEQ(___ ,Name,Value) specifies options using one or more Name,Value
pair arguments.

Examples

Design Two-Band Parametric Equalizer

Specify the filter order, peak gain in dB, normalized center frequencies, and normalized bandwidth of
the bands of your parametric equalizer.

N = [, ...
];

gain = [, ...
];

centerFreq = [, ...
];

bandwidth = [, ...
];

Generate the filter coefficients using the specified parameters.

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,"Orientation","row");

Visualize your filter design.

fvtool([B,A]);

2 Functions

2-336

Filter Audio Using SOS Parametric Equalizer

Design a second-order sections (SOS) parametric equalizer using designParamEQ and filter an audio
stream.

Create audio file reader and audio device writer System objects. Use the sample rate of the reader as
the sample rate of the writer.

frameSize = 256;

fileReader = dsp.AudioFileReader("RockGuitar-16-44p1-stereo-72secs.wav","SamplesPerFrame",frameSize);

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter("SampleRate",sampleRate);

Play the audio signal through your device.

count = 0;
while count < 2500
 audio = fileReader();
 deviceWriter(audio);
 count = count + 1;
end
reset(fileReader)

 designParamEQ

2-337

Design an SOS parametric equalizer suitable for use with dsp.BiquadFilter.

N = [4,4];
gain = [-25,35];
centerFreq = [0.01,0.5];
bandwidth = [0.35,0.5];
[B,A] = designParamEQ(N,gain,centerFreq,bandwidth);

Visualize your filter design. Call designParamEQ with the same design specifications. Specify the
output orientation as "row" so that it is suitable for use with fvtool.

[Bvisualize,Avisualize] = designParamEQ(N,gain,centerFreq,bandwidth,"Orientation","row");
fvtool([Bvisualize,Avisualize], ...
 "Fs",fileReader.SampleRate, ...
 "FrequencyScale","Log");

Create a biquad filter.

myFilter = dsp.BiquadFilter(...
 "SOSMatrixSource","Input port", ...
 "ScaleValuesInputPort",false);

Create a spectrum analyzer to visualize the original audio signal and the audio signal passed through
your parametric equalizer.

scope = dsp.SpectrumAnalyzer(...
 "SampleRate",sampleRate, ...
 "PlotAsTwoSidedSpectrum",false, ...

2 Functions

2-338

 "FrequencyScale","Log", ...
 "FrequencyResolutionMethod","WindowLength", ...
 "WindowLength",frameSize, ...
 "Title","Original and Equalized Signals", ...
 "ShowLegend",true, ...
 "ChannelNames",{'Original Signal','Equalized Signal'});

Play the filtered audio signal and visualize the original and filtered spectrums.

count = 0;
while count < 2500
 originalSignal = fileReader();
 equalizedSignal = myFilter(originalSignal,B,A);
 scope([originalSignal(:,1),equalizedSignal(:,1)]);
 deviceWriter(equalizedSignal);
 count = count + 1;
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(scope)

 designParamEQ

2-339

Filter Audio Using FOS Parametric Equalizer

Design a fourth-order sections (FOS) parametric equalizer using designParamEQ and filter an audio
stream.

Construct audio file reader and audio device writer System objects. Use the sample rate of the reader
as the sample rate of the writer.

frameSize = 256;

fileReader = dsp.AudioFileReader(...
 "RockGuitar-16-44p1-stereo-72secs.wav", ...
 "SamplesPerFrame",frameSize);

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter(...
 "SampleRate",sampleRate);

Play the audio signal through your device.

count = 0;
while count < 2500
 x = fileReader();
 deviceWriter(x);
 count = count + 1;
end
reset(fileReader)

Design FOS parametric equalizer coefficients.

N = [2,4];
gain = [5,10];
centerFreq = [0.025,0.65];
bandwidth = [0.025,0.35];
mode = "fos";

[B,A] = designParamEQ(N,gain,centerFreq,bandwidth,mode,"Orientation","row");

Construct FOS IIR filters.

myFilter = dsp.FourthOrderSectionFilter(B,A);

Visualize the frequency response of your parametric equalizer.

fvtool(myFilter)

2 Functions

2-340

Construct a spectrum analyzer to visualize the original audio signal and the audio signal passed
through your parametric equalizer.

scope = dsp.SpectrumAnalyzer(...
 "SampleRate",sampleRate, ...
 "PlotAsTwoSidedSpectrum",false, ...
 "FrequencyScale","Log", ...
 "FrequencyResolutionMethod","WindowLength", ...
 "WindowLength",frameSize, ...
 "Title","Original and Equalized Signals", ...
 "ShowLegend",true, ...
 "ChannelNames",{'Original Signal','Equalized Signal'});

Play the filtered audio signal and visualize the original and filtered spectrums.

count = 0;
while count < 2500
 x = fileReader();
 y = myFilter(x);

 scope([x(:,1),y(:,1)]);

 deviceWriter(y);

 count = count + 1;
end

As a best practice, release your objects once done.

 designParamEQ

2-341

release(fileReader)
release(deviceWriter)
release(scope)

Input Arguments
N — Filter order
scalar | row vector

Filter order, specified as a scalar or row vector the same length as centerFreq. Elements of the
vector must be even integers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

gain — Peak gain (dB)
scalar | row vector

Peak gain in dB, specified as a scalar or row vector the same length as centerFreq. Elements of the
vector must be real-valued.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

centerFreq — Normalized center frequency of equalizer bands
scalar | row vector

2 Functions

2-342

Normalized center frequency of equalizer bands, specified as a scalar or row vector of real values in
the range 0 to 1, where 1 corresponds to the Nyquist frequency (π rad/sample). If centerFreq is
specified as a row vector, separate equalizers are designed for each element of centerFreq.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

bandwidth — Normalized bandwidth
scalar | row vector

Normalized bandwidth, specified as a scalar or row vector the same length as centerFreq. Elements
of the vector are specified as real values in the range 0 to 1, where 1 corresponds to the Nyquist
frequency (π rad/sample).

Normalized bandwidth is measured at gain/2 dB. If gain is set to -Inf (notch filter), normalized
bandwidth is measured at the 3 dB attenuation point: 10 × log10 0.5 .

To convert octave bandwidth to normalized bandwidth, calculate the associated Q-factor as

Q = 2 octave bandwidth

2 octave bandwidth − 1
.

Then convert to bandwidth

bandwidth = centerFreq
Q .

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

mode — Design mode
'sos' (default) | 'fos'

Design mode, specified as 'sos' or 'fos'.

• 'sos' –– Implements your equalizer as cascaded second-order filters.
• 'fos' –– Implements your equalizer as cascaded fourth-order filters. Because fourth-order

sections do not require the computation of roots, they are generally more computationally
efficient.

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Orientation',"row"

Orientation — Orientation of returned filter coefficients
"column" (default) | "row"

Orientation of returned filter coefficients, specified as the comma-separated pair consisting of
'Orientation' and "column" or "row":

• Set 'Orientation' to "row" for interoperability with FVTool,
dsp.DynamicFilterVisualizer, and dsp.FourthOrderSectionFilter.

 designParamEQ

2-343

• Set 'Orientation' to "column" for interoperability with dsp.BiquadFilter.

Data Types: char | string

Output Arguments
B — Numerator filter coefficients
matrix

Numerator filter coefficients, returned as a matrix. The size and interpretation of B depends on the
Orientation and mode:

• If 'Orientation' is set to "column" and mode is set to "sos", then B is returned as an L-by-3
matrix. Each column corresponds to the numerator coefficients of your cascaded second-order
sections.

• If 'Orientation' is set to "column" and mode is set to "fos", then B is returned as an L-by-5
matrix. Each column corresponds to the numerator coefficients of your cascaded fourth-order
sections.

• If 'Orientation' is set to "row" and mode is set to "sos", then B is returned as a 3-by-L
matrix. Each row corresponds to the numerator coefficients of your cascaded second-order
sections.

• If 'Orientation' is set to "row" and mode is set to "fos", then B is returned as a 5-by-L
matrix. Each row corresponds to the numerator coefficients of your cascaded fourth-order
sections.

A — Denominator filter coefficients
matrix

Denominator filter coefficients, returned as a matrix. The size and interpretation of A depends on the
Orientation and mode:

• If 'Orientation' is set to "column" and mode is set to "sos", then A is returned as an L-by-2
matrix. Each column corresponds to the denominator coefficients of your cascaded second-order
sections. A does not include the leading unity coefficients.

• If 'Orientation' is set to "column" and mode is set to "fos", then A is returned as an L-by-4
matrix. Each column corresponds to the denominator coefficients of your cascaded fourth-order
sections. A does not include the leading unity coefficients.

• If 'Orientation' is set to "row" and mode is set to "sos", then A is returned as a 3-by-L
matrix. Each row corresponds to the denominator coefficients of your cascaded second-order
sections.

• If 'Orientation' is set to "row" and mode is set to "fos", then A is returned as a 5-by-L
matrix. Each row corresponds to the denominator coefficients of your cascaded fourth-order
sections.

References
[1] Orfanidis, Sophocles J. "High-Order Digital Parametric Equalizer Design." Journal of the Audio

Engineering Society. Vol. 53, November 2005, pp. 1026–1046.

2 Functions

2-344

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
designShelvingEQ | designVarSlopeFilter | dsp.BiquadFilter | multibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

Introduced in R2016a

 designParamEQ

2-345

designShelvingEQ
Design shelving equalizer

Syntax
[B,A] = designShelvingEQ(gain,slope,Fc)
[B,A] = designShelvingEQ(gain,slope,Fc,type)
[B,A] = designShelvingEQ(___ ,Name,Value)

Description
[B,A] = designShelvingEQ(gain,slope,Fc) designs a low-shelf equalizer with the specified
gain, slope, and cutoff frequency, Fc. The equalizer is returned as cascaded second-order section
(SOS) IIR filters.

[B,A] = designShelvingEQ(gain,slope,Fc,type) specifies the design type as a low-shelving
or high-shelving equalizer.

[B,A] = designShelvingEQ(___ ,Name,Value) specifies options using one or more
Name,Value pair arguments.

Examples

Design Low-Shelf Equalizer

Design three second-order IIR low-shelf equalizers using designShelvingEQ. The three shelving
equalizers use three separate slope specifications.

Specify sampling frequency, peak gain, slope coefficient, and normalized cutoff frequency for three
shelving equalizers. The sampling frequency is in Hz. The peak gain is in dB.

Fs = 44.1e3;

gain = 5;

slope1 = 0.5;
slope2 = 0.75;
slope3 = 1;

Fc = 1000/(Fs/2);

Design the filter coefficients using the specified parameters.

[B1,A1] = designShelvingEQ(gain,slope1,Fc,"Orientation","row");
[B2,A2] = designShelvingEQ(gain,slope2,Fc,"Orientation","row");
[B3,A3] = designShelvingEQ(gain,slope3,Fc,"Orientation","row");

Visualize your filter design.

fvtool(...
 dsp.BiquadFilter([B1,A1]), ...

2 Functions

2-346

 dsp.BiquadFilter([B2,A2]), ...
 dsp.BiquadFilter([B3,A3]), ...
 "Fs",Fs, ...
 "FrequencyScale","Log");

legend("slope = 0.5", ...
 "slope = 0.75", ...
 "slope = 1");

Filter Audio Using Low-Shelf Equalizer

Create audio file reader and audio device writer objects. Use the sample rate of the reader as the
sample rate of the writer.

frameSize = 256;

fileReader = dsp.AudioFileReader("RockGuitar-16-44p1-stereo-72secs.wav","SamplesPerFrame",frameSize);

deviceWriter = audioDeviceWriter("SampleRate",fileReader.SampleRate);

Play the audio signal through your device.

count = 0;
while count < 2500
 audio = step(fileReader);

 designShelvingEQ

2-347

 play(deviceWriter,audio);
 count = count + 1;
end
reset(fileReader)

Design a second-order sections (SOS) low-shelf equalizer.

gain = 10;
slope = 3;
Fc = 0.025;

[B,A] = designShelvingEQ(gain,slope,Fc);

Visualize your shelving filter design.

SOS = [B',[1,A']];
fvtool(dsp.BiquadFilter("SOSMatrix",SOS), ...
 "Fs",fileReader.SampleRate, ...
 "FrequencyScale","Log");

Create a biquad filter object.

myFilter = dsp.BiquadFilter(...
 "SOSMatrixSource","Input port", ...
 "ScaleValuesInputPort",false);

Create a spectrum analyzer object to visualize the original audio signal and the audio signal passed
through your low-shelf equalizer.

2 Functions

2-348

scope = dsp.SpectrumAnalyzer(...
 "SampleRate",fileReader.SampleRate, ...
 "PlotAsTwoSidedSpectrum",false, ...
 "FrequencyScale","Log", ...
 "FrequencyResolutionMethod","WindowLength", ...
 "WindowLength",frameSize, ...
 "Title","Original and Equalized Signal", ...
 "ShowLegend",true, ...
 "ChannelNames",{'Original Signal','Equalized Signal'});

Play the equalized audio signal and visualize the original and equalized spectrums.

count = 0;
while count < 2500
 originalSignal = fileReader();
 equalizedSignal = myFilter(originalSignal,B,A);
 scope([originalSignal(:,1),equalizedSignal(:,1)]);
 deviceWriter(equalizedSignal);
 count = count + 1;
end

As a best practice, release your objects once done.

release(fileReader)
release(deviceWriter)
release(scope)

 designShelvingEQ

2-349

Design High-Shelf Equalizer

Design three second-order IIR high shelf equalizers using designShelvingEQ. The three shelving
equalizers use three separate gain specifications.

Specify sampling frequency, peak gain, slope coefficient, and normalized cutoff frequency for three
shelving equalizers. The sampling frequency is in Hz. The peak gain is in dB.

Fs = 44.1e3;

gain1 = -6;
gain2 = 6;
gain3 = 12;

slope = 0.8;

Fc = 18000/(Fs/2);

Design the filter coefficients using the specified parameters.

[B1,A1] = designShelvingEQ(gain1,slope,Fc,"hi","Orientation","row");
[B2,A2] = designShelvingEQ(gain2,slope,Fc,"hi","Orientation","row");
[B3,A3] = designShelvingEQ(gain3,slope,Fc,"hi","Orientation","row");

Visualize your filter design.

fvtool([B1,A1;[1 0 0 1 0 0]], ...
 [B2,A2;[1 0 0 1 0 0]], ...
 [B3,A3;[1 0 0 1 0 0]], ...
 "Fs",Fs);

legend("gain = -6 dB", ...
 "gain = 6 dB", ...
 "gain = 12 dB", ...
 "Location","NorthWest")

2 Functions

2-350

Input Arguments
gain — Peak gain (dB)
real scalar in the range –12 to 12

Peak gain in dB, specified as a real scalar in the range –12 to 12.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

slope — Slope coefficient
real scalar in the range 0 to 5

Slope coefficient, specified as a real scalar in the range 0 to 5.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fc — Normalized cutoff frequency
real scalar in the range 0 to 1

Normalized cutoff frequency, specified as a real scalar in the range 0 to 1, where 1 corresponds to the
Nyquist frequency (π rad/sample).

Normalized cutoff frequency is implemented as half the shelving filter gain, or gain/2 dB.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 designShelvingEQ

2-351

type — Filter type
'lo' (default) | 'hi'

Filter type, specified as 'lo' or 'hi'.

• 'lo'–– Low shelving equalizer
• 'hi'–– High shelving equalizer

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Orientation',"row"

Orientation — Orientation of returned filter coefficients
"column" (default) | "row"

Orientation of returned filter coefficients, specified as the comma-separated pair consisting of
'Orientation' and "column" or "row":

• Set 'Orientation' to "row" for interoperability with FVTool,
dsp.DynamicFilterVisualizer, and dsp.FourthOrderSectionFilter.

• Set 'Orientation' to "column" for interoperability with dsp.BiquadFilter.

Data Types: char | string

Output Arguments
B — Numerator filter coefficients
three-element column vector | three-element row vector

Numerator filter coefficients, returned as a vector. The size and interpretation of B depends on the
Orientation:

• If 'Orientation' is set to "column", then B is returned as a three-element column vector.
• If 'Orientation' is set to "row", then B is returned as a three-element row vector.

.

A — Denominator filter coefficients
two-element column vector | three-element row vector

Denominator filter coefficients of the designed second-order IIR filter, returned as a vector. The size
and interpretation of A depends on the Orientation:

• If 'Orientation' is set to "column", then A is returned as a two-element column vector. A does
not include the leading unity coefficient.

• If 'Orientation' is set to "row", then A is returned as a three-element row vector.

2 Functions

2-352

References
[1] Bristow-Johnson, Robert. "Cookbook Formulae for Audio EQ Biquad Filter Coefficients." Accessed

March 02, 2016. http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
designParamEQ | designVarSlopeFilter | multibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

Introduced in R2016a

 designShelvingEQ

2-353

designVarSlopeFilter
Design variable slope lowpass or highpass IIR filter

Syntax
[B,A] = designVarSlopeFilter(slope,Fc)
[B,A] = designVarSlopeFilter(slope,Fc,type)
[B,A] = designVarSlopeFilter(___ ,Name,Value)

Description
[B,A] = designVarSlopeFilter(slope,Fc) designs a lowpass filter with the specified slope
and cutoff frequency. B and A are matrices of numerator and denominator coefficients, with columns
corresponding to cascaded second-order sections (SOS).

[B,A] = designVarSlopeFilter(slope,Fc,type) specifies the design type as a lowpass or
highpass filter.

[B,A] = designVarSlopeFilter(___ ,Name,Value) specifies options using one or more
Name,Value pair arguments.

Examples

Design Lowpass IIR Filter

Design two second-order section (SOS) lowpass IIR filters using designVarSlopeFilter.

Specify the sampling frequency, slope, and normalized cutoff frequency for two lowpass IIR filters.
The sampling frequency is in Hz. The slope is in dB/octave.

Fs = 48e3;

slope = 18;

Fc1 = 10e3/(Fs/2);
Fc2 = 16e3/(Fs/2);

Design the filter coefficients using the specified parameters.

[B1,A1] = designVarSlopeFilter(slope,Fc1,"Orientation","row");
[B2,A2] = designVarSlopeFilter(slope,Fc2,"Orientation","row");

Visualize your filter design.

fvtool([B1,A1],[B2,A2],"Fs",Fs,"FrequencyScale","Log");

legend("Fc = 10 kHz", ...
 "Fc = 16 kHz", ...
 "Location","SouthWest");

2 Functions

2-354

Process Audio Using Lowpass Filter

Design a second-order section (SOS) lowpass IIR filter using designVarSlopeFilter. Use your
lowpass filter to process an audio signal.

Create audio file reader and audio device writer objects. Use the sample rate of the reader as the
sample rate of the writer.

frameSize = 256;

fileReader = dsp.AudioFileReader(...
 "RockGuitar-16-44p1-stereo-72secs.wav", ...
 "SamplesPerFrame",frameSize);

sampleRate = fileReader.SampleRate;

deviceWriter = audioDeviceWriter(...
 "SampleRate",sampleRate);

Play the audio signal through your device.

count = 0;
while count < 2500
 audio = fileReader();
 deviceWriter(audio);

 designVarSlopeFilter

2-355

 count = count + 1;
end
reset(fileReader)

Design a lowpass filter with a 12 dB/octave slope and a 0.15 normalized cutoff frequency.

slope = 12;
cutoff = 0.15;
[B,A] = designVarSlopeFilter(slope,cutoff);

Visualize your filter design. To output filter coefficients suitable for fvtool, call
designVarSlopeFilter again with the same design specifications but with Orientation set to
"row".

[Bvisualize,Avisualize] = designVarSlopeFilter(slope,cutoff,"Orientation","row");
fvtool([Bvisualize,Avisualize],"Fs",sampleRate);

Create a biquad filter.

myFilter = dsp.BiquadFilter(...
 "SOSMatrixSource","Input port", ...
 "ScaleValuesInputPort",false);

Create a spectrum analyzer to visualize the original audio signal and the audio signal passed through
your lowpass filter.

scope = dsp.SpectrumAnalyzer(...
 "SampleRate",sampleRate, ...

2 Functions

2-356

 "PlotAsTwoSidedSpectrum",false, ...
 "FrequencyScale","Log", ...
 "FrequencyResolutionMethod","WindowLength", ...
 "WindowLength",frameSize, ...
 "Title","Original and Equalized Signal", ...
 "ShowLegend",true, ...
 "ChannelNames",{'Original Signal','Filtered Signal'});

Play the filtered audio signal and visualize the original and filtered spectrums.

count = 0;
while count < 2500
 originalSignal = fileReader();
 filteredSignal = myFilter(originalSignal,B,A);
 scope([originalSignal(:,1),filteredSignal(:,1)]);
 deviceWriter(filteredSignal);
 count = count + 1;
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(scope)

 designVarSlopeFilter

2-357

Design Highpass IIR Filter

Design two second-order section (SOS) highpass IIR filters using designVarSlopeFilter.

Specify the sampling frequency in Hz, the slope in dB/octave, and the normalized cutoff frequency.

Fs = 48e3;
slope1 = 18;
slope2 = 36;
Fc = 4000/(Fs/2);

Design the filter coefficients using the specified parameters.

[B1,A1] = designVarSlopeFilter(slope1,Fc,"hi","Orientation","row");
[B2,A2] = designVarSlopeFilter(slope2,Fc,"hi","Orientation","row");

Visualize your filter design.

fvtool([B1,A1],[B2,A2],...
 "Fs",Fs,...
 "FrequencyScale","Log");
legend("slope = 18 dB/octave", ...
 "slope = 36 dB/octave", ...
 "Location","NorthWest")

2 Functions

2-358

Diminish Plosives from Speech Signal

Plosives are consonant sounds resulting from a sudden release of airflow. They are most pronounced
in words beginning with p, d, and g sounds. Plosives can be emphasized by the recording process and
are often displeasurable to hear. In this example, you minimize the plosives of a speech signal by
applying highpass filtering and low-band compression.

Create a dsp.AudioFileReader object and a audioDeviceWriter object to read an audio signal
from a file and write an audio signal to a device. Play the unprocessed signal. Then release the file
reader and device writer.

fileReader = dsp.AudioFileReader('audioPlosives.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end
release(deviceWriter)
release(fileReader)

Design a highpass filter with a steep rolloff of all frequencies below 120 Hz. Use a
dsp.BiquadFilter object to implement the highpass filter design. Create a crossover filter with
one crossover at 250 Hz. The crossover filter enables you to separate the band of interest for
processing. Create a dynamic range compressor to compress the dynamic range of plosive sounds. To
apply no make-up gain, set the MakeUpGainMode to "Property" and use the default 0 dB
MakeUpGain property value. Create a time scope to visualize the processed and unprocessed audio
signal.

[B,A] = designVarSlopeFilter(48,120/(fileReader.SampleRate/2),"hi");
biquadFilter = dsp.BiquadFilter(...
 "SOSMatrixSource","Input port", ...
 "ScaleValuesInputPort",false);

crossFilt = crossoverFilter(...
 "SampleRate",fileReader.SampleRate, ...
 "NumCrossovers",1, ...
 "CrossoverFrequencies",250, ...
 "CrossoverSlopes",48);

dRCompressor = compressor(...
 "Threshold",-35, ...
 "Ratio",10, ...
 "KneeWidth",20, ...
 "AttackTime",1e-4, ...
 "ReleaseTime",3e-1, ...
 "MakeUpGainMode","Property", ...
 "SampleRate",fileReader.SampleRate);

scope = dsp.TimeScope(...
 "SampleRate",fileReader.SampleRate, ...
 "TimeSpan",3, ...
 "BufferLength",fileReader.SampleRate*3*2, ...
 "YLimits",[-1 1], ...
 "ShowGrid",true, ...
 "ShowLegend",true, ...
 "ChannelNames",{'Original','Processed'});

 designVarSlopeFilter

2-359

In an audio stream loop:

1 Read in a frame of the audio file.
2 Apply highpass filtering using your biquad filter.
3 Split the audio signal into two bands.
4 Apply dynamic range compression to the lower band.
5 Remix the channels.
6 Write the processed audio signal to your audio device for listening.
7 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioIn = biquadFilter(audioIn,B,A);
 [band1,band2] = crossFilt(audioIn);
 band1compressed = dRCompressor(band1);
 audioOut = band1compressed + band2;
 deviceWriter(audioOut);
 scope([audioIn audioOut])
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(crossFilt)
release(dRCompressor)
release(scope)

2 Functions

2-360

Input Arguments
slope — Filter slope (dB/octave)
real scalar in the range [0:6:48]

Filter slope in dB/octave, specified as a real scalar in the range [0:6:48]. Values that are not multiples
of 6 are rounded.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Fc — Normalized cutoff frequency
real scalar in the range 0 to 1

Normalized cutoff frequency, specified as a real scalar in the range 0 to 1, where 1 corresponds to the
Nyquist frequency (π rad/sample).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

type — Filter type
'lo' (default) | 'hi'

 designVarSlopeFilter

2-361

Filter type, specified as 'lo' or 'hi'.

• 'lo'–– Lowpass filter
• 'hi'–– Highpass filter

Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Orientation',"row"

Orientation — Orientation of returned filter coefficients
"column" (default) | "row"

Orientation of returned filter coefficients, specified as the comma-separated pair consisting of
'Orientation' and "column" or "row":

• Set 'Orientation' to "row" for interoperability with FVTool,
dsp.DynamicFilterVisualizer, and dsp.FourthOrderSectionFilter.

• Set 'Orientation' to "column" for interoperability with dsp.BiquadFilter.

Data Types: char | string

Output Arguments
B — Numerator filter coefficients
3-by-4 matrix | 4-by-3 matrix

Numerator filter coefficients, returned as a matrix. The size and interpretation of B depends on the
Orientation:

• If 'Orientation' is set to "column", then B is returned as a 3-by-4 matrix. Each column of B
corresponds to the numerator coefficients of a different second-order section of your cascaded IIR
filter.

• If 'Orientation' is set to "row", then B is returned as a 4-by-3 matrix. Each row of B
corresponds to the numerator coefficients of a different second-order section of your cascaded IIR
filter.

A — Denominator filter coefficients
2-by-4 matrix | 4-by-3 matrix

Denominator filter coefficients, returned as a matrix. The size and interpretation of A depends on the
Orientation:

• If 'Orientation' is set to "column", then A is returned as a 2-by-4 matrix. Each column of A
corresponds to the denominator coefficients of a different second-order section of your cascaded
IIR filter. A does not include the leading unity coefficient for each section.

• If 'Orientation' is set to "row", then B is returned as a 4-by-3 matrix. Each row of B
corresponds to the denominator coefficients of a different second-order section of your cascaded
IIR filter.

2 Functions

2-362

References
[1] Orfanidis, Sophocles J. "High-Order Digital Parametric Equalizer Design." Journal of the Audio

Engineering Society. Vol. 53, November 2005, pp. 1026–1046.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
designParamEQ | designShelvingEQ | multibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

Introduced in R2016a

 designVarSlopeFilter

2-363

disconnectMIDI
Disconnect MIDI controls from audio object

Syntax
disconnectMIDI(audioObject)

Description
disconnectMIDI(audioObject) disconnects MIDI controls from your audio object, audioObject.
Only those MIDI connections established using configureMIDI are disconnected.

Examples

Disconnect MIDI Controls from Audio Plugin

Create an object of the audio plugin example audiopluginexample.Echo.

echoPlugin = audiopluginexample.Echo;

Get the MIDI connections of echoPlugin and verify that it has no MIDI connections.

myMIDIConnections = getMIDIConnections(echoPlugin);
isempty(myMIDIConnections)

ans =

 1

Add MIDI connections using configureMIDI.

configureMIDI(echoPlugin,'Delay1');

Get the MIDI connections of echoPlugin using getMIDIConnections. The MIDI connections you
configured are saved as a structure. View details of the MIDI connections using dot notation.

myMIDIConnections = getMIDIConnections(echoPlugin);
myMIDIConnections.Delay1

ans =

 Law: 'lin'
 Min: 0
 Max: 1
 MIDIControl: 'any control on 'BCF2000''

Use disconnectMIDI to remove MIDI connections between your echoPlugin object and your MIDI
device.

disconnectMIDI(echoPlugin);

2 Functions

2-364

Get MIDI connections of echoPlugin and verify that you have successfully disconnected MIDI
controls from your plugin.

myMIDIConnections = getMIDIConnections(echoPlugin);
isempty(myMIDIConnections)

ans =

 1

Input Arguments
audioObject — Audio object
object

Audio plugin or compatible System object, specified as an object that inherits from the audioPlugin
class or an object of a compatible Audio Toolbox System object.

See Also
Classes
audioPlugin | audioPluginSource

Functions
configureMIDI | getMIDIConnections | midicallback | midicontrols | midiid | midiread |
midisync

Topics
“MIDI Control for Audio Plugins”
“MIDI Control Surface Interface”

Introduced in R2016a

 disconnectMIDI

2-365

fdesign.parameq
Parametric equalizer filter specification

Syntax
d = fdesign.parameq(spec, specvalue1, specvalue2, ...)
d = fdesign.parameq(... fs)

Description
d = fdesign.parameq(spec, specvalue1, specvalue2, ...) constructs a parametric
equalizer filter design object, where spec is a non-case sensitive character vector. The choices for
spec are as follows:

• 'F0, BW, BWp, Gref, G0, GBW, Gp' (minimum order default)
• 'F0, BW, BWst, Gref, G0, GBW, Gst'
• 'F0, BW, BWp, Gref, G0, GBW, Gp, Gst'
• 'N, F0, BW, Gref, G0, GBW'
• 'N, F0, BW, Gref, G0, GBW, Gp'
• 'N, F0, Fc, Qa, G0'
• 'N, F0, Fc, S, G0'
• 'N, F0 ,BW, Gref, G0, GBW, Gst'
• 'N, F0, BW, Gref, G0, GBW, Gp, Gst'
• 'N, Flow, Fhigh, Gref, G0, GBW'
• 'N, Flow, Fhigh, Gref, G0, GBW, Gp'
• 'N, Flow, Fhigh, Gref, G0, GBW, Gst'
• 'N, Flow, Fhigh, Gref, G0, GBW, Gp, Gst'

where the parameters are defined as follows:

Paramete
r

Definition Unit

BW Bandwidth
BWp Passband Bandwidth
BWst Stopband Bandwidth
Gref Reference Gain decibels
G0 Center Frequency Gain decibels
GBW Gain at which Bandwidth (BW) is

measured
decibels

Gp Passband Gain decibels
Gst Stopband Gain decibels

2 Functions

2-366

Paramete
r

Definition Unit

N Filter Order
F0 Center Frequency
Fc Cutoff Frequency
Fhigh Higher Frequency at Gain GBW
Flow Lower Frequency at Gain GBW
Qa Quality Factor
S Slope Parameter for Shelving

Filters

Regardless of the specification chosen, there are some conditions that apply to the specification
parameters. These are as follows:

• Specifications for parametric equalizers must be given in decibels
• To boost the input signal, set G0 > Gref; to cut, set Gref > G0
• For boost: G0 > Gp > GBW > Gst > Gref; For cut: G0 < Gp < GBW < Gst < Gref
• Bandwidth must satisfy: BWst > BW > BWp

d = fdesign.parameq(... fs) adds the input sampling frequency. fs must be specified as a
scalar trailing the other numerical values provided, and is assumed to be in Hz.

Examples

Design Parametric Equalizers

Design a Chebyshev Type II parametric equalizer filter that cuts by 12 dB.

parametricEQ = fdesign.parameq('N,Flow,Fhigh,Gref,G0,GBW,Gst', ...
 4,0.3,0.5,0,-12,-10,-1);

parametricEQBiquad = design(parametricEQ,'cheby2','SystemObject',true);
fvtool(parametricEQBiquad)

 fdesign.parameq

2-367

Design a 4th-order lowpass shelving filter with a normalized cutoff frequency of 0.25, a quality factor
of 10, and an 8 dB boost gain.

parametricEQ = fdesign.parameq('N,F0,Fc,Qa,G0',4,0,0.25,10,8);
parametricEQBiquad = design(parametricEQ,'SystemObject',true);
fvtool(parametricEQBiquad)

2 Functions

2-368

Design 4th-order highpass shelving filters with slopes of 1.5 and 3.

N = 4; % Filter order
F0 = 1; % Center Frequency (normalized)
Fc = 0.4; % Cutoff Frequency (normalized)
G0 = 10; % Center Frequency Gain (dB)

S1 = 1.5; % Slope for filter design 1
S2 = 3; % Slope for filter design 2

filter = fdesign.parameq('N,F0,Fc,S,G0',N,F0,Fc,S1,G0);
filterDesignS1 = design(filter,'SystemObject',true);

filter.S = S2;
filterDesignS2 = design(filter,'SystemObject',true);

filterVisualization = fvtool(filterDesignS1,filterDesignS2);
legend(filterVisualization,'Slope = 1.5','Slope = 3');

 fdesign.parameq

2-369

See Also
designParamEQ | designShelvingEQ | designVarSlopeFilter | fdesign |
multibandParametricEQ

Topics
“Parametric Equalizer Design”
“Equalization”

2 Functions

2-370

generateAudioPlugin
Generate audio plugin from MATLAB class

Syntax
generateAudioPlugin className
generateAudioPlugin options className

Description
generateAudioPlugin className generates a VST 2 audio plugin from a MATLAB class specified
by className. See Supported Compilers for a list of compilers supported by
generateAudioPlugin.

generateAudioPlugin options className specifies a nondefault plugin type, output folder, file
name, or file type. You can use the -juceproject option to create a zip file containing generated
C/C++ code and a JUCER project. Options can be specified in any grouping, and in any order.

Examples

Generate Audio Plugin

generateAudioPlugin audiopluginexample.Echo

.......

A VST 2 plugin with file name Echo is saved to your current folder. The extension of your plugin
depends on your operating system.

Specify Output Folder for Generated Plugin
mkdir(fullfile(pwd,'myPluginFolder'))
generateAudioPlugin -outdir myPluginFolder audiopluginexample.Echo

.......

A VST 2 plugin with file name Echo is saved to your specified folder, myPluginFolder. The
extension of your plugin depends on your operating system.

Specify File Name of Generated Plugin
generateAudioPlugin -output awesomeEffect audiopluginexample.Echo

.......

A VST 2 plugin with file name awesomeEffect is saved to your current folder. The extension of your
plugin depends on your operating system.

 generateAudioPlugin

2-371

https://www.mathworks.com/support/compilers.html

Specify Output Folder and File Name of Generated Plugin

mkdir(fullfile(pwd,'myPluginFolder'))
generateAudioPlugin -output coolEffect -outdir myPluginFolder audiopluginexample.Echo

.......

A VST 2 plugin with file name coolEffect is saved to your specified folder, myPluginFolder. The
extension of your plugin depends on your operating system.

Generate win32 Plugin from win64 System

generateAudioPlugin -win32 audiopluginexample.Echo

.......

A 32-bit VST 2 plugin with file name Echo.dll is saved to your current folder.

Generate Zip File Compatible with JUCE 5.3.2

generateAudioPlugin -juceproject audiopluginexample.Echo

A zip file containing generated C/C++ code and a JUCER project file suitable for use with JUCE 5.3.2
is saved to your current folder.

Generate Standalone Executable

To generate a binary standalone executable, use the -exe option. The following command saves
Echo.exe to your current folder.

generateAudioPlugin -exe audiopluginexample.Echo

.......

When you execute the generated code, the UI you defined in your audio plugin opens.

eval('!Echo.exe')

2 Functions

2-372

The standalone executable enables you to:

• Configure audio input and output from the plugin. Synchronizing parameters with MIDI devices is
not currently supported.

• Save and load states.
• Reset states to default values.

 generateAudioPlugin

2-373

Input Arguments
options — Options to specify output folder, plugin name, and file type
-au | -vst | -exe | -juceproject | -win32 | -output fileName | -outdir folder

Options can be specified in any grouping, and in any order.

Option Description
-au Generates an Audio Unit (AU) v2 audio plugin binary. This syntax

is only valid on macOS.
-vst Generates a VST 2 audio plugin binary. By default,

generateAudioPlugin generates a VST 2 plugin.
-exe Generates a standalone executable for your audio plugin. When

you evaluate the generated code, the UI you defined in your
audio plugin opens. You can control the input to your plugin and
the output from your plugin using Options.

2 Functions

2-374

Option Description
-juceproject Creates a zip file containing generated C/C++ code and a JUCER

project file suitable for use with JUCE 5.3.2. You can use the
generated zip file to modify the generated plugin or compile it to
a format other than VST 2.4. This option requires a MATLAB
Coder™ license. To use the generated files with JUCE, you must
obtain your own appropriately licensed copy of JUCE.

-win32 Creates a 32-bit audio plugin. Valid only on win64.
-output fileName Specifies the file name of the generated plugin or zip file. The

appropriate extension is appended to the fileName based on
the platform on which the plugin or zip file is generated. By
default, the plugin or zip file is named after the class.

-outdir folder Generates a plugin or zip file to a specific folder. By default, the
generated plugin is placed in the current folder. If folder is not
in the current folder, specify the exact path.

className — Name of plugin class to generate
plugin class

Name of the plugin class to generate. The plugin class must be on the MATLAB path. It must derive
from either the audioPlugin class or the audioPluginSource class.

You can specify the plugin class to generate by specifying its class name or file name. For example,
the following syntaxes perform equivalent operations:

• generateAudioPlugin myPlugin
• generateAudioPlugin myPlugin.m

If you want to specify the plugin class by file name, and your plugin class is inside a package, you
must specify the package as a file path. For example, the following syntaxes perform equivalent
operations:

• generateAudioPlugin myPluginPackage.myPlugin
• generateAudioPlugin +myPluginPackage/myPlugin.m

Limitations
Build problems can occur when using folder names with spaces. For more information, see “Build
Process Support for Folder Names with Spaces or Special Characters” (Simulink Coder) and Why is
the build process failing for a shipped model in Simulink or for a model run in Accelerator mode?.

More About
Generated VST Plugin File Extension

The extension of your generated VST plugin depends on your operating system.

Operating System File Extension
Windows .dll

 generateAudioPlugin

2-375

https://www.mathworks.com/matlabcentral/answers/95399-why-is-the-build-process-failing-for-a-shipped-model-in-simulink-or-for-a-model-run-in-accelerator-m
https://www.mathworks.com/matlabcentral/answers/95399-why-is-the-build-process-failing-for-a-shipped-model-in-simulink-or-for-a-model-run-in-accelerator-m

Operating System File Extension
macOS .vst

See Also
Audio Test Bench | audioPlugin | audioPluginSource | loadAudioPlugin |
validateAudioPlugin

Topics
“Audio Plugins in MATLAB”
“Export a MATLAB Plugin to a DAW”

Introduced in R2016a

2 Functions

2-376

integratedLoudness
Measure integrated loudness and loudness range

Syntax
loudness = integratedLoudness(audioIn,Fs)
loudness = integratedLoudness(audioIn,Fs,channelWeights)
[loudness,loudnessRange] = integratedLoudness(___)

Description
loudness = integratedLoudness(audioIn,Fs) returns the integrated loudness of an audio
signal, audioIn, with sample rate Fs. The ITU-R BS.1770-4 and EBU R 128 standards define the
algorithms to calculate integrated loudness.

loudness = integratedLoudness(audioIn,Fs,channelWeights) specifies the channel
weights used to compute the integrated loudness. channelWeights must be a row vector with the
same number of elements as the number of channels in audioIn.

[loudness,loudnessRange] = integratedLoudness(___) returns the loudness range of the
audio signal using either of the previous syntaxes. The EBU R 128 Tech 3342 standard defines the
loudness range computation.

Examples

Determine Integrated Loudness

Determine the integrated loudness of an audio signal.

Create a two-second sine wave with a 0 dB amplitude, a 1 kHz frequency, and a 48 kHz sample rate.

sampleRate = 48e3;
increment = sampleRate*2;
amplitude = 10^(0/20);
frequency = 1e3;

sineGenerator = audioOscillator(...
 'SampleRate',sampleRate, ...
 'SamplesPerFrame',increment, ...
 'Amplitude',amplitude, ...
 'Frequency',frequency);

signal = sineGenerator();

Calculate the integrated loudness of the audio signal at the specified sample rate.

loudness = integratedLoudness(signal,sampleRate)

loudness = -3.0036

 integratedLoudness

2-377

Specify Nondefault Channel Weights

Read in a four-channel audio signal. Specify a nondefault weighting vector with four elements.

[signal,fs] = audioread('AudioArray-16-16-4channels-20secs.wav');
weightingVector = [1,0.8,0.8,1.2];

Calculate the integrated loudness with the default channel weighting and the nondefault channel
weighting vector.

standardLoudness = integratedLoudness(signal,fs,weightingVector)

standardLoudness = -11.6825

nonStandardLoudness = integratedLoudness(signal,fs)

nonStandardLoudness = -11.0121

Determine Loudness Range

Read in an audio signal. Clip 3 five-second intervals out of the signal.

[x,fs] = audioread('FunkyDrums-44p1-stereo-25secs.mp3');
x1 = x(1:fs*5,:);
x2 = x(5e5:5e5+5*fs,:);
x3 = x(end-5*fs:end,:);

Calculate the loudness and loudness range of the total signal and of each interval.

[L,LRA] = integratedLoudness(x,fs);
[L1,LRA1] = integratedLoudness(x1,fs);
[L2,LRA2] = integratedLoudness(x2,fs);
[L3,LRA3] = integratedLoudness(x3,fs);

fprintf(['Loudness: %0.2f\n', ...
 'Loudness range: %0.2f\n\n', ...
 'Beginning loudness: %0.2f\n', ...
 'Beginning loudness range: %0.2f\n\n', ...
 'Middle loudness: %0.2f\n', ...
 'Middle loudness range: %0.2f\n\n', ...
 'End loudness: %0.2f\n', ...
 'End loudness range: %0.2f\n'], ...
 L,LRA,L1,LRA1,L2,LRA2,L3,LRA3);

Loudness: -22.98
Loudness range: 1.50

Beginning loudness: -23.38
Beginning loudness range: 1.18

Middle loudness: -22.97
Middle loudness range: 1.14

End loudness: -22.10
End loudness range: 1.82

2 Functions

2-378

Input Arguments
audioIn — Input signal
matrix

Input signal, specified as a matrix. The columns of the matrix are treated as audio channels.

The maximum number of columns of the input signal depends on your channelWeights
specification:

• If you use the default channelWeights, the input signal has a maximum of five channels. Specify
the channels in this order: [Left, Right, Center, Left surround, Right surround].

• If you specify nondefault channelWeights, the input signal must have the same number of
columns as the number of elements in the channelWeights vector.

Data Types: single | double

Fs — Sample rate (Hz)
positive scalar

Sample rate of the input signal in Hz, specified as a positive scalar.
Data Types: single | double

channelWeights — Linear weighting applied to each input channel
[1.0, 1,0, 1.0, 1.41, 1.41] (default) | nonnegative row vector

Linear weighting applied to each input channel, specified as a row vector of nonnegative values. The
number of elements in the row vector must be equal to or greater than the number of input channels.
Excess values in the vector are ignored.

The default channel weights follow the ITU-R BS.1170-4 standard. To use the default channel weights,
specify the channels of the audioIn matrix in this order: [Left, Right, Center, Left surround, Right
surround].

It is a best practice to specify the channelWeights vector in order: [Left, Right, Center, Left
surround, Right surround].
Data Types: single | double

Output Arguments
loudness — Integrated loudness (LUFS)
scalar

Integrated loudness in loudness units relative to full scale (LUFS), returned as a scalar.

The ITU-R BS.1770-4 and EBU R 128 standards define the integrated loudness. The algorithm
computes the loudness by breaking down the audio signal into 0.4-second segments with 75%
overlap. If the input signal is less than 0.4 seconds, loudness is returned empty.
Data Types: single | double

 integratedLoudness

2-379

loudnessRange — Loudness range (LU)
scalar

Loudness range in loudness units (LU), returned as a scalar.

The EBU R 128 Tech 3342 standard defines the loudness range. The algorithm computes the loudness
range by breaking down the audio into 3-second segments with 2.9-second overlap. If the input signal
is less than three seconds, loudnessRange is returned empty.
Data Types: single | double

Algorithms
The integratedLoudness function returns the integrated loudness and loudness range (LRA) of an
audio signal. You can specify any number of channels and nondefault channel weights used for
loudness measurements. The integratedLoudness algorithm is described for the general case of n
channels.

Integrated Loudness and Loudness Range

The input channels, x, pass through a K-weighted weightingFilter. The K-weighted filter shapes
the frequency spectrum to reflect perceived loudness.

Integrated Loudness

1 The K-weighted channels, y, are divided into 0.4-second segments with 0.3-second overlap. The
power (mean square) of each segment of the K-weighted channels is calculated:

mPi = 1
w ∑

k = 1

w
yi

2[k]

• mPi is the momentary power of the ith segment of a channel.
• w is the segment length in samples.

2 The momentary loudness, mL, is computed for each segment:

2 Functions

2-380

mLi = − 0.691 + 10 log10 ∑
c = 1

n
Gc × mP i, c LUFS

• Gc is the weighting for channel c.
3 The momentary power is gated using the momentary loudness calculation:

mPi mP j

j = i mLi ≥ − 70
4 The relative threshold, Γ, is computed:

Γ = − 0.691 + 10log10 ∑
c = 1

n
Gc × lc − 10

lc is the mean momentary power of channel c:

lc = 1
j ∑j mP j, c

5 The momentary power subset, mPj, is gated using the relative threshold:

mP j mPk

k = j mP j ≥ Γ
6 The momentary power segments are averaged:

P = 1
k ∑k mPk

7 The integrated loudness is computed by passing the mean momentary power subset, P, through
the Compute Loudness system:

Integrated Loudness = − 0.691 + 10log10 ∑
c = 1

n
Gc × Pc LUFS

Loudness Range

1 The K-weighted channels, y, are divided into 3-second segments with 2.9-second overlap. The
power (mean square) of each segment of the K-weighted channels is calculated:

sPi = 1
w ∑

k = 1

w
yi

2[k]

• sPi is the short-term power of the ith segment of a channel.
• w is the segment length in samples.

2 The short-term loudness, sL, is computed for each segment:

sLi = − 0.691 + 10 log10 ∑
c = 1

n
Gc × sP i, c

• Gc is the weighting for channel c.

 integratedLoudness

2-381

3 The short-term loudness is gated using an absolute threshold:

sLi sL j

j = i sLi ≥ − 70
4 The gated short-term loudness is converted back to linear, and then the mean is taken:

sP j = 1
j ∑j 10

sL j 10

The relative threshold, K, is computed:

K = − 20 + 10log10 sP j

5 The short-term loudness subset, sLj, is gated using the relative threshold:

sL j sLk

k = j sL j ≥ K
6 The short-term loudness subset, sLk, is sorted. The loudness range is calculated as between the

10th and 95th percentiles of the distribution, and is returned in loudness units (LU).

References
[1] International Telecommunication Union; Radiocommunication Sector. Algorithms to Measure

Audio Programme Loudness and True-Peak Audio Level. ITU-R BS.1770-4. 2015.

[2] European Broadcasting Union. Loudness Normalisation and Permitted Maximum Level of Audio
Signals. EBU R 128. 2014.

[3] European Broadcasting Union. Loudness Metering: 'EBU Mode' Metering to Supplement EBU R
128 Loudness Normalization. EBU R 128 Tech 3341. 2014.

[4] European Broadcasting Union. Loudness Range: A Measure to Supplement EBU R 128 Loudness
Normalization. EBU R 128 Tech 3342. 2016.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Loudness Meter | loudnessMeter | weightingFilter

Introduced in R2016b

2 Functions

2-382

getMIDIConnections
Get MIDI connections of audio object

Syntax
connectionInfo = getMIDIConnections(audioObject)

Description
connectionInfo = getMIDIConnections(audioObject) returns a structure,
connectionInfo, containing information about the MIDI connections for your audio object,
audioObject. Only those MIDI connections established using configureMIDI are returned.

The connectionInfo structure contains a substructure for each tunable property of audioObject
that has established MIDI connections. Each substructure contains the control number, the device
name of the corresponding MIDI control, and the property mapping information (mapping rule,
minimum value, and maximum value).

Examples

Get MIDI Connections of Plugin

Create an object of the audio plugin example audiopluginexample.Echo.

echoEffect = audiopluginexample.Echo;

Use configureMIDI to synchronize echoEffect properties with specific MIDI controls on the
default MIDI device.

configureMIDI(echoEffect,'Delay1',1001);
configureMIDI(echoEffect,'Gain1' ,1002);
configureMIDI(echoEffect,'Delay2',1003);
configureMIDI(echoEffect,'Gain2' ,1004);

Use getMIDIConnections to view the MIDI connections you established.

connectionInfo = getMIDIConnections(echoEffect)

connectionInfo =

 Delay1: [1x1 struct]
 Gain1: [1x1 struct]
 Delay2: [1x1 struct]
 Gain2: [1x1 struct]

View details of the Delay1 MIDI connection using dot notation.

connectionInfo.Delay1

ans =

 getMIDIConnections

2-383

 Law: 'lin'
 Min: 0
 Max: 1
 MIDIControl: 'control 1001 on 'nanoKONTROL2''

Input Arguments
audioObject — Audio object
object

Audio plugin or compatible System object, specified as an object that inherits from the audioPlugin
class or an object of a compatible Audio Toolbox System object.

Output Arguments
connectionInfo — Information about MIDI connection
structure

Information about MIDI connection between the specified audio plugin object and MIDI devices,
returned as a structure. Only those MIDI connections established using configureMIDI are
returned. The connectionInfo structure contains a substructure for each established MIDI
connection. Each substructure contains the control number, the device name of the corresponding
MIDI control, and the property mapping information (mapping rule, minimum value, and maximum
value).

See Also
Classes
audioPlugin | audioPluginSource

Functions
configureMIDI | disconnectMIDI | midicallback | midicontrols | midiid | midiread |
midisync

Topics
“MIDI Control for Audio Plugins”
“MIDI Control Surface Interface”

Introduced in R2016a

2 Functions

2-384

loadAudioPlugin
Load VST, VST3, and AU plugins into MATLAB environment

Syntax
hostedPlugin = loadAudioPlugin(pluginpath)

Description
hostedPlugin = loadAudioPlugin(pluginpath) loads the 64-bit VST, VST3, or AU audio
plugin specified by pluginpath. On Windows, you can load VST and VST3 plugins. On macOS, you
can load AU, VST, and VST3 plugins.

Your hosted plugin has two display modes: Parameters and Properties. The default display mode
is Properties.

• Parameters –– Interact with normalized parameter values of the hosted plugin using set and get
functions.

• Properties –– Interact with heuristically interpreted parameters with real-world values. You can
use standard dot notation to set and get the values while using this mode.

You can specify the display mode of the hosted plugin using standard dot notation, for example:

hostedPlugin.DisplayMode = 'Parameters';

See “Host External Audio Plugins” for a discussion of display modes and a walkthrough of both modes
of interaction.

You can interact with and exercise the hosted plugin using the following functions.

Process Audio

• audioOut = process(hostedPlugin,audioIn)

Returns an audio signal processed according to the algorithm and parameters of the hosted
plugin. For source plugins, call process without an audio input.

Set and Get Normalized Parameter Values

• value = getParameter(hostedPlugin,parameter)

Returns the normalized value of the specified hosted plugin parameter. Normalized values are in
the range [0,1]. You can specify a parameter by its name or by its index. To specify the name, use a
character vector.

• setParameter(hostedPlugin,parameter,newValue)

Sets the normalized value of the specified hosted plugin parameter to newValue. Normalized
values are in the range [0,1].

 loadAudioPlugin

2-385

Get High-Level Information About the Hosted Plugin

• dispParameter(hostedPlugin)

Displays all parameters and associated indices, values, displayed values, and display labels of the
hosted plugin.

• pluginInfo = info(hostedPlugin)

Returns a structure containing information about the hosted plugin.

Set the Environment in Which the Plugin Is Run

• frameSize = getSamplesPerFrame(hostedPlugin)

Returns the frame size that the hosted plugin returns in subsequent calls to its processing
function (source plugins only).

• setSamplesPerFrame(hostedPlugin,frameSize)

Sets the frame size that the hosted plugin must return in subsequent calls to its processing
function (source plugins only).

• setSampleRate(hostedPlugin,sampleRate)

Sets the sample rate of the hosted plugin.
• sampleRate = getSampleRate(hostedPlugin)

Returns the sample rate in Hz at which the plugin is being run.

Examples

Host External Plugins in MATLAB

Use loadAudioPlugin to host a VST external plugin and a VST external source plugin in
MATLAB®.

Use the fullfile command to determine the full path to the oscillator VST plugin and parametric
equalizer VST plugin included with Audio Toolbox™. If you are using a Mac, replace the .dll file
extension with .vst.

oscPluginPath = ...
 fullfile(matlabroot,'toolbox/audio/samples/oscillator.dll');
EQPluginPath = ...
 fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');

Create external plugin objects by calling loadAudioPlugin for each of the plugin paths.

hostedSourcePlugin = loadAudioPlugin(oscPluginPath);
hostedPlugin = loadAudioPlugin(EQPluginPath);

Hosted plugins derive from either the externalAudioPlugin or externalAudioSourcePlugin
class. Because oscillator.dll is a source audio plugin, the hosted object derives from
externalAudioSourcePlugin. Use class() to verify the classes of the hosted plugins.

class(hostedPlugin)

2 Functions

2-386

ans =
'externalAudioPlugin'

class(hostedSourcePlugin)

ans =
'externalAudioPluginSource'

Call the hosted plugins to display basic information about them. This information includes the format,
the plugin name, the number of channels in and out, and the tunable properties of the plugin. Source
plugins also display the frame size of the plugin.

hostedSourcePlugin

hostedSourcePlugin =
 VST plugin 'oscillator' source, 1 out, 256 samples

 Frequency: 100 Hz
 Amplitude: 1 AU
 DCOffset: 0 AU

hostedPlugin

hostedPlugin =
 VST plugin 'ParametricEQ' 2 in, 2 out

 LowPeakGain: 0 dB
 LowCenterFrequency: 100 Hz
 LowQFactor: 2
 MediumPeakGain: 0 dB
 MediumCenterFrequency: 1000 Hz
 MediumQFactor: 2
 HighPeakGain: 0 dB
 HighCenterFrequency: 10000 Hz
 HighQFactor: 2

Run External Plugin in MATLAB

Load a VST audio plugin into MATLAB™ by specifying its full path. If you are using a Mac, replace
the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox','audio','samples','ParametricEqualizer.dll');
hostedPlugin = loadAudioPlugin(pluginPath);

Create input and output objects for an audio stream loop that reads from a file and writes to your
audio device. Set the sample rate of the hosted plugin to the sample rate of the input to the plugin.

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
setSampleRate(hostedPlugin,fileReader.SampleRate);

Set the MediumPeakGain property to -20 dB.

hostedPlugin.MediumPeakGain = -20;

Use the hosted plugin to process the audio file in an audio stream loop. Sweep the medium peak gain
upward in the loop to hear the effect.

 loadAudioPlugin

2-387

while hostedPlugin.MediumPeakGain < 19
 hostedPlugin.MediumPeakGain = hostedPlugin.MediumPeakGain + 0.04;
 x = fileReader();
 y = process(hostedPlugin,x);
 deviceWriter(y);
end

release(fileReader)
release(deviceWriter)

Run External Source Plugin in MATLAB

Load a VST audio source plugin into MATLAB™ by specifying its full path. If you are using a Mac,
replace the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox','audio','samples','oscillator.dll');
hostedSourcePlugin = loadAudioPlugin(pluginPath);

Set the Amplitude property to 0.5. Set the Frequency property to 16 kHz.

hostedSourcePlugin.Amplitude = 0.5;
hostedSourcePlugin.Frequency = 16000;

Set the sample rate at which to run the plugin. Create an output object to write to your audio device.

setSampleRate(hostedSourcePlugin,44100);
deviceWriter = audioDeviceWriter('SampleRate',44100);

Use the hosted source plugin to output an audio stream. The processing in the audio stream loop
ramps the frequency parameter down and then up.

k = 1;
for i = 1:1000
 hostedSourcePlugin.Frequency = hostedSourcePlugin.Frequency - 30*k;
 y = process(hostedSourcePlugin);
 deviceWriter(y);
 if (hostedSourcePlugin.Frequency - 30 <= 0.1) || (hostedSourcePlugin.Frequency + 30 >= 20e3)
 k = -1*k;
 end
end

release(deviceWriter)

Input Arguments
pluginpath — Location of external plugin
character vector | string

Location of the external plugin, specified as a character vector. Use the full path to specify the audio
plugin you want to host in MATLAB. If the plugin is located in the current folder, specify it by its
name.
Example: loadAudioPlugin('coolPlugin.dll')

2 Functions

2-388

Example: loadAudioPlugin('C:\Program Files\VSTPlugins\coolPlugin.dll')

Plugin Path for Mac

For macOS, the plugin locations are predetermined depending on if the plugin was saved system wide
or for a particular user.

This table shows the system-wide paths.

Plugin Type Path
VST2 /Library/Audio/Plug-Ins/VST/coolPlugin.vst
VST3 /Library/Audio/Plug-Ins/VST3/coolPlugin.vst3
AU /Library/Audio/Plug-Ins/Components/coolPlugin.component

This table shows the user-specific paths.

Plugin Type Path
VST2 ~/Library/Audio/Plug-Ins/VST/coolPlugin.vst
VST3 ~/Library/Audio/Plug-Ins/VST3/coolPlugin.vst3
AU ~/Library/Audio/Plug-Ins/Components/coolPlugin.component

Output Arguments
hostedPlugin — Object of external plugin
externalAudioPlugin | externalAudioSourcePlugin

Object of an external plugin, derived from the externalAudioPlugin or
externalAudioSourcePlugin class. You can interact with the hosted plugin as a DAW would, with
the additional functionality of the MATLAB environment.

Limitations
The loadAudioPlugin function supports 64-bit plugins only. You cannot load 32-bit plugins using
the loadAudioPlugin function.

See Also
audioPlugin | audioPluginSource | externalAudioPlugin | externalAudioPluginSource

Topics
“Host External Audio Plugins”

Introduced in R2016b

 loadAudioPlugin

2-389

midicallback
Call function handle when MIDI controls change value

Syntax
oldFunctionHandle = midicallback(midicontrolsObject,functionHandle)
oldFunctionHandle = midicallback(midicontrolsObject,[])
currentFunctionHandle = midicallback(midicontrolsObject)

Description
oldFunctionHandle = midicallback(midicontrolsObject,functionHandle) sets
functionHandle as the function handle called when midicontrolsObject changes value, and
returns the previous function handle, oldFunctionHandle.

oldFunctionHandle = midicallback(midicontrolsObject,[]) clears the function handle.

currentFunctionHandle = midicallback(midicontrolsObject) returns the current
function handle.

Examples

Interactively Read MIDI Controls

Create a default MIDI controls object. Use midicallback to associate an anonymous function with
your MIDI controls object, mc.

mc = midicontrols;
midicallback(mc,@(x)disp(midiread(x)));

Move any control on your default MIDI device to display its current normalized value on the
command line.

 0.5079

 0.5000

 0.4921

 0.4841

 0.4762

 0.4683

 0.4603

 0.4683

2 Functions

2-390

Use midicallback to Update Plot

Use midiid to identify the name of your MIDI device and a specified control. Move the MIDI control
you want to identify.

[controlNumber,deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.
Waiting for control message...

Create an object that responds to the control you specified.

midicontrolsObject = midicontrols(controlNumber);

Define a function that plots a sinusoid with the amplitude set by your MIDI control. Make the axis
constant.

axis([0,2*pi,-1,1]);
axis manual
hold on
sinePlotter = @(obj) plot(0:0.1:2*pi,midiread(obj).*sin(0:0.1:2*pi));

Use the midicallback function to associate your sinePlotter function with the control specified
by your midicontrolsObject. Move your specified MIDI control. The plot updates automatically
with the sinusoid amplitude specified by your MIDI control.

midicallback(midicontrolsObject,sinePlotter)

 midicallback

2-391

Change Function Handle Associated with MIDI Control

Create an object that responds to any control on the default MIDI device.

midicontrolsObject = midicontrols;

Define an anonymous function to display the current value of the MIDI control. Use midicallback
to associate your MIDI control object with the function you created. Verify that your object is
associated with your function.

displayControlValue = @(object) disp(midiread(object));
midicallback(midicontrolsObject,displayControlValue);
currentFunctionHandle = midicallback(midicontrolsObject)

currentFunctionHandle =

 @(object)disp(midiread(object))

Move any control on your default MIDI device to display its current normalized value on the
command line.

 0.3095

 0.4603

 0.6746

 0.7381

2 Functions

2-392

 0.8175

 0.8571

 0.9048

Define an anonymous function to print the current value of the MIDI control rounded to two
significant digits. Use midicallback to associate your MIDI controls object with the function you
created. Return the old function handle.
displayRoundedControlValue = @(object) fprintf('%.2f\n',midiread(object));
oldFunctionHandle = midicallback(midicontrolsObject,displayRoundedControlValue)

oldFunctionHandle =

 @(object)disp(midiread(object))

Move a control to display its current normalized value rounded to two significant digits.

0.91
0.83
0.67
0.49
0.29
0.18
0.05

Remove the association between the object and the function. Return the old function handle.

oldFunctionHandle = midicallback(midicontrolsObject,[])

oldFunctionHandle =

 @(object)fprintf('%.2f\n',midiread(object))

Verify that no function is associated with your MIDI controls object.

currentFunctionHandle = midicallback(midicontrolsObject)

currentFunctionHandle =

 []

Associate a Function with MIDI Controls

Define this function and save it to your current folder.

function plotSine(midicontrolsObject)

frequency = midiread(midicontrolsObject);

x = 0:0.01:10;

sinusoid = sin(2*pi*frequency.*x);

plot(x,sinusoid)
axis([0,10,-1.1,1.1]);

 midicallback

2-393

ylabel('Amplitude');
xlabel('Time (s)');
title('Sine Plot')
legend(sprintf('Frequency = %0.2f Hz',frequency));

end

Create a midicontrols object. Create a function handle for your plotSine function. Use
midicallback to associate your midicontrolsObject with plotSineHandle.

Move any controller on your MIDI device to plot a sinusoid. The sinusoid frequency updates when you
move MIDI controls.

midicontrolsObject = midicontrols;
plotSineHandle = @plotSine;
midicallback(midicontrolsObject,plotSineHandle);

Input Arguments
midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by midicontrols.

functionHandle — New function handle
function handle

2 Functions

2-394

New function handle, specified as a function handle that contains one input argument. The new
function handle is called when midicontrolsObject changes value. For information on what
function handles are, see “Function Handles” (MATLAB).

Output Arguments
oldFunctionHandle — Old function handle
function handle

Old function handle set by the previous call to midicallback, returned as a function handle.

currentFunctionHandle — Current function handle
function handle

The function handle set by the most recent call to midicallback, returned as a function handle.

See Also
Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicontrols | midiid |
midiread | midisync | setpref

Topics
“MIDI Control Surface Interface”
“MIDI Control for Audio Plugins”

Introduced in R2016a

 midicallback

2-395

midicontrols
Open group of MIDI controls for reading

Syntax
midicontrolsObject = midicontrols
midicontrolsObject = midicontrols(controlNumbers)
midicontrolsObject = midicontrols(controlNumbers,initialValues)
midicontrolsObject = midicontrols(___ ,'MIDIDevice',deviceName)
midicontrolsObject = midicontrols(___ ,'OutputMode',mode)

Description
midicontrolsObject = midicontrols returns an object that listens to all controls on your
default MIDI device.

Call midiread with the object to return the values of controls on your MIDI device. If you call
midiread before a control is moved, midiread returns the initial value of your midicontrols
object.

midicontrolsObject = midicontrols(controlNumbers) listens to controls specified by
controlNumbers on your default MIDI device.

midicontrolsObject = midicontrols(controlNumbers,initialValues) specifies
initialValues associated with controlNumbers.

midicontrolsObject = midicontrols(___ ,'MIDIDevice',deviceName) specifies the MIDI
device your midicontrols object listens to, using any of the previous syntaxes.

midicontrolsObject = midicontrols(___ ,'OutputMode',mode) specifies the range of
values returned by midiread and accepted as initialValues for midicontrols and as
controlValues for midisync.

Examples

Listen to Any Control on Default Device

Create a midicontrols object and read the default control value.

midicontrolsObject = midicontrols
midiread(midicontrolsObject)

midicontrolsObject =

midicontrols object: any control on 'BCF2000'

ans =

 0

2 Functions

2-396

Move any control on your MIDI device. Use midiread to return the most recent value of the last
control moved.

midiread(midicontrolsObject)

ans =

 0.3810

Listen to Specific Control

Use midiid to identify the name of your MIDI device and a specified control. Move the MIDI control
you want to identify.

[controlNumber,deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.
Waiting for control message...

Create an object that responds to the control you specified.

midicontrolsObject = midicontrols(controlNumber);

Move your selected MIDI control, and then use midiread to return its most recent value.

midicontrolsObject = midiread(midicontrolsObject);

ans =

 0.4048

Specify Control Numbers and Initial Value

Determine the control numbers of four different controls on your MIDI device.

[controlNumber1,~] = midiid;
[controlNumber2,~] = midiid;
[controlNumber3,~] = midiid;
[controlNumber4,~] = midiid;

controlNumbers = [controlNumber1,controlNumber3;...
 controlNumber2,controlNumber4]

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlNumbers =

 1081 1085
 1082 1087

 midicontrols

2-397

Create a midicontrols object that listens to your specified controls. Specify an initial value for all
controls.

initialValue = 0.5;
midicontrolsObject = midicontrols(controlNumbers,initialValue);

Move one of your specified controls, and then read the latest value of all your specified controls.

midiread(midicontrolsObject)

ans =

 0.0873 0.5000
 0.5000 0.5000

Specify Controls Numbers, Initial Value, and Output Mode

Determine the control numbers of two different controls on your MIDI device.

[controlNumber1,~] = midiid;
[controlNumber2,~] = midiid;

controlNumbers = [controlNumber1,controlNumber2];

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

Create a midicontrols object that listens to your specified controls. Specify an initial value for all
controls.
initialValue = 12;
midicontrolsObject = midicontrols(controlNumbers,initialValue,'OutputMode','rawmidi');

Move one of your specified controls, and then read the latest value of all your specified controls.

midiread(midicontrolsObject)

ans =

 63 12

Set the Default MIDI Device

Assume that your MIDI device is a Behringer BCF2000. Enter this syntax at the MATLAB command
line:

setpref midi DefaultDevice BCF2000

This preference persists across MATLAB sessions. You do not need to set it again unless you want to
change your default device.

2 Functions

2-398

Specify Control Numbers and MIDI Device Name

Assume that your MIDI device is a Behringer BCF2000 and has a control with identification number
1001. Create a midicontrols object, which listens to control number 1001 on your Behringer
BCF2000 device.

midicontrolsObject = midicontrols(1001,'MIDIDevice','BCF2000');

Input Arguments
controlNumbers — MIDI device control numbers
integer | array of integers

MIDI device control numbers, specified as an integer or array of integers. Use midiid to
interactively identify the control numbers of your device. See “MIDI Device Control Numbers” on
page 2-400 for an advanced explanation of how controlNumbers are determined.

If you specify controlNumbers as an empty vector, [], then the midicontrols object responds to
any control on your MIDI device.
Example: 1081
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

initialValues — Initial values of MIDI controls
0 (default) | scalar | array the same size as controlNumbers

Initial values of MIDI controls, specified as a scalar or an array the same size as controlNumbers. If
you specify initialValues as a scalar, all controls specified by controlNumbers are assigned that
value.

The value associated with your MIDI controls cannot be determined until you move a MIDI control. If
you specify an initial value associated with your MIDI control, the initial value is returned by the
midiread function until the MIDI control is moved.

• If OutputMode is specified as 'normalized', then initial values must be in the range [0,1].
Actual initial values are quantized and can be slightly different from initial values specified when
your midicontrols object is created.

• If OutputMode is specified as 'rawmidi', then initial values must be integers in the range
[0,127]

Example: 0.3
Example: [0,0.3,0.6]
Example: 5
Example: [5;15;20]
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

deviceName — MIDI device name
character vector | string

MIDI device name, assigned by the device manufacturer or host operating system, specified as a
string. The specified deviceName can be a substring of the exact name of your device. If you do not

 midicontrols

2-399

specify deviceName, the default MIDI device is used. See “Set the Default MIDI Device” on page 2-
398 for an example of specifying a default MIDI device.

If you do not set a default MIDI device, the host operating system chooses the default device in an
unspecified way. As a best practice, use midiid to identify the name of the device you want.
Example: 'MIDIDevice','BCF2000 MIDI 1'
Data Types: char | string

mode — Output mode for MIDI control value
'normalized' (default) | 'rawmidi'

Output mode for MIDI control value, specified as 'normalized' or 'rawmidi'.

• 'normalized' — Values of your MIDI control are normalized. If your midicontrols object is
called by midiread, then values in the range [0,1] are returned.

• 'rawmidi' — Values of your MIDI control are not normalized. If your midicontrols object is
called by midiread, then integer values in the range [0,127] are returned.

Example: 'OutputMode','normalized'
Example: 'OutputMode','rawmidi'
Data Types: char | string

Output Arguments
midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device.

More About
MIDI Device Control Numbers

MATLAB defines MIDI device control numbers as (MIDI Channel Number) × 1000 + (MIDI Controller
Number).

• MIDI Channel Number is the transmission channel that your device uses to send messages. This
value is in the range 1–16.

• MIDI Controller Number is a number assigned to an individual control on your MIDI device. This
value is in the range 1–127.

Your MIDI device determines the values of MIDI Channel Number and MIDI Controller Number.

See Also
Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback | midiid |
midiread | midisync | setpref

Topics
“MIDI Control Surface Interface”

2 Functions

2-400

“MIDI Control for Audio Plugins”

Introduced in R2016a

 midicontrols

2-401

midiid
Interactively identify MIDI control

Syntax
[controlNumber,deviceName] = midiid

Description
[controlNumber,deviceName] = midiid returns the control number and device name of the
MIDI control you move. Call the function and then move the control you want to identify. The function
detects which control you move and returns the control number and device name that specify that
control.

Examples

Identify Control Number and Device Name

Call midiid and then move the control you want to identify on the MIDI device you want to identify.

[ctl,dev] = midiid;
Move the control you wish to identify; type ^C to abort.
Waiting for control message...

ctl =
1002
dev =
nanoKONTROL

Output Arguments
controlNumber — MIDI device control number
integer

MIDI device control number, specified as an integer. The device manufacturer assigns the value to the
control for identification purposes.

deviceName — MIDI device name
string

MIDI device name assigned by the device manufacturer or host operating system, specified as a
string.

See Also
Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback | midiread |
midisync | setpref

2 Functions

2-402

Topics
“MIDI Control Surface Interface”
“MIDI Control for Audio Plugins”

Introduced in R2016a

 midiid

2-403

midiread
Return most recent value of MIDI controls

Syntax
controlValues = midiread(midicontrolsObject)

Description
controlValues = midiread(midicontrolsObject) returns the most recent value of the MIDI
controls associated with the specified midicontrolsObject. To create this object, use the
midicontrols function.

Examples

Read Control Values of MIDI Device

midicontrolsObject = midicontrols;
controlValue = midiread(midicontrolsObject);

Read Multiple Control Values of MIDI Device

Identify two MIDI controls on your MIDI device.

[controlOne,~] = midiid
[controlTwo,~] = midiid

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlOne =

 1081

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

controlTwo =

 1082

Create a MIDI controls object that listens to both controls you identified.

controlNumbers = [controlOne,controlTwo];
midicontrolsObject = midicontrols(controlNumbers);

Move your specified MIDI controls and return their values. The values are returned as a vector that
corresponds to your control numbers vector, controlNumbers.

2 Functions

2-404

tic
while toc < 5
 controlValues = midiread(midicontrolsObject)
end

controlValues =

 0.0397 0.0556

Read Control Values in an Audio Stream Loop

Use midiid to identify the name of your MIDI device and a specified control. Move the MIDI control
you want to identify.

[controlNumber, deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

Create a MIDI controls object. The value associated with your MIDI controls object cannot be
determined until you move the MIDI control. Specify an initial value associated with your MIDI
control. The midiread function returns the initial value until the MIDI control is moved.

initialControlValue = 1;
midicontrolsObject = midicontrols(controlNumber,initialControlValue);

Create a dsp.AudioFileReader System object with default settings. Create an
audioDeviceWriter System object and specify the sample rate.

fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3');
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

In an audio stream loop, read an audio signal frame from the file, apply gain specified by the control
on your MIDI device, and then write the frame to your audio output device. By default, the control
value returned by midiread is normalized.

while ~isDone(fileReader)
 audioData = step(fileReader);

 controlValue = midiread(midicontrolsObject);

 gain = controlValue*2;
 audioDataWithGain = audioData*gain;

 play(deviceWriter,audioDataWithGain);
end

Close the input file and release your output device.

 midiread

2-405

release(fileReader);
release(deviceWriter);

Input Arguments
midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by midicontrols.

Output Arguments
controlValues — Most recent values of MIDI controls
[0,1] (default) | integer values in the range [0,127]

Most recent values of MIDI controls, returned as normalized values in the range [0,1], or as integer
values in the range [0,127]. The output values depend on the OutputMode specified when your
midicontrols object is created.

• If OutputMode was specified as 'normalized', then midiread returns values in the range
[0,1]. The default OutputMode is 'normalized'.

• If OutputMode was specified as 'rawmidi', then midiread returns integer values in the range
[0,127], and no quantization is required.

See Also
Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback | midicontrols |
midiid | midisync | setpref

Topics
“MIDI Control Surface Interface”
“MIDI Control for Audio Plugins”

Introduced in R2016a

2 Functions

2-406

midisync
Send values to MIDI controls for synchronization

Syntax
midisync(midicontrolsObject)
midisync(midicontrolsObject,controlValues)

Description
midisync(midicontrolsObject) sends the initial values of controls to your MIDI device, as
specified by your MIDI controls object. To create this object, use the midicontrols function. If your
MIDI device can receive and respond to messages, it adjusts its controls as specified.

Note Many MIDI devices are not bidirectional. Calling midisync with a unidirectional device has no
effect. midisync cannot tell whether a value is successfully sent to a device or even whether the
device is bidirectional. If sending a value fails, no errors or warnings are generated.

midisync(midicontrolsObject,controlValues) sends controlValues to the MIDI controls
associated with the specified midicontrolsObject.

Examples

Synchronize MIDI Control to Initial Value

Use midiid to identify a control on your default MIDI device.

[controlNumber,~] = midiid;

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

Create a MIDI controls object. Specify an initial value for your control. Call midisync to set the
specified control on your device to the initial value.

initialValue = 0.5;
midicontrolsObject = midicontrols(controlNumber,initialValue);
midisync(midicontrolsObject);

Synchronize MIDI Control to Specified Value

Use midiid to identify three controls on your default MIDI device.

[controlNumber1,~] = midiid;
[controlNumber2,~] = midiid;
[controlNumber3,~] = midiid;
controlNumbers = [controlNumber1,controlNumber2,controlNumber3];

 midisync

2-407

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done
Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

Create a MIDI controls object. Specify initial values for your controls. Call midisync to set the
specified control on your device to the initial value.

controlValues = [0,0,1];
midicontrolsObject = midicontrols(controlNumbers,controlValues);
midisync(midicontrolsObject);

Create a loop that updates your control values and synchronizes those values to the physical controls
on your device.

for i = 1:100
 controlValues = controlValues + [0.006,0.008,-0.008];
 midisync(midicontrolsObject,controlValues);
 pause(0.1)
end

Create UI Slider and Synchronize with MIDI Control

Define this function and save it to your current folder.

function trivialmidigui(controlNumber,deviceName)

 slider = uicontrol('Style','slider');
 mc = midicontrols(controlNumber,'MIDIDevice',deviceName);
 midisync(mc);
 set(slider,'Callback',@slidercb);
 midicallback(mc, @mccb);

 function slidercb(slider,~)
 val = get(slider,'Value');
 midisync(mc, val);
 disp(val);
 end

 function mccb(mc)
 val = midiread(mc);
 set(slider,'Value',val);
 disp(val);
 end

end

Use midiid to identify a control number and device name. Call the function you created, specifying
the control number and device name as inputs.

[controlNumber,deviceName] = midiid;
trivialmidigui(controlNumber,deviceName)

2 Functions

2-408

The slider on the user interface is synchronized with the specified control on your device. Move one
to see the other respond.

Input Arguments
midicontrolsObject — Object that listens to the controls on a MIDI device
object

Object that listens to the controls on a MIDI device, specified as an object created by midicontrols.

controlValues — Values sent to MIDI device
initial values specified by midicontrolsObject (default) | scalar | array

Values sent to MIDI device, specified as a scalar or an array the same size as controlNumbers of the
associated midicontrols object. If you do not specify controlValues, the default value is the
initialValues of the associated midicontrols object.

The possible range for controlValues depends on the OutputMode of the associated
midicontrols object.

• If OutputMode is specified as 'normalized', then controlValues must consist of values in the
range [0,1]. The default OutputMode is 'normalized'.

• If OutputMode is specified as 'rawmidi', then controlValues must consist of integer values in
the range [0,127].

Example: 0.3
Example: [0,0.3,0.6]
Example: 5
Example: [5;15;20]
Data Types: double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

See Also
Functions
configureMIDI | disconnectMIDI | getMIDIConnections | midicallback | midicontrols |
midiid | midiread | setpref

Topics
“MIDI Control Surface Interface”
“MIDI Control for Audio Plugins”

Introduced in R2016a

 midisync

2-409

validateAudioPlugin
Test MATLAB source code for audio plugin

Syntax
validateAudioPlugin classname
validateAudioPlugin options classname

Description
validateAudioPlugin classname generates and runs a “Test Bench Procedure” on page 2-412
that exercises your audio plugin class.

validateAudioPlugin options classname specifies options to modify the default “Test Bench
Procedure” on page 2-412.

Examples

Validate Audio Plugin

validateAudioPlugin audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench_Echo.m'... done.
Running testbench... passed.
Generating mex file 'testbench_Echo_mex.mexw64'... done.
Running mex testbench... passed.
Deleting testbench.
Ready to generate audio plug-in.

Skip MEX Version of Test Bench

validateAudioPlugin -nomex audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench_Echo.m'... done.
Running testbench... passed.
Skipping mex.
Deleting testbench.

Keep Test Benches After Validation

validateAudioPlugin -keeptestbench audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench_Echo.m'... done.
Running testbench... passed.
Generating mex file 'testbench_Echo_mex.mexw64'... done.

2 Functions

2-410

Running mex testbench... passed.
Keeping testbench.
Ready to generate audio plug-in.

Two test benches are saved to your current folder:

• testbench_Echo.m
• testbench_Echo_mex.mexw64

Skip MEX Version and Keep Test Bench

validateAudioPlugin -keeptestbench -nomex audiopluginexample.Echo

Checking plug-in class 'audiopluginexample.Echo'... passed.
Generating testbench file 'testbench_Echo.m'... done.
Running testbench... passed.
Skipping mex.
Keeping testbench.

One test bench is saved to your current folder:

• testbench_Echo.m

Input Arguments
options — Options to modify test bench procedure
-nomex | -keeptestbench

Options to modify test bench procedure, specified as -nomex or -keeptestbench. Options can be
specified together or separately, and in any order.

• -nomex –– validateAudioPlugin does not generate and run a MEX version of the test bench
file. This option significantly reduces run time of the test bench procedure.

• -keeptestbench –– validateAudioPlugin saves the generated test benches to the current
folder.

classname — Name of the plugin class to validate
plugin class

Name of the plugin class to validate. The plugin class must derive from either the audioPlugin class
or the audioPluginSource class. The validateAudioPlugin function exercises an instance of
the specified plugin class.

You can specify the plugin class to validate by specifying its class name or file name. For example, the
following syntaxes perform equivalent operations:

• validateAudioPlugin myPlugin
• validateAudioPlugin myPlugin.m

If you want to specify the plugin class by file name, and your plugin class is inside a package, you
must specify the package as a file path. For example, the following syntaxes perform equivalent
operations:

 validateAudioPlugin

2-411

• validateAudioPlugin myPluginPackage.myPlugin
• validateAudioPlugin +myPluginPackage/myPlugin.m

Limitations
The validateAudioPlugin function is compatible with Windows and Mac operating systems. It is
not compatible with Linux.

More About
Test Bench Procedure

The validateAudioPlugin function uses dynamic testing to find common audio plugin
programming mistakes not found by the static checks performed by generateAudioPlugin. The
function:

1 Runs a subset of error checks performed by generateAudioPlugin.
2 Generates and runs a MATLAB test bench to exercise the class.
3 Generates and runs a MEX version of the test bench.
4 Removes the generated test benches.

If the plugin class fails testing, step 4 is automatically omitted. To debug your plugin, step through
the saved generated test bench.

If you use the -keeptestbench option, or if an error occurs during validation, the test bench files
are saved to your current folder.

See Also
Functions
generateAudioPlugin

Classes
audioPlugin | audioPluginSource

Topics
“Audio Plugins in MATLAB”

Introduced in R2016a

2 Functions

2-412

acousticLoudness
Perceived loudness of acoustic signal

Syntax
loudness = acousticLoudness(audioIn,fs)
loudness = acousticLoudness(audioIn,fs,calibrationFactor)
loudness = acousticLoudness(SPLIn)
loudness = acousticLoudness(___ ,Name,Value)

[loudness,specificLoudness] = acousticLoudness(___)

[loudness,specificLoudness,perc] = acousticLoudness(___ ,'TimeVarying',true)
[loudness,specificLoudness,perc] = acousticLoudness(___ ,'TimeVarying',true,
'Percentiles',p)

acousticLoudness(___)

Description
loudness = acousticLoudness(audioIn,fs) returns loudness in sones according to ISO 532-1
(Zwicker).

loudness = acousticLoudness(audioIn,fs,calibrationFactor) specifies a nondefault
microphone calibration factor used to compute loudness.

loudness = acousticLoudness(SPLIn) computes loudness using one-third-octave-band sound
pressure levels (SPL).

loudness = acousticLoudness(___ ,Name,Value) specifies options using one or more
Name,Value pair arguments.
Example: loudness = acousticLoudness(audioIn,fs,'Method','ISO 532-2') returns
loudness according to ISO 532-2 (Moore-Glasberg).

[loudness,specificLoudness] = acousticLoudness(___) also returns the specific
loudness.

[loudness,specificLoudness,perc] = acousticLoudness(___ ,'TimeVarying',true)
also returns percentile loudness.

[loudness,specificLoudness,perc] = acousticLoudness(___ ,'TimeVarying',true,
'Percentiles',p) specifies nondefault percentiles to return.

acousticLoudness(___) with no output arguments plots specific loudness and displays loudness
textually. If TimeVarying is true, both loudness and specific loudness are plotted, with the latter in
3-D.

Examples

 acousticLoudness

2-413

Measure Acoustic Loudness

Measure the ISO 532-1 stationary free-field loudness. Assume the recording level is calibrated such
that a 1 kHz tone registers as 100 dB on a SPL meter.

[audioIn,fs] = audioread('WashingMachine-16-44p1-stereo-10secs.wav');

loudness = acousticLoudness(audioIn,fs)

loudness = 1×2

 28.2688 27.7643

Measure Loudness and Sharpness of Stationary Signals

Create two stationary signals with equivalent power: a pink noise signal and a white noise signal.

fs = 48e3;
dur = 5;
pnoise = 2*pinknoise(dur*fs);
wnoise = rand(dur*fs,1) - 0.5;
wnoise = wnoise*sqrt(var(pnoise)/var(wnoise));

Call acousticLoudness using the default ISO 532-1 (Zwicker) method and no output arguments to
plot the loudness of the pink noise. Call acousticLoudness again, this time with output arguments,
to get the specific loudness.

figure
acousticLoudness(pnoise,fs)

2 Functions

2-414

[~,pSpecificLoudness] = acousticLoudness(pnoise,fs);

Plot the loudness for the white noise signal and then get the specific loudness values.

figure
acousticLoudness(wnoise,fs)

 acousticLoudness

2-415

[~,wSpecificLoudness] = acousticLoudness(wnoise,fs);

Call the acousticSharpness function to compare the sharpness of the pink noise and white noise.

pSharpness = acousticSharpness(pSpecificLoudness);
wSharpness = acousticSharpness(wSpecificLoudness);
fprintf('Sharpness of pink noise = %0.2f acum\n',pSharpness)

Sharpness of pink noise = 2.00 acum

fprintf('Sharpness of white noise = %0.2f acum\n',wSharpness)

Sharpness of white noise = 2.62 acum

Time-Varying Loudness and Percentiles

Read in an audio file.

[audioIn,fs] = audioread('JetAirplane-16-11p025-mono-16secs.wav');

Plot the time-varying acoustic loudness in accordance with ISO 532-1 and get the percentiles. Listen
to the audio signal.

acousticLoudness(audioIn,fs,'SoundField','diffuse','TimeVarying',true)

2 Functions

2-416

sound(audioIn,fs)

Call acousticLoudness again with the same inputs and get the percentiles. Print the Nmax and N5
percentiles. The Nmax percentile is the maximum loudness reported. The N5 percentile is the
loudness below which is 95% of the reported loudness.

[~,~,perc] = acousticLoudness(audioIn,fs,'SoundField','diffuse','TimeVarying',true);
fprintf('Max loudness = %0.2f sones\n',perc(1))

Max loudness = 89.48 sones

fprintf('N5 loudness = %0.2f sones\n',perc(2))

N5 loudness = 81.77 sones

Measure Acoustic Loudness from Sound Pressure Level

Read in an audio file.

[audioIn,fs] = audioread('Turbine-16-44p1-mono-22secs.wav');

Call acousticLoudness with no output arguments to plot the specific loudness. Assume a
calibration factor of 0.15 and a reference pressure of 21 micropascals. To determine the calibration
factor specific to your audio system, use the calibrateMicrophone function.

 acousticLoudness

2-417

calibrationFactor = 0.15;
refPressure = 21e-6;
acousticLoudness(audioIn,fs,calibrationFactor,'PressureReference',refPressure)

acousticLoudness enables you to specify an intermediate representation, sound pressure levels,
instead of a time-domain input. This enables you to reuse intermediate SPL calculations. Another
advantage is that if your physical SPL meter does not report loudness in accordance to ISO 532-1 or
ISO 531-2, you can use the reported 1/3-octave SPLs to calculate standard-compliant loudness.

To calculate sound pressure levels from an audio signal, first create an splMeter object. Call the
splMeter object with the audio input.

spl = splMeter("SampleRate",fs,"Bandwidth","1/3 octave", ...
 "CalibrationFactor",calibrationFactor,"PressureReference",refPressure, ...
 "FrequencyWeighting","Z-weighting","OctaveFilterOrder",6);

splMeasurement = spl(audioIn);

Compute the mean SPL level, skipping the first 0.2 seconds. Only keep the bands from 25 Hz to 12.5
kHz (the first 28 bands).

SPLIn = mean(splMeasurement(ceil(0.2*fs):end,1:28));

Using the SPL input, call acousticLoudness with no output arguments to plot the specific
loudness.

acousticLoudness(SPLIn)

2 Functions

2-418

Loudness Measurements Using Calibrated Microphone

Set up an experiment as indicated by the diagram.

 acousticLoudness

2-419

Create an audioDeviceReader object to read from the microphone and an audioDeviceWriter
object to write to your speaker.

fs = 48e3;
deviceReader = audioDeviceReader(fs);
deviceWriter = audioDeviceWriter(fs);

Create an audioOscillator object to generate a 1 kHz sinusoid.

osc = audioOscillator("sine",1e3,"SampleRate",fs);

Create a dsp.AsyncBuffer object to buffer data acquired from the microphone.

dur = 5;
buff = dsp.AsyncBuffer(dur*fs);

For five seconds, play the sinusoid through your speaker and record using your microphone. While
the audio streams, note the loudness as reported by your SPL meter. Once complete, read the
contents of the buffer object.

numFrames = dur*(fs/osc.SamplesPerFrame);
for ii = 1:numFrames
 audioOut = osc();
 deviceWriter(audioOut);

 audioIn = deviceReader();
 write(buff,audioIn);
end

SPLreading = 60.4;

micRecording = read(buff);

To compute the calibration factor for the microphone, use the calibrateMicrophone function.

calibrationFactor = calibrateMicrophone(micRecording,deviceReader.SampleRate,SPLreading);

2 Functions

2-420

Call acousticLoudness with the microphone recording, sample rate, and calibration factor. The
loudness reported from acousticLoudness is the true acoustic loudness measurement as specified
by 532-1.

loudness = acousticLoudness(micRecording,deviceReader.SampleRate,calibrationFactor)

loudness = 14.7902

You can now use the calibration factor you determined to measure the loudness of any sound that is
acquired through the same microphone recording chain.

Plot Specific Loudness Over Hertz

Read in an audio signal.

[audioIn,fs] = audioread('TrainWhistle-16-44p1-mono-9secs.wav');

ISO 532-1

Determine the time-varying specific loudness according to the default method (ISO 532-1).

[~,specificLoudness] = acousticLoudness(audioIn,fs,'TimeVarying',true);

ISO 532-1 reports specific loudness over Bark, where the Bark bins are 0.1:0.1:24. Convert the
Bark bins to Hz and then plot the specific loudness over Hz across time.

barkBins = 0.1:0.1:24;
hzBins = bark2hz(barkBins);

t = 0:2e-3:2e-3*(size(specificLoudness,1)-1);
surf(t,hzBins,sum(specificLoudness,3).','EdgeColor','interp')
set(gca,'YScale','log')
view([0 90])
axis tight
xlabel('Time (s)')
ylabel('Frequency (Hz)')
colorbar
title('Specific Loudness (sones/Bark)')

 acousticLoudness

2-421

ISO 532-2

Determine the stationary specific loudness according to the Moore-Glasberg method (ISO 532-2).

[~,specificLoudness] = acousticLoudness(audioIn,fs,'Method','ISO 532-2');

ISO 532-2 reports specific loudness over the ERB scale, where the ERB bins are 1.8:0.1:38.9. The
unit of the ERB scale is sometimes referred to as Cam. Convert the ERB bins to Hz and then plot the
specific loudness.

erbBins = 1.8:0.1:38.9;
hzBins = erb2hz(erbBins);

semilogx(hzBins,specificLoudness)
xlabel('Frequency (Hz)')
ylabel('Loudness (sones)')
title('Specific Loudness')
grid on

2 Functions

2-422

Loudness Using Custom Earphone Responses

Read in an audio file.

[x,fs] = audioread('WashingMachine-16-44p1-stereo-10secs.wav');

ISO 532-2 enables you to specify a custom earphone response when calculating loudness. Create a
30-by-2 matrix where the first column is the frequency and the second column is the earphone's
deviation from a flat response.

tdh = [0, 80, 100, 200, 500, 574, 660, 758, 871, 1000, 1149, 1320, 1516, 1741, 2000, ...
 2297, 2639, 3031, 3482, 4000, 4500, 5000, 5743, 6598, 7579, 8706, 10000, 12000, 16000, 20000; ...
 -50, -15.3, -13.8, -8.1, -0.5, 0.4, 0.8, 0.9, 0.5, 0.1, -0.8, -1.5, -2.3, -3.2, -3.9, ...
 -4.2, -4.3, -4.3, -3.9, -3.2, -2.3, -1.1, -0.3, -2, -5.4, -9, -12.1, -15.2, -30, -50].';

Calculate the loudness using ISO 532-2. Specify SoundField as earphones and the earphone
response as the matrix you just created.

acousticLoudness(x,fs,'Method','ISO 532-2','SoundField','earphones','EarphoneResponse',tdh)

 acousticLoudness

2-423

Streaming Calculation of Stationary Loudness

Create a dsp.AudioFileReader object to read in an audio signal frame-by-frame. Specify a frame
duration of 50 ms. This will be the frame duration over which you calculate stationary loudness.

fileReader = dsp.AudioFileReader('Engine-16-44p1-stereo-20sec.wav');

frameDur = 0.05;
fileReader.SamplesPerFrame = round(fileReader.SampleRate*frameDur);

Create an audioDeviceWriter object to write audio to your default output device.

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Create a dsp.TimeScope object to display stationary loudness over time.

scope = dsp.TimeScope(...
 'SampleRate',1/frameDur, ...
 'YLabel','Loudness (sones)', ...
 'ShowGrid',true, ...
 'ReduceUpdates',false, ...
 'PlotType','Stairs', ...
 'TimeSpanSource','property', ...
 'TimeSpan',20, ...

2 Functions

2-424

 'AxesScaling','Auto', ...
 'ShowLegend',true);

In a loop:

1 Read a frame from the audio file.
2 Calculate the stationary loudness of that frame.
3 Play the sound through your output device.
4 Write the loudness to the scope.

while ~isDone(fileReader)
 audioIn = fileReader();
 loudness = acousticLoudness(audioIn,fileReader.SampleRate);
 deviceWriter(audioIn);
 scope(loudness)
end
release(fileReader)
release(deviceWriter)
release(scope)

 acousticLoudness

2-425

Input Arguments
audioIn — Audio input
column vector | 2-column matrix

Audio input, specified as a column vector (mono) or matrix with two columns (stereo).
Data Types: single | double

fs — Sample rate (Hz)
positive scalar

Sample rate in Hz, specified as a positive scalar. The recommended sample rate for new recordings is
48 kHz.
Data Types: single | double

calibrationFactor — Microphone calibration factor
sqrt(8) | positive scalar

Microphone calibration factor, specified as a positive scalar. The default calibration factor
corresponds to a full-scale 1 kHz sine wave with a sound pressure level of 100 dB (SPL). To compute
the calibration factor specific to your system, use the calibrateMicrophone function.
Data Types: single | double

SPLIn — Sound pressure level (dB)
1-by-28-by-C | 1-by-29-by-C

Sound pressure level (SPL) in dB, specified as a 1-by-28-by-C array or a 1-by-29-by-C array, depending
on the Method:

• If Method is set to 'ISO 532-1', specify SPLIn as a 1-by-28-by-C array, where 28 corresponds to
one-third-octave bands between 25 Hz and 12.5 kHz, and C is the number of channels.

• If Method is set to 'ISO 532-2', specify SPLIn as a 1-by-29-by-C array, where 29 corresponds to
one-third-octave bands between 25 Hz and 16 kHz, and C is the number of channels.

For both methods, the SPL input should be measured with a flat frequency weighting (Z-weighting).
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: acousticLoudness(audioIn,fs,'Method','ISO 532-2')

Method — Loudness calculation method
'ISO 532-1' (default) | 'ISO 532-2'

Loudness calculation method, specified as 'ISO 532-1' [1] or 'ISO 532-2' [2].

2 Functions

2-426

Note Only in the ISO 532-1 method, output is reported for each channel independently, and
stationary signals are processed after discarding up to the first 0.2 seconds of the signal at the output
of the internal 1/3-octave filters.

Data Types: char | string

TimeVarying — Input is time-varying
false (default) | true

Input is time-varying, specified as true or false.

Dependencies

To set TimeVarying to true, you must set Method to 'ISO 532-1'.
Data Types: logical

SoundField — Sound field of audio recording
'free' (default) | 'diffuse' | 'eardrum' | 'earphones'

Sound field of audio recording, specified as a character vector or scalar string. The possible values
for SoundField depend on the Method:

• 'ISO 532-1' –– 'free', 'diffuse'
• 'ISO 532-2' –– 'free', 'diffuse', 'eardrum', 'earphones'

Data Types: char | string

EarphoneResponse — Earphone response
[0,0] (default) | M-by-2 matrix

Earphone response, specified as an M-by-2 matrix containing M frequency-amplitude pairs that
describe the earphone's deviations from a flat response. The form is as specified in an ISO
11904-1:2002 earphone correction file. Specify the frequency in increasing order in Hz. Specify the
amplitude deviation in decibels. Intermediate values are computed by linear interpolation. Values out
of the given range are set to the nearest frequency-amplitude pair. The default value corresponds to a
flat response.

Dependencies

To specify EarphoneResponse, you must set SoundField to 'earphones'.
Data Types: single | double

PressureReference — Reference pressure (Pa)
20e-6 (default) | positive scalar

Reference pressure for dB calculation in pascals, specified as a positive scalar. The default value, 20
micropascals, is the common value for air.

Dependencies

PressureReference is only used for time-domain input signals.
Data Types: single | double

 acousticLoudness

2-427

Percentiles — Percentiles at which to calculate percentile loudness
[0,5] (default) | vector with values in the range [0, 100]

Percentiles at which to calculate percentile loudness, specified as a vector with values in the range
[0, 100]. The defaults, 0 and 5, correspond to the Nmax and N5 percentiles, respectively [1].

Percentile loudness refers to the loudness that is reached or exceeded in X% of the measured time
intervals, where X is the specified percentile.
Data Types: single | double

Output Arguments
loudness — Loudness (sones)
K-by-1 | K-by-2

Loudness in sones, returned as a K-by-1 column vector or K-by-2 matrix of independent channels. If
TimeVarying is set to false, K is equal to 1. If Method is set to 'ISO 532-2', then loudness is
computed using a binaural model and always returned as a K-by-1 column vector.

specificLoudness — Specific loudness
K-by-240-by-C | K-by-372-by-C

Specific loudness, returned as a K-by-240-by-C array or a K-by-372-by-C array. The first dimension of
specific loudness, K, matches the first dimension of loudness. The third dimension of specific
loudness, C, matches the second dimension of loudness. The second dimension of specific loudness
depends on the Method used to calculate loudness:

• If Method is set to 'ISO 532-1', then specific loudness is reported in sones/Bark on a scale from
0.1 to 24, inclusive, in 0.1 increments.

• If Method is set to 'ISO 532-2', then specific loudness is reported in sones/Cam on a scale from
1.8 to 38.9, inclusive, in 0.1 increments.

perc — Percentile loudness (sones)
p-by-1 vector (mono input) | p-by-2 matrix (stereo input)

Percentile loudness in sones, returned as a p-by-1 vector or p-by-2 matrix. The number of rows, p, is
equal to the number of Percentiles.

Percentile loudness refers to the loudness that is reached or exceeded in X% of the measured time
intervals, where X is the specified percentile.

Dependencies

The percentiles output argument is valid only if TimeVarying is set to true. If TimeVarying is set
to false, the perc output is empty.

Algorithms
Loudness and loudness level are perceptual attributes of sound. Due to differences among people,
measurements of loudness and loudness level should be considered statistical estimators. The ISO
532 series specifies procedures for estimating loudness and loudness level as perceived by persons
with ontologically normal hearing under specific listening conditions.

2 Functions

2-428

ISO 532-1 and ISO 532-2 specify two different methods for calculating loudness, but leave it to the
user to select the appropriate method for a given situation.

ISO 532-1:2017(E) – Zwicker Method

ISO 532-1:2017(E) describes methods for calculating acoustic loudness of stationary and time-varying
signals.

Stationary Signals

This method is based on DIN 45631:1991. The algorithm differs from ISO 532:1975, method B, by
specifying corrections for low frequencies.

The diagram and the steps provide a high-level overview of the sequence of the method. For details,
see [1].

1 The time-domain signal level is adjusted according to the CalibrationFactor. The following
steps of the algorithm assume a true known signal level.

2 The signal is transformed to a 1/3 octave SPL representation using fractional octave band
filtering. The filter bank consists of 28 filters between 25 Hz to 12.5 kHz. The output from this
stage is in dB and normalized by the reference pressure.

3 Low frequency 1/3 octave bands are de-emphasized according to a fixed weighting table. Some of
the low-frequency bands are combined to form a total of 20 critical bands.

4 The levels of the critical bands are corrected for filter bandwidth and the critical band level at
the threshold of quiet, and then transformed to core loudness.

5 Core loudness is mapped to Bark bins.
6 Frequency spreading is computed using a table of level- and frequency-dependent slopes.
7 Loudness is calculated as the integral of specific loudness, taking into account the frequency-

spreading slopes.

Time-Varying Signals

This method is based on DIN 45631/A1:2010, and is designed to properly simulate the duration-
dependent behavior of loudness perception for short impulses. The method for time-varying sounds is
a generalization of the Zwicker approach to stationary signals. If the generalized version is applied to
stationary sounds, it gives the same loudness values as the non-generalized form for stationary
signals.

 acousticLoudness

2-429

The diagram and the steps provide a high-level overview of the sequence of the method. For details,
see [1].

1 The time-domain signal level is adjusted according to the CalibrationFactor. The following
steps of the algorithm assume a true known signal level.

2 The signal is transformed to a 1/3 octave SPL representation using fractional octave band
filtering. The filter bank consists of 28 filters between 25 Hz to 12.5 kHz. The output from this
stage is in dB and normalized by the reference pressure.

3 The SPL bands are smoothed along time according to band-dependent filters.
4 Low frequency 1/3 octave bands are de-emphasized according to a fixed weighting table. Some of

the low-frequency bands are combined to form a total of 20 critical bands.
5 The levels of the critical bands are corrected for filter bandwidth and the critical band level at

the threshold of quiet, and then transformed to core loudness.
6 Nonlinear temporal decay is simulated using a diode-capacitor-resistor network. This models the

steep perceptual drop after short signals when compared to long signals.
7 Core loudness is mapped to Bark bins.
8 Frequency spreading is computed using a table of level- and frequency-dependent slopes.
9 Temporal weighting is applied to simulate the duration-dependence of loudness perception.
10 Loudness is calculated as the integral of specific loudness, taking into account the frequency-

spreading slopes.

ISO 532-2:2017(E) – Moore-Glasberg Method

ISO 532-2:2017(E) describes a binaural model for calculating acoustic loudness of stationary signals.
The method in ISO 523-2 differs from those in ISO 532:1975: it improves the calculated loudness in
the low frequency range and the binaural model allows for different sounds for each ear. ISO 532-2
provides a good match to the equal loudness level contours defined in ISO 226:2003, and the
threshold of hearing defined in ISO 389-7:2005.

The diagram and the steps provide a high-level overview of the sequence of the method. For details,
see [2].

2 Functions

2-430

1 The time-domain signal level is adjusted according to the CalibrationFactor. The following
steps of the algorithm assume a true known signal level.

2 The signal is transformed to a spectral representation. The spectral representation is
transformed according to fixed filters representing the transfer of sound through the tympanic
membrane (eardrum). The spectrum is scaled according to the reference pressure.

3 The signal is transformed using a model of the inner ear. Again, the transfer function is given by
a fixed filter specified in the standard. The filter choice depends on the specified sound field.

4 The signal is transformed from the sound spectrum to an excitation pattern at the basilar
membrane. The transformation is accomplished using a series of rounded-exponential filters
spread on the ERB scale.

5 The excitation pattern is converted to specific loudness.
6 The specific loudness is passed through a model of binary inhibition, where a signal at one ear

inhibits the loudness evoked by a signal at the other ear. The output from this stage is the
specific loudness in sones/ERB.

7 The specific loudness is integrated over the ERB scale to give the loudness in sones.

References
[1] ISO 532-1:2017(E). "Acoustics – Methods for calculating loudness – Part 1: Zwicker method."

International Organization for Standardization.

[2] ISO 532-2:2017(E). "Acoustics – Methods for calculating loudness – Part 2: Moore-Glasberg
method. International Organization for Standardization.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
acousticSharpness | calibrateMicrophone | phon2sone | sone2phon | splMeter

Introduced in R2020a

 acousticLoudness

2-431

acousticSharpness
Perceived sharpness of acoustic signal

Syntax
sharpness = acousticSharpness(audioIn,fs)
sharpness = acousticSharpness(audioIn,fs,calibrationFactor)
sharpness = acousticSharpness(SPLIn)
sharpness = acousticSharpness(specificLoudnessIn)
sharpness = acousticSharpness(___ ,Name,Value)
acousticSharpness(___ ,TimeVarying,true)

Description
sharpness = acousticSharpness(audioIn,fs) returns sharpness in acum according to DIN
45692 [2] and ISO 532-1:2017(E) [1].

sharpness = acousticSharpness(audioIn,fs,calibrationFactor) specifies a nondefault
microphone calibration factor used to compute loudness.

sharpness = acousticSharpness(SPLIn) computes sharpness using one-third-octave-band
sound pressure levels (SPL).

sharpness = acousticSharpness(specificLoudnessIn) computes sharpness using specific
loudness.

sharpness = acousticSharpness(___ ,Name,Value) specifies options using one or more
Name,Value pair arguments.
Example: sharpness =
acousticSharpness(audioIn,fs,calibrationFactor,'SoundField','diffuse') returns
sharpness assuming a diffuse sound field.

acousticSharpness(___ ,TimeVarying,true) with no output arguments plots sharpness
relative to time.

Examples

Acoustic Sharpness of Audio Signal

Compute the acoustic sharpness of turbine noise. Assume it is stationary and was recorded in a
diffuse sound field.

[audioIn,fs] = audioread('Turbine-16-44p1-mono-22secs.wav');

sharpness = acousticSharpness(audioIn,fs,'SoundField','diffuse');

fprintf('Acoustic sharpness = %0.2f acum\n',sharpness)

Acoustic sharpness = 1.11 acum

2 Functions

2-432

Time-Varying Sharpness

Read in an audio signal.

[audioIn,fs] = audioread('RockDrums-48-stereo-11secs.mp3');

Plot the time-varying sharpness of the signal. Listen to the signal.

acousticSharpness(audioIn,fs,'TimeVarying',true)

sound(audioIn,fs)

Measure Loudness and Sharpness of Stationary Signals

Create two stationary signals with equivalent power: a pink noise signal and a white noise signal.

fs = 48e3;
dur = 5;
pnoise = 2*pinknoise(dur*fs);
wnoise = rand(dur*fs,1) - 0.5;
wnoise = wnoise*sqrt(var(pnoise)/var(wnoise));

 acousticSharpness

2-433

Call acousticLoudness using the default ISO 532-1 (Zwicker) method and no output arguments to
plot the loudness of the pink noise. Call acousticLoudness again, this time with output arguments,
to get the specific loudness.

figure
acousticLoudness(pnoise,fs)

[~,pSpecificLoudness] = acousticLoudness(pnoise,fs);

Plot the loudness for the white noise signal and then get the specific loudness values.

figure
acousticLoudness(wnoise,fs)

2 Functions

2-434

[~,wSpecificLoudness] = acousticLoudness(wnoise,fs);

Call the acousticSharpness function to compare the sharpness of the pink noise and white noise.

pSharpness = acousticSharpness(pSpecificLoudness);
wSharpness = acousticSharpness(wSpecificLoudness);
fprintf('Sharpness of pink noise = %0.2f acum\n',pSharpness)

Sharpness of pink noise = 2.00 acum

fprintf('Sharpness of white noise = %0.2f acum\n',wSharpness)

Sharpness of white noise = 2.62 acum

Effect of Input Levels on Acoustic Sharpness

Create a pink noise signal with a 48 kHz sample rate and a duration of 5 seconds.

fs = 48e3;
n = fs*5;
pnoise = pinknoise(n);

Specify a vector to sweep over the dB range from -60 to 20. Create a gain vector which, when
multiplied by the original signal, results in a signal with the desired output level.

 acousticSharpness

2-435

dBSweep = -60:10:20;
coefSweep = sqrt((10.^(dBSweep/10))/var(pnoise));

Call acousticSharpness in a loop with the different signal levels. Determine the sharpness using
the default DIN 45692 frequency weighting and the Aures frequency weighting.

sharpnessDIN45692 = zeros(numel(dBSweep),1);
sharpnessAures = zeros(numel(dBSweep),1);
for ii = 1:numel(dBSweep)
 signal = pnoise*coefSweep(ii);
 sharpnessDIN45692(ii) = acousticSharpness(signal,fs);
 sharpnessAures(ii) = acousticSharpness(signal,fs,'Weighting','Aures');
end

Display the effect of the input level on the acoustic sharpness. The Aures frequency weighting method
is more sensitive to the input level.

plot(dBSweep,sharpnessDIN45692,dBSweep,sharpnessAures)
legend('Weighting = DIN45692','Weighting = Aures')
xlabel('Input Level (dB)')
ylabel('Sharpness (acum)')
title('Effect of Input Level on Sharpness')
axis([dBSweep(1) dBSweep(end) 0 20])
grid on

2 Functions

2-436

Compare Time-Varying Sharpness of Music Genres

Read in two audio files: one of an electric guitar with distortion and one of an acoustic guitar. Both
audio files have a sample rate of 44.1 kHz. For easy comparison, convert the rock guitar signal to
mono and shorten the soft guitar signal to the length of the rock guitar signal.

fs = 44.1e3;
rockGuitar = audioread('RockGuitar-16-44p1-stereo-72secs.wav');
softGuitar = audioread('SoftGuitar-44p1_mono-10mins.ogg');
rockGuitar = mean(rockGuitar,2);
softGuitar = softGuitar(1:numel(rockGuitar));

Calculate the time-varying sharpness for both the rock guitar and soft guitar.

rGSharpness = acousticSharpness(rockGuitar,fs,'TimeVarying',true);
sGSharpness = acousticSharpness(softGuitar,fs,'TimeVarying',true);

Plot the probability distribution based on the observed sharpness of the rock guitar and the soft
guitar.

histogram(rGSharpness,'Normalization','probability')
hold on
histogram(sGSharpness,'Normalization','probability')
legend('Electric Guitar','Soft Guitar')
xlabel('Sharpness (acum)')
ylabel('Probability')
title('Time-Varying Acoustic Sharpness (DIN 45692)')

 acousticSharpness

2-437

Measure Acoustic Sharpness from Sound Pressure Level

Read in an audio file.

[audioIn,fs] = audioread('Turbine-16-44p1-mono-22secs.wav');

To calculate sound pressure levels from an audio signal, first create an splMeter object. Call the
splMeter object with the audio input.

spl = splMeter("SampleRate",fs,"Bandwidth","1/3 octave", ...
 "FrequencyWeighting","Z-weighting","OctaveFilterOrder",6);

splMeasurement = spl(audioIn);

Compute the mean SPL level, skipping the first 0.2 seconds. Only keep the bands from 25 Hz to 12.5
kHz (the first 28 bands).

SPLIn = mean(splMeasurement(ceil(0.2*fs):end,1:28));

To determine the acoustic sharpness of the audio signal, call acousticSharpness using the sound
pressure level input.

sharpness = acousticSharpness(SPLIn)

sharpness = 1.1015

Input Arguments
audioIn — Audio input
column vector | 2-column matrix

Audio input, specified as a column vector (mono) or matrix with two columns (stereo). Sharpness is
computed for each channel (column) independently.
Data Types: single | double

fs — Sample rate (Hz)
positive scalar

Sample rate in Hz, specified as a positive scalar. The recommended sample rate for new recordings is
48 kHz.
Data Types: single | double

calibrationFactor — Microphone calibration factor
sqrt(8) | positive scalar

Microphone calibration factor, specified as a positive scalar. The default calibration factor
corresponds to a full-scale 1 kHz sine wave with a sound pressure level of 100 dB (SPL). To compute
the calibration factor specific to your system, use the calibrateMicrophone function.
Data Types: single | double

SPLIn — Sound pressure level (dB)
1-by-28-by-C

2 Functions

2-438

Sound pressure level (SPL) in dB, specified as a 1-by-28-by-C array. 28 corresponds to one-third-
octave bands between 25 Hz and 12.5 kHz. C is the number of channels.
Data Types: single | double

specificLoudnessIn — Specific loudness (sones/Bark)
T-by-240-by-C

Specific loudness in sones/Bark, specified as a T-by-240-by-C array, where:

• T is 1 for stationary signals or one per 0.5 ms for time-varying signals.
• 240 is the number of Bark bins in the domain for specific loudness. The Bark bins are

0.1:0.1:24.
• C is the number of channels.

You can use the acousticLoudness function to calculate specificLoudnessIn using this syntax:

[~,specificLoudnessIn] = acousticLoudness(audioIn,fs);

Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: acousticSharpness(audioIn,fs,'Weighting','von Bismarck')

Weighting — Frequency weighting
'DIN 45692' (default) | 'Aures' | 'von Bismarck'

Frequency weighting, specified as 'DIN 45692', 'Aures', or 'von Bismarck'. By design, the
'Aures' frequency weighting method is more sensitive to amplitude levels and proper calibration.
For details, see “Algorithms” on page 2-440.
Data Types: char | string

SoundField — Sound field
'free' (default) | 'diffuse'

Sound field of audio recording, specified as 'free' or 'diffuse'.
Data Types: char | string

PressureReference — Reference pressure (Pa)
20e-6 (default) | positive scalar

Reference pressure for dB calculation in pascals, specified as a positive scalar. The default value, 20
micropascals, is the common value for air.
Data Types: single | double

TimeVarying — Input is time-varying
false (default) | true

 acousticSharpness

2-439

Input is time-varying, specified as true or false. If TimeVarying is set to true, acoustic sharpness
is calculated in 2 ms intervals.
Data Types: logical

Output Arguments
sharpness — Acoustic sharpness (acum)
scalar | vector | matrix

Acoustic sharpness in acum, returned as a scalar, vector, or matrix. Sharpness is computed according
to DIN 45692 and ISO 532-1.
Data Types: single | double

Algorithms
Acoustic sharpness is a measurement derived from acoustic loudness. The acoustic loudness
algorithm is described in [1] and implemented in the acousticLoudness function. The acoustic
sharpness calculation is described in [2]. The algorithm for acoustic sharpness is outlined as follows.

sharpness = k
∫

z = 0

24
N′(z) g(z) z dz

∫
z = 0

24
N′(z) dz

Where N' is the specific loudness in sones/Bark. The function g(z) and the scaling factor k depend on
the specified Weighting method:

'DIN 45692': k is set such that a 1 kHz reference tone results in a 1 acum sharpness measurement,
and

g(z) = 1 for z ≤ 15.8 Bark
g(z) = 0.15e0.42(z − 15.8) + 0.85 for z > 15.8 Bark

'von Bismark': k is set to 0.11, and

g(z) = 1 for z ≤ 15 Bark
g(z) = 0.2e0.308(z − 15) + 0.8 for z > 15 Bark

'Aures': k is set to 0.11, and

g(z) = 0.078 e0.171z

z
N

ln(0.05N + 1)
where

N = ∫
z = 0

24
N′(z) dz

2 Functions

2-440

References
[1] ISO 532-1:2017(E). "Acoustics – Methods for calculating loudness – Part 1: Zwicker method."

International Organization for Standardization.

[2] DIN 45692:2009. "Measurement Technique for the Simulation of the Auditory Sensation of
Sharpness." German Institute for Standardization.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
acousticLoudness | calibrateMicrophone | phon2sone | sone2phon | splMeter

Introduced in R2020a

 acousticSharpness

2-441

detectSpeech
Detect boundaries of speech in audio signal

Syntax
idx = detectSpeech(audioIn,fs)
idx = detectSpeech(audioIn,fs,Name,Value)
[idx,thresholds] = detectSpeech(___)
detectSpeech(___)

Description
idx = detectSpeech(audioIn,fs) returns indices of audioIn that correspond to the
boundaries of speech signals.

idx = detectSpeech(audioIn,fs,Name,Value) specifies options using one or more
Name,Value pair arguments.
Example:
detectSpeech(audioIn,fs,'Window',hann(512,'periodic'),'OverlapLength',256)
detects speech using a 512-point periodic Hann window with 256-point overlap.

[idx,thresholds] = detectSpeech(___) also returns the thresholds used to compute the
boundaries of speech.

detectSpeech(___) with no output arguments displays a plot of the detected speech regions in
the input signal.

Examples

Plot Detected Regions of Speech

Read in an audio signal. Clip the audio signal to 20 seconds.

[audioIn,fs] = audioread('Rainbow-16-8-mono-114secs.wav');
audioIn = audioIn(1:20*fs);

Call detectSpeech. Specify no output arguments to display a plot of the detected speech regions.

detectSpeech(audioIn,fs);

2 Functions

2-442

The detectSpeech function uses a thresholding algorithm based on energy and spectral spread per
analysis frame. You can modify the Window, OverlapLength, and MergeDistance to fine-tune the
algorithm for your specific needs.

windowDuration = ; % seconds
numWindowSamples = round(windowDuration*fs);
win = hamming(numWindowSamples,'periodic');

percentOverlap = ;
overlap = round(numWindowSamples*percentOverlap/100);

mergeDuration = ;
mergeDist = round(mergeDuration*fs);

detectSpeech(audioIn,fs,"Window",win,"OverlapLength",overlap,"MergeDistance",mergeDist)

 detectSpeech

2-443

Reuse Decision Thresholds

Read in an audio file containing speech. Split the audio signal into a first half and a second half.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
firstHalf = audioIn(1:floor(numel(audioIn)/2));
secondHalf = audioIn(numel(firstHalf):end);

Call detectSpeech on the first half of the audio signal. Specify two output arguments to return the
indices corresponding to regions of detected speech and the thresholds used for the decision.

[speechIndices,thresholds] = detectSpeech(firstHalf,fs);

Call detectSpeech on the second half with no output arguments to plot the regions of detected
speech. Specify the thresholds determined from the previous call to detectSpeech.

detectSpeech(secondHalf,fs,'Thresholds',thresholds)

2 Functions

2-444

Working with Large Data Sets

Reusing speech detection thresholds provides significant computational efficiency when you work
with large data sets, or when you deploy a deep learning or machine learning pipeline for real-time
inference. Download and extract the data set [1] on page 2-0 .

url = 'https://storage.googleapis.com/download.tensorflow.org/data/speech_commands_v0.01.tar.gz';

downloadFolder = tempdir;
datasetFolder = fullfile(downloadFolder,'google_speech');

if ~exist(datasetFolder,'dir')
 disp('Downloading data set (1.9 GB) ...')
 untar(url,datasetFolder)
end

Create an audio datastore to point to the recordings. Use the folder names as labels.

ads = audioDatastore(datasetFolder,'IncludeSubfolders',true,'LabelSource','foldernames');

Reduce the data set by 95% for the purposes of this example.

ads = splitEachLabel(ads,0.05,'Exclude','_background_noise');

Create two datastores: one for training and one for testing.

[adsTrain,adsTest] = splitEachLabel(ads,0.8);

 detectSpeech

2-445

Compute the average thresholds over the training data set.

thresholds = zeros(numel(adsTrain.Files),2);
for ii = 1:numel(adsTrain.Files)
 [audioIn,adsInfo] = read(adsTrain);
 [~,thresholds(ii,:)] = detectSpeech(audioIn,adsInfo.SampleRate);
end
thresholdAverage = mean(thresholds,1);

Use the precomputed thresholds to detect speech regions on files from the test data set. Plot the
detected region for three files.

[audioIn,adsInfo] = read(adsTest);
detectSpeech(audioIn,adsInfo.SampleRate,'Thresholds',thresholdAverage);

[audioIn,adsInfo] = read(adsTest);
detectSpeech(audioIn,adsInfo.SampleRate,'Thresholds',thresholdAverage);

2 Functions

2-446

[audioIn,adsInfo] = read(adsTest);
detectSpeech(audioIn,adsInfo.SampleRate,'Thresholds',thresholdAverage);

 detectSpeech

2-447

References

[1] Warden, Pete. "Speech Commands: A Public Dataset for Single Word Speech Recognition."
Distributed by TensorFlow. Creative Commons Attribution 4.0 License.

Remove Silent Regions from Speech Signal

Read in an audio file and listen to it. Plot the spectrogram.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

sound(audioIn,fs)

spectrogram(audioIn,hann(1024,'periodic'),512,1024,fs,'yaxis')

2 Functions

2-448

For machine learning applications, you often want to extract features from an audio signal. Call the
spectralEntropy function on the audio signal, then plot the histogram to display the distribution
of spectral entropy.

entropy = spectralEntropy(audioIn,fs);

numBins = 40;
histogram(entropy,numBins,'Normalization','probability')
title('Spectral Entropy of Audio Signal')

 detectSpeech

2-449

Depending on your application, you might want to extract spectral entropy from only the regions of
speech. The resulting statistics are more characteristic of the speaker and less characteristic of the
channel. Call detectSpeech on the audio signal and then create a new signal that contains only the
regions of detected speech.

speechIndices = detectSpeech(audioIn,fs);
speechSignal = [];
for ii = 1:size(speechIndices,1)
 speechSignal = [speechSignal;audioIn(speechIndices(ii,1):speechIndices(ii,2))];
end

Listen to the speech signal and plot the spectrogram.

sound(speechSignal,fs)

spectrogram(speechSignal,hann(1024,'periodic'),512,1024,fs,'yaxis')

2 Functions

2-450

Call the spectralEntropy function on the speech signal and then plot the histogram to display
the distribution of spectral entropy.

entropy = spectralEntropy(speechSignal,fs);

histogram(entropy,numBins,'Normalization','probability')
title('Spectral Entropy of Speech Signal')

 detectSpeech

2-451

Input Arguments
audioIn — Audio input
column vector

Audio input, specified as a column vector.
Data Types: single | double

fs — Sample rate (Hz)
scalar

Sample rate in Hz, specified as a scalar.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: detectSpeech(audioIn,fs,'MergeDistance',100)

Window — Window applied in time domain
hann(round(0.03*fs),'periodic') (default) | vector

2 Functions

2-452

Window applied in the time domain, specified as the comma-separated pair consisting of 'Window'
and a real vector. The number of elements in the vector must be in the range [2, size(audioIn,1)].
The number of elements in the vector must also be greater than OverlapLength.
Data Types: single | double

OverlapLength — Number of samples overlapping between adjacent windows
0 (default) | scalar in the range [0, numel(Window)−1]

Number of samples overlapping between adjacent windows, specified as the comma-separated pair
consisting of 'OverlapLength' and an integer in the range [0, size(Window,1)).
Data Types: single | double

MergeDistance — Number of samples over which to merge positive speech detection
decisions
numel(Window)*5 (default) | nonnegative scalar

Number of samples over which to merge positive speech detection decisions, specified as the comma-
separated pair consisting of 'MergeDistance' and a nonnegative scalar.

Note The resolution for speech detection is given by the hop length, where the hop length is equal to
numel(Window) − OverlapLength.

Data Types: single | double

Thresholds — Thresholds for decision
2-element vector

Thresholds for decision, specified as the comma-separated pair consisting of 'Thresholds' and a
two-element vector.

• If you do not specify Thresholds, the detectSpeech function derives thresholds by using
histograms of the features calculated over the current input frame.

• If you specify Thresholds, the detectSpeech function skips the derivation of new decision
thresholds. Reusing speech decision thresholds provides significant computational efficiency when
you work with large data sets, or when you deploy a deep learning or machine learning pipeline
for real-time inference.

Data Types: single | double

Output Arguments
idx — Start and end indices of speech regions
N-by-2 matrix

Start and end indices of speech regions, returned as an N-by-2 matrix. N corresponds to the number
of individual speech regions detected. The first column corresponds to start indices of speech regions
and the second column corresponds to end indices of speech regions.
Data Types: single | double

thresholds — Thresholds used for decision
two-element vector

 detectSpeech

2-453

Thresholds used for decision, returned as a two-element vector. The thresholds are in the order
[Energy Threshold, Spectral Spread Threshold].
Data Types: single | double

Algorithms
The detectSpeech algorithm is based on [1], although modified so that the statistics to threshold
are short-term energy and spectral spread, instead of short-term energy and spectral centroid. The
diagram and steps provide a high-level overview of the algorithm. For details, see [1].

1 The audio signal is converted to a time-frequency representation using the specified Window and
OverlapLength.

2 The short-term energy and spectral spread is calculated for each frame. The spectral spread is
calculated according to spectralSpread.

3 Histograms are created for both the short-term energy and spectral spread distributions.
4

For each histogram, a threshold is determined according to T =
W × M1 + M2

W + 1 , where M1 and M2

are the first and second local maxima, respectively. W is set to 5.
5 Both the spectral spread and the short-term energy are smoothed across time by passing through

successive five-element moving median filters.
6 Masks are created by comparing the short-term energy and spectral spread with their respective

thresholds. To declare a frame as containing speech, a feature must be above its threshold.
7 The masks are combined. For a frame to be declared as speech, both the short-term energy and

the spectral spread must be above their respective thresholds.
8 Regions declared as speech are merged if the distance between them is less than

MergeDistance.

References
[1] Giannakopoulos, Theodoros. "A Method for Silence Removal and Segmentation of Speech Signals,

Implemented in MATLAB", (University of Athens, Athens, 2009).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

2 Functions

2-454

See Also
spectralSpread | voiceActivityDetector

Topics
“Keyword Spotting in Noise Using MFCC and LSTM Networks”
“Classify Gender Using LSTM Networks”

Introduced in R2020a

 detectSpeech

2-455

calibrateMicrophone
Calibration factor for microphone

Syntax
calibrationFactor = calibrateMicrophone(micRecording,fs,SPLreading)
calibrationFactor = calibrateMicrophone(micRecording,fs,SPLreading,
Name,Value)

Description
calibrationFactor = calibrateMicrophone(micRecording,fs,SPLreading) returns the
calibration factor for the microphone used to create micRecording.

calibrationFactor = calibrateMicrophone(micRecording,fs,SPLreading,
Name,Value) specifies options using one or more Name,Value pair arguments.
Example: calibrationFactor =
calibrateMicrophone(micRecording,fs,SPLreading,'FrequencyWeighting','Z-
weighting') returns the calibration factor for an SPL reading that applies Z-weighting.

Examples

Determine Microphone Calibration Factor

This diagram depicts the setup used in the example:

2 Functions

2-456

To run this example, you must connect a microphone and loudspeaker to a full-duplex sound card,
and use an SPL meter to determine the true loudness level.

Create an audioOscillator object to generate a 1 kHz sine wave at a sample rate of 48 kHz.

fs = 48e3;
osc = audioOscillator("sine",1e3,"SampleRate",fs);

Create an audioPlayerRecorder object to write the sine wave to your loudspeaker and
simultaneously read from your microphone.

playRec = audioPlayerRecorder(fs);

Create a dsp.AsyncBuffer object to store the audio recorded from your microphone. Specify the
capacity of the buffer to hold 3 seconds worth of data.

dur = 3;
buff = dsp.AsyncBuffer(dur*fs);

In a loop, for three seconds:

• Generate a frame of a 1 kHz sinusoid.

 calibrateMicrophone

2-457

• Write the frame to your loudspeaker and simultaneously read a frame from your microphone.
• Write the frame acquired from your microphone to the buffer.

While the loop runs, note the true SPL measurement as reported from your SPL meter. Once
complete, read the contents of the buffer object.

numFrames = dur*(fs/osc.SamplesPerFrame);
for ii = numFrames
 audioOut = osc();
 audioIn = playRec(audioOut);
 write(buff,audioIn);
end

SPL = 78.2; % read from physical SPL meter

micRecording = read(buff);

Compute the calibration factor for the microphone.

calibrationFactor = calibrateMicrophone(micRecording,playRec.SampleRate,SPL);

Calibrate Microphone Using Externally Generated Calibration Tone

The diagram depicts the example setup and data flow.

2 Functions

2-458

To run this example, you must connect a microphone to your audio card, generate a 1 kHz tone using
an external device, and use an SPL meter to determine the true loudness level.

Specify a 48 kHz sample rate for your audio device and a 3-second duration for acquiring audio.
Create an audioDeviceReader object to read from your audio device.

fs = 48e3;
dur = 3;

deviceReader = audioDeviceReader(fs);

Create a dsp.AsyncBuffer object to store the streamed audio.

buff = dsp.AsyncBuffer(dur*fs);

Start the 1 kHz test tone using an external loudspeaker. Then, in a loop, read from your audio device
and then write the data to the buffer. While the loop runs, note the true SPL measurement as
reported from your SPL meter. Once complete, read the contents of the buffer object.

tic
while toc < dur
 audioIn = deviceReader();
 write(buff,audioIn);
end

 calibrateMicrophone

2-459

SPL = 77.7; % read from physical SPL meter

micRecording = read(buff);

Compute the calibration factor for the microphone.

calibrationFactor = calibrateMicrophone(micRecording,deviceReader.SampleRate,SPL);

Input Arguments
micRecording — Audio signal used to calibrate microphone
column vector | matrix

Audio signal used to calibrate microphone, specified as a column vector (mono) or matrix of
independent channels (stereo). micRecording must be acquired from the microphone you want to
calibrate. The recording should consist of a 1 kHz test tone.
Data Types: single | double

fs — Sample rate of microphone recording (Hz)
positive scalar

Sample rate of microphone recording in Hz, specified as a positive scalar. The recommended sample
rate for new recordings is 48 kHz.
Data Types: single | double

SPLreading — Sound pressure level reported from physical meter (dB)
scalar | vector

Sound pressure level reported from meter in dB, specified as a scalar or vector. If SPLreading is
specified as a vector, it must have the same number of elements as columns in micRecording.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: calibrateMicrophone(micRecording,fs,SPLReading,'PressureReference',22)

PressureReference — Reference pressure (Pa)
20e-6 (default) | positive scalar

Reference pressure for dB calculation in pascals, specified as a positive scalar. The default reference
pressure (20 micropascals) is the common value for air.
Data Types: single | double

FrequencyWeighting — Frequency weighting used by physical meter
'A-weighting' (default) | 'C-weighting' | 'Z-weighting'

Frequency weighting used by physical meter, specified as 'A-weighting', 'C-weighting', or 'Z-
weighting'.

2 Functions

2-460

Data Types: char | string

Output Arguments
calibrationFactor — Microphone calibration factor
scalar | row vector

Microphone calibration factor, returned as a scalar or row vector with the same number of elements
as SPLreading.
Data Types: single | double

Algorithms
To determine the calibration factor for a microphone, the calibrateMicrophone function uses:

• A calibration tone recorded from the microphone you want to calibrate.
• The sample rate used by your sound card for AD conversion.
• The known loudness, usually determined using a physical SPL meter.
• The frequency weighting used by your physical SPL meter.
• The atmospheric pressure at the recording location.

The diagram indicates a typical physical setup and the locations of required information.

The calibrationFactor is set according to the equation:

CalibrationFactor = 10 SPLreading−k /20

rms(x)

where x is the microphone recording passed through the weighting filter specified in the
FrequencyWeighting argument. k is 1 pascal relative to the PressureReference calculated in
dB:

 calibrateMicrophone

2-461

k = 20log10
1

PressureReference .

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
acousticLoudness | acousticSharpness | splMeter

Introduced in R2020a

2 Functions

2-462

sone2phon
Convert from sone to phon

Syntax
phon = sone2phon(sone)
phon = sone2phon(sone,standard)

Description
phon = sone2phon(sone) converts sone to phon, according to ISO 532-1:2017(E).

phon = sone2phon(sone,standard) specifies the standard used to convert sone to phon.

Examples

Convert Sone to Phon

Plot the relationship between loudness (sone) and loudness levels (phon), as specified in ISO 532-1.

s = (0.51:0.01:1.8).^10;

p1 = sone2phon(s);

semilogx(s,p1)
xlabel('Loudness (sone)')
ylabel('Loudness Level (phon)')
title('Relation Between Sone and Phon (ISO 532-1)')
grid on
axis([0 s(end) 0 130])

 sone2phon

2-463

Plot the relationship between loudness (sone) and loudness levels (phon), as specified in ISO 532-2.

p2 = sone2phon(s,'ISO 532-2');

semilogx(s,p2)
xlabel('Loudness (sone)')
ylabel('Loudness Level (phon)')
title('Relation Between Sone and Phon (ISO 532-2)')
grid on
axis([0 s(end) 0 130])

2 Functions

2-464

Input Arguments
sone — Input loudness in sone
nonnegative scalar | vector of nonnegative values | matrix of nonnegative values | multidimensional
array of nonnegative values

Input loudness in sone, specified as a scalar, vector, matrix, or multidimensional array of nonnegative
values.
Data Types: single | double

standard — Reference standard for unit conversion
'ISO 532-1' (default) | 'ISO 532-2'

Reference standard for unit conversion, specified as 'ISO 532-1' or 'ISO 532-2'.
Data Types: char | string

Output Arguments
phon — Output loudness level in phon
scalar | vector | matrix | multidimensional array

Output loudness level in phon, returned as a scalar, vector, matrix, or multidimensional array the
same size as sone.

 sone2phon

2-465

Data Types: single | double

Algorithms
ISO 532-1: Zwicker Method

The Zwicker method of conversion from sone to phon is given by this equation in [1] on page 2-467:

phon = 40 sone 0.35

40 + 10log2 sone
if sone < 1
otherwise

ISO 532-2: Moore-Glasberg Method

In the Moore-Glasberg method, conversion from sone to phon is prescribed according to this table
(table 5 in [2] on page 2-467).

Loudness Level (phon) Calculated Loudness (sone)
0.0 0.001
2.2 0.004
4.0 0.008
5.0 0.010
7.5 0.019
10.0 0.031
15.0 0.073
20.0 0.146
25.0 0.26
30.0 0.43
35.0 0.67
40.0 1.00
45.0 1.46
50.0 2.09
55.0 2.96
60.0 4.14
65.0 5.77
70.0 8.04
75.0 11.2
80.0 15.8
85.0 22.7
90.0 32.9
95.0 47.7
100.0 69.6
105.0 102.0

2 Functions

2-466

Loudness Level (phon) Calculated Loudness (sone)
110.0 151.0
115.0 225.0
120.0 337.6

The sone2phon function uses interpolation for values not specified in the table.

References
[1] ISO 532-1:2017(E). "Acoustics – Methods for calculating loudness – Part 1: Zwicker method."

International Organization for Standardization.

[2] ISO 532-2:2017(E). "Acoustics – Methods for calculating loudness – Part 2: Moore-Glasberg
method." International Organization for Standardization.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
acousticLoudness | phon2sone

Introduced in R2020a

 sone2phon

2-467

phon2sone
Convert from phon to sone

Syntax
sone = phon2sone(phon)
sone = phon2sone(phon,standard)

Description
sone = phon2sone(phon) converts phon to sone, according to ISO 532-1:2017(E).

sone = phon2sone(phon,standard) specifies the standard used to convert phon to sone.

Examples

Convert Phon to Sone

Plot the relationship between loudness level (phon) and loudness (sone), as specified in ISO 532-1.

p = 0:120;

s1 = phon2sone(p);

semilogy(p,s1)
xlabel('Loudness Level (phon)')
ylabel('Loudness (sone)')
title('Relation Between Phon and Sone (ISO 532-1)')
grid on
axis([0 120 0 500])

2 Functions

2-468

Plot the relationship between loudness level (phon) and loudness (sone), as specified in ISO 532-2.

s2 = phon2sone(p,'ISO 532-2');

semilogy(p,s2)
xlabel('Loudness Level (phon)')
ylabel('Loudness (sone)')
title('Relation Between Phon and Sone (ISO 532-2)')
grid on
axis([0 120 0 500])

 phon2sone

2-469

Input Arguments
phon — Loudness level in phon
nonnegative scalar | vector of nonnegative values | matrix of nonnegative values | multidimensional
array of nonnegative values

Input loudness level in phon, specified as a scalar, vector, matrix, or multidimensional array of
nonnegative values.
Data Types: single | double

standard — Reference standard for unit conversion
'ISO 532-1' (default) | 'ISO 532-2'

Reference standard for unit conversion, specified as 'ISO 532-1' or 'ISO 532-2'.
Data Types: char | string

Output Arguments
sone — Output loudness in sone
scalar | vector | matrix | multidimensional array

Output loudness in sone, returned as a scalar, vector, matrix, or multidimensional array the same size
as phon.

2 Functions

2-470

Data Types: single | double

Algorithms
ISO 532-1: Zwicker Method

The Zwicker method of conversion from phon to sone is given by [1] on page 2-472:

sone =
phon
40

1 0.35 if phon < 1

2
phon − 40

10 otherwise

ISO 532-2: Moore-Glasberg Method

In the Moore-Glasberg method, conversion from phon to sone is prescribed according to this table
(table 5 in [2] on page 2-472).

Loudness Level (phon) Calculated Loudness (sone)
0.0 0.001
2.2 0.004
4.0 0.008
5.0 0.010
7.5 0.019
10.0 0.031
15.0 0.073
20.0 0.146
25.0 0.26
30.0 0.43
35.0 0.67
40.0 1.00
45.0 1.46
50.0 2.09
55.0 2.96
60.0 4.14
65.0 5.77
70.0 8.04
75.0 11.2
80.0 15.8
85.0 22.7
90.0 32.9
95.0 47.7
100.0 69.6

 phon2sone

2-471

Loudness Level (phon) Calculated Loudness (sone)
105.0 102.0
110.0 151.0
115.0 225.0
120.0 337.6

The phon2sone function uses interpolation for values not specified in the table.

References
[1] ISO 532-1:2017(E). "Acoustics – Methods for calculating loudness – Part 1: Zwicker method."

International Organization for Standardization.

[2] ISO 532-2:2017(E). "Acoustics – Methods for calculating loudness – Part 2: Moore-Glasberg
method." International Organization for Standardization.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
acousticLoudness | sone2phon

Introduced in R2020a

2 Functions

2-472

System Objects

3

audioTimeScaler
Apply time scaling to streaming audio

Description
The audioTimeScaler object performs audio time scale modification (TSM) independently across
each input channel.

To modify the time scale of streaming audio:

1 Create the audioTimeScaler object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
aTS = audioTimeScaler
aTS = audioTimeScaler(speedupFactor)
aTS = audioTimeScaler(___ ,'Name',Value)

Description

aTS = audioTimeScaler creates an object, aTS, that performs audio time scale modification
independently across each input channel over time.

aTS = audioTimeScaler(speedupFactor) sets the SpeedupFactor property to
speedupFactor.

aTS = audioTimeScaler(___ ,'Name',Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: aTS =
audioTimeScaler(1.2,'Window',sqrt(hann(1024,'periodic')),'OverlapLength',768)
creates an object, aTS, that increases the tempo of audio by 1.2 times its original speed using a
periodic 1024-point Hann window and a 768-point overlap.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

3 System Objects

3-2

SpeedupFactor — Speedup factor
1.1 (default) | positive real scalar

Speedup factor, specified as a positive real scalar.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

InputDomain — Domain of input signal
"Time" (default) | "Frequency"

Domain of the input signal, specified as "Time" or "Frequency".
Data Types: char | string

Window — Analysis window
sqrt(hann(512,'periodic')) (default) | real vector

Analysis window, specified as a real vector.

Note If using audioTimeScaler with frequency-domain input, you must specify Window as the
same window used to transform audioIn to the frequency domain.

Data Types: single | double

OverlapLength — Overlap length of adjacent analysis windows
384 (default) | nonnegative integer

Overlap length of adjacent analysis windows, specified as a nonnegative integer.

Note If using audioTimeScaler with frequency-domain input, you must specify OverlapLength
as the same overlap length used to transform audioIn to a time-frequency representation.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FFTLength — FFT length
[] (default) | positive scalar integer

FFT length, specified as a positive integer. The default, [], means that the FFT length is equal to the
number of rows in the input signal.

Dependencies

To enable this property, set InputDomain to 'Time'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LockPhase — Apply identity phase locking
false (default) | true

Apply identity phase locking, specified as true or false.
Data Types: logical

 audioTimeScaler

3-3

Usage

Syntax
audioOut = aTS(audioIn)

Description

audioOut = aTS(audioIn) applies time-scale modification to the input, audioIn, and returns the
time-scaled output, audioOut.

Input Arguments

audioIn — Input audio
column vector | matrix

Input audio, specified as a column vector or matrix. How audioTimeScaler interprets audioIn
depends on the InputDomain property.

• If InputDomain is set to "Time", audioIn must be a real N-by-1 column vector or N-by-C
matrix. The number of rows, N, must be equal to or less than the hop length (size(audioIn,1)
<= numel(Window)-OverlapLength). Columns of a matrix are interpreted as individual
channels.

• If InputDomain is set to "Frequency", specify audioIn as a real or complex NFFT-by-1 column
vector or NFFT-by-C matrix. The number of rows, NFFT, is the number of points in the DFT
calculation, and is set on the first call to the audio time scaler. NFFT must be greater than or
equal to the window length (size(audioIn,1) >= numel(Window)). Columns of a matrix are
interpreted as individual channels.

Data Types: single | double
Complex Number Support: Yes

Output Arguments

audioOut — Time-stretched audio
column vector | matrix

Time-stretched audio, returned as a column vector or matrix.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics

3 System Objects

3-4

reset Reset internal states of System object

Examples

Apply Time Scale Modification to Streaming Audio

To minimize artifacts caused by windowing, create a square root Hann window capable of perfect
reconstruction. Use iscola to verify the design.

win = sqrt(hann(1024,'periodic'));
overlapLength = 896;
iscola(win,overlapLength)

ans = logical
 1

Create an audioTimeScaler with a speedup factor of 1.5. Change the value of alpha to hear the
effect of the speedup factor.

alpha = ;
aTS = audioTimeScaler(...
 'SpeedupFactor',alpha, ...
 'Window',win, ...
 'OverlapLength',overlapLength);

Create a dsp.AudioFileReader object to read frames from an audio file. The length of frames input
to the audio time scaler must be less than or equal to the analysis hop length defined in
audioTimeScaler. To minimize buffering, set the samples per frame of the file reader to the
analysis hop length.

hopLength = numel(aTS.Window) - overlapLength;
fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',hopLength);

Create an audioDeviceWriter to write frames to your audio device. Use the same sample rate as
the file reader.

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

In an audio stream loop, read a frame the file, apply time scale modification, and then write a frame
to the device.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = aTS(audioIn);
 deviceWriter(audioOut);
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(aTS)

 audioTimeScaler

3-5

Process Frequency-Domain Input

Create a window capable of perfect reconstruction. Use iscola to verify the design.

win = kbdwin(512);
overlapLength = 256;
iscola(win,overlapLength)

ans = logical
 1

Create an audioTimeScaler with a speedup factor of 0.8. Set InputDomain to "Frequency" and
specify the window and overlap length used to transform time-domain audio to the frequency domain.
Set LockPhase to true to increase the fidelity in the time-scaled output.

alpha = 0.8;
timeScaleModification = audioTimeScaler(...
 "SpeedupFactor",alpha, ...
 "InputDomain","Frequency", ...
 "Window",win, ...
 "OverlapLength",overlapLength, ...
 "LockPhase",true);

Create a dsp.AudioFileReader object to read frames from an audio file. Create a dsp.STFT object
to perform a short-time Fourier transform on streaming audio. Specify the same window and overlap
length you used to create the audioTimeScaler. Create an audioDeviceWriter object to write
frames to your audio device.

fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3','SamplesPerFrame',numel(win)-overlapLength);

shortTimeFourierTransform = dsp.STFT('Window',win,'OverlapLength',overlapLength,'FFTLength',numel(win));

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

In an audio stream loop:

1 Read a frame from the file.
2 Input the frame to the STFT. The dsp.STFT object performs buffering.
3 Apply time scale modification.
4 Write the modified audio to your audio device.

while ~isDone(fileReader)
 x = fileReader();
 X = shortTimeFourierTransform(x);
 y = timeScaleModification(X);
 deviceWriter(y);
end

As a best practice, release your objects once done.

release(fileReader)
release(shortTimeFourierTransform)
release(timeScaleModification)
release(deviceWriter)

3 System Objects

3-6

Algorithms
audioTimeScaler uses the same phase vocoder algorithm as stretchAudio and is based on the
descriptions in [1] and [2].

References
[1] Driedger, Johnathan, and Meinard Müller. "A Review of Time-Scale Modification of Music Signals."

Applied Sciences. Vol. 6, Issue 2, 2016.

[2] Driedger, Johnathan. "Time-Scale Modification Algorithms for Music Audio Signals." Master's
thesis, Saarland University, 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
audioDataAugmenter | shiftPitch | stretchAudio

Introduced in R2019b

 audioTimeScaler

3-7

parameterTuner
Tune object parameters while streaming

Syntax
H = parameterTuner(obj)

Description
H = parameterTuner(obj) creates a parameter tuning UI and returns a figure handle, H.

Examples

Tune Parameters of Multiple Objects

parameterTuner enables you to graphically tune parameters of multiple objects. In this example,
you use a crossover filter to split a signal into multiple subbands and then apply different effects to
the subbands.

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an audioDeviceWriter
to write audio to your sound card.

fileReader = dsp.AudioFileReader('FunkyDrums-48-stereo-25secs.mp3', ...
 'PlayCount',2);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Create a crossoverFilter with two crossovers to split the audio into three bands. Call visualize
to plot the frequency responses of the filters. Call parameterTuner to open a UI to tune the
crossover frequencies while streaming.

xFilt = crossoverFilter('SampleRate',fileReader.SampleRate,'NumCrossovers',2);
visualize(xFilt)
parameterTuner(xFilt)

3 System Objects

3-8

Create two compressor objects to apply dynamic range compression on two of the subbands. Call
visualize to plot the static characteristic of both of the compressors. Call parameterTuner to
open UIs to tune the static characteristics.

cmpr1 = compressor('SampleRate',fileReader.SampleRate);
visualize(cmpr1)
parameterTuner(cmpr1)

 parameterTuner

3-9

cmpr2 = compressor('SampleRate',fileReader.SampleRate);
visualize(cmpr2)
parameterTuner(cmpr2)

3 System Objects

3-10

Create an audiopluginexample.Chorus to apply a chorus effect to one of the bands. Call
parameterTuner to open a UI to tune the chorus plugin parameters.

 parameterTuner

3-11

chorus = audiopluginexample.Chorus;
setSampleRate(chorus,fileReader.SampleRate);
parameterTuner(chorus)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Split the audio into three bands using the crossover filter.
3 Apply dynamic range compression to the first and second bands.
4 Apply a chorus effect to the third band.
5 Sum the audio bands.
6 Write the frame of audio to your audio device for listening.

while ~isDone(fileReader)
 audioIn = fileReader();

 [b1,b2,b3] = xFilt(audioIn);

 b1 = cmpr1(b1);
 b2 = cmpr2(b2);
 b3 = process(chorus,b3);

 audioOut = b1+b2+b3;

 deviceWriter(audioOut);

 drawnow limitrate % Process parameterTuner callbacks
end

As a best practice, release your objects once done.

release(fileReader)
release(deviceWriter)

Tune Hosted Audio Plugin Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an audioDeviceWriter
to write audio to your sound card. Use loadAudioPlugin to load an equalizer plugin. If you are
using a Mac, replace the .dll file extension with .vst.

fileReader = dsp.AudioFileReader('FunkyDrums-48-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

pluginPath = fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');
eq = loadAudioPlugin(pluginPath);
setSampleRate(eq,fileReader.SampleRate);

Call parameterTuner to open a UI to tune parameters of the equalizer while streaming.

parameterTuner(eq)

3 System Objects

3-12

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply equalization.
3 Write the frame of audio to your audio device for listening.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = process(eq,audioIn);
 deviceWriter(audioOut);

 drawnow limitrate % Process parameterTuner callbacks
end

As a best practice, release your objects once done.

release(fileReader)
release(deviceWriter)

Tune MATLAB Audio Plugin Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an audioDeviceWriter
to write audio to your sound card. Create an audiopluginexample.Flanger to process the audio
data and set the sample rate.

 parameterTuner

3-13

fileReader = dsp.AudioFileReader('RockGuitar-16-96-stereo-72secs.flac');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

flanger = audiopluginexample.Flanger;
setSampleRate(flanger,fileReader.SampleRate);

Call parameterTuner to open a UI to tune parameters of the flanger while streaming.

parameterTuner(flanger)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply flanging.
3 Write the frame of audio to your audio device for listening.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = process(flanger,audioIn);
 deviceWriter(audioOut);

 drawnow limitrate % Process parameterTuner callbacks
end

As a best practice, release your objects once done.

release(fileReader)
release(deviceWriter)

Tune Compressor Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an audioDeviceWriter
to write audio to your sound card. Create a compressor to process the audio data. Call visualize
to plot the static characteristic of the compressor.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

3 System Objects

3-14

dRC = compressor('SampleRate',fileReader.SampleRate);
visualize(dRC)

Create a dsp.TimeScope to visualize the original and processed audio.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpan',1, ...
 'BufferLength',fileReader.SampleRate*4, ...
 'YLimits',[-1,1], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2,1], ...
 'NumInputPorts',2, ...
 'Title','Original vs. Compressed Audio (top) and Compressor Gain in dB (bottom)');
scope.ActiveDisplay = 2;
scope.YLimits = [-4,0];
scope.YLabel = 'Gain (dB)';

Call parameterTuner to open a UI to tune parameters of the compressor while streaming.

parameterTuner(dRC)

 parameterTuner

3-15

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply dynamic range compression.
3 Write the frame of audio to your audio device for listening.
4 Visualize the original audio, the processed audio, and the gain applied.

While streaming, tune parameters of the dynamic range compressor and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 [audioOut,g] = dRC(audioIn);
 deviceWriter(audioOut);
 scope([audioIn(:,1),audioOut(:,1)],g(:,1));
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(dRC)
release(scope)

3 System Objects

3-16

Input Arguments
obj — Object to tune
audioPlugin object | compressor | expander | limiter | noiseGate | octaveFilter |
crossoverFilter | multibandParametericEQ | graphicEQ | audioOscillator |
wavetableSynthesizer | reverberator

Object to tune, specified as an object that inherits from audioPlugin or one of the following Audio
Toolbox objects:

• compressor
• expander
• limiter
• noiseGate
• octaveFilter
• crossoverFilter

 parameterTuner

3-17

• multibandParametricEQ
• graphicEQ
• audioOscillator
• wavetableSynthesizer
• reverberator

Output Arguments
H — Target figure
Figure object

Target figure, returned as a Figure object.

See Also
Audio Test Bench | audioPlugin

Introduced in R2019a

3 System Objects

3-18

gammatoneFilterBank
Gammatone filter bank

Description
gammatoneFilterBank decomposes a signal by passing it through a bank of gammatone filters
equally spaced on the ERB scale. Gammatone filter banks were designed to model the human
auditory system.

To model the human auditory system:

1 Create the gammatoneFilterBank object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation
Syntax
gammaFiltBank = gammatoneFilterBank
gammaFiltBank = gammatoneFilterBank(range)
gammaFiltBank = gammatoneFilterBank(range,numFilts)
gammaFiltBank = gammatoneFilterBank(range,numFilts,fs)
gammaFiltBank = gammatoneFilterBank(___ ,Name,Value)

Description

gammaFiltBank = gammatoneFilterBank returns a gammatone filter bank. The object filters
data independently across each input channel over time.

 gammatoneFilterBank

3-19

gammaFiltBank = gammatoneFilterBank(range) sets the Range property to range.

gammaFiltBank = gammatoneFilterBank(range,numFilts) sets the NumFilters property to
numFilts.

gammaFiltBank = gammatoneFilterBank(range,numFilts,fs) sets the SampleRate
property to fs.

gammaFiltBank = gammatoneFilterBank(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: gammaFiltBank = gammatoneFilterBank([62.5,12e3],'SampleRate',24e3)
creates a gammatone filter bank, gammaFiltBank, with bandpass filters placed between 62.5 Hz and
12 kHz. gammaFiltBank operates at a sample rate of 24 kHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

FrequencyRange — Frequency range of filter bank (Hz)
[50 8000] (default) | two-element row vector of monotonically increasing values

Frequency range of the filter bank in Hz, specified as a two-element row vector of monotonically
increasing values.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

NumFilters — Number of filters
32 (default) | positive integer scalar

Number of filters in the filter bank, specified as a positive integer scalar.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SampleRate — Input sample rate (Hz)
16000 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

3 System Objects

3-20

Usage

Syntax
audioOut = gammaFiltBank(audioIn)

Description

audioOut = gammaFiltBank(audioIn) applies the gammatone filter bank on the input and
returns the filtered output.

Input Arguments

audioIn — Audio input to filter bank
scalar | vector | matrix

Audio input to the filter bank, specified as a scalar, vector, or matrix. If specified as a matrix, the
columns are treated as independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from filter bank
scalar | vector | matrix | 3-D array

Audio output from the filter bank, returned as a scalar, vector, matrix, or 3-D array. The shape of
audioOut depends on the shape of audioIn and NumFilters. If audioIn is an M-by-N matrix, then
audioOut is returned as an M-by-NumFilters-by-N array. If N is 1, then audioOut is returned as a
matrix.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to gammatoneFilterBank
fvtool Visualize filter bank
freqz Compute frequency response
getCenterFrequencies Center frequencies of filters
getBandwidths Get filter bandwidths
coeffs Get filter coefficients
info Get filter information

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics

 gammatoneFilterBank

3-21

reset Reset internal states of System object

Examples

Apply Gammatone Filterbank

Create a default gammatone filter bank for a 16 kHz sample rate.

fs = 16e3;
gammaFiltBank = gammatoneFilterBank('SampleRate',fs)

gammaFiltBank =

 gammatoneFilterBank with properties:

 FrequencyRange: [50 8000]
 NumFilters: 32
 SampleRate: 16000

Use fvtool to visualize the response of the filter bank.

fvtool(gammaFiltBank)

3 System Objects

3-22

Process white Gaussian noise through the filter bank. Use a spectrum analyzer to view the spectrum
of the filter outputs.

sa = dsp.SpectrumAnalyzer('SampleRate',16e3,...
 'PlotAsTwoSidedSpectrum',false,...
 'FrequencyScale','log',...
 'SpectralAverages',100);

for i = 1:5000
 x = randn(256,1);
 y = gammaFiltBank(x);
 sa(y);
end

Analysis and Synthesis

This example illustrates a nonoptimal but simple approach to analysis and synthesis using
gammatoneFilterBank.

Read in an audio file and listen to its contents.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
sound(audioIn,fs)

 gammatoneFilterBank

3-23

Create a default gammatoneFilterBank. The default frequency range of the filter bank is 50 to
8000 Hz. Frequencies outside of this range are attenuated in the reconstructed signal.

gammaFiltBank = gammatoneFilterBank('SampleRate',fs)

gammaFiltBank =
 gammatoneFilterBank with properties:

 FrequencyRange: [50 8000]
 NumFilters: 32
 SampleRate: 44100

Pass the audio signal through the gammatone filter bank. The output is 32 channels, where the
number of channels is set by the NumFilters property of the gammatoneFilterBank.

audioOut = gammaFiltBank(audioIn);

[N,numChannels] = size(audioOut)

N = 685056

numChannels = 32

To reconstruct the original signal, sum the channels. Listen to the result.

reconstructedSignal = sum(audioOut,2);
sound(reconstructedSignal,fs)

The gammatone filter bank introduced various group delays for the output channels, which results in
poor reconstruction. To compensate for the group delay, remove the beginning delay from the
individual channels and zero-pad the ends of the channels. Use info to get the group delays. Listen
to the group delay-compensated reconstruction.

infoStruct = info(gammaFiltBank);
groupDelay = round(infoStruct.GroupDelays); % round for simplicity

audioPadded = [audioOut;zeros(max(groupDelay),gammaFiltBank.NumFilters)];

for i = 1:gammaFiltBank.NumFilters
 audioOut(:,i) = audioPadded(groupDelay(i)+1:N+groupDelay(i),i);
end

reconstructedSignal = sum(audioOut,2);
sound(reconstructedSignal,fs)

Create Gammatone Spectrogram

Read in an audio signal and convert it to mono for easy visualization.

[audio,fs] = audioread('WaveGuideLoopOne-24-96-stereo-10secs.aif');
audio = mean(audio,2);

Create a gammatoneFilterBank with 64 filters that span the range 62.5 to 20,000 Hz. Pass the
audio signal through the filter bank.

3 System Objects

3-24

gammaFiltBank = gammatoneFilterBank('SampleRate',fs, ...
 'NumFilters',64, ...
 'FrequencyRange',[62.5,20e3]);

audioOut = gammaFiltBank(audio);

Calculate the energy-per-band using 50 ms windows with 25 ms overlap. Use dsp.AsyncBuffer to
divide the signals into overlapped windows and then to log the RMS value of each window for each
channel.

samplesPerFrame = round(0.05*fs);
samplesOverlap = round(0.025*fs);

buff = dsp.AsyncBuffer(numel(audio));
write(buff,audioOut.^2);

sink = dsp.AsyncBuffer(numel(audio));

while buff.NumUnreadSamples > 0
 currentFrame = read(buff,samplesPerFrame,samplesOverlap);
 write(sink,mean(currentFrame,1));
end

Convert the energy values to dB. Plot the energy-per-band over time.

gammatoneSpec = read(sink);
D = 20*log10(gammatoneSpec');

timeVector = ((samplesPerFrame-samplesOverlap)/fs)*(0:size(D,2)-1);
cf = getCenterFrequencies(gammaFiltBank)./1e3;

surf(timeVector,cf,D,'EdgeColor','none')
axis([timeVector(1) timeVector(end) cf(1) cf(end)])
view([0 90])
caxis([-150,-60])
colorbar
xlabel('Time (s)')
ylabel('Frequency (kHz)')

 gammatoneFilterBank

3-25

Algorithms
A gammatone filter bank is often used as the front end of a cochlea simulation, which transforms
complex sounds into a multichannel activity pattern like that observed in the auditory nerve.[2] The
gammatoneFilterBank follows the algorithm described in [1]. The algorithm is an implementation
of an idea proposed in [2]. The design of the gammatone filter bank can be described in two parts: the
filter shape (gammatone) and the frequency scale. The equivalent rectangular bandwidth (ERB) scale
defines the relative spacing and bandwidth of the gammatone filters. The derivation of the ERB scale
also provides an estimate of the auditory filter response which closely resembles the gammatone
filter.

3 System Objects

3-26

Frequency Scale

The ERB scale was determined using the notched-noise masking method. This method involves a
listening test wherein notched noise is centered on a tone. The power of the tone is tuned, and the
audible threshold (the power required for the tone to be heard) is recorded. The experiment is
repeated for different notch widths and center frequencies.

The notched-noise method assumes the audible threshold corresponds to a constant signal-to-masker
ratio at the output of the theoretical auditory filter. That is, the ratio of the power of the fc tone and
the shaded area is constant. Therefore, the relationship between the audible threshold and 2Δf (the
notch bandwidth) is linearly related to the relationship between the noise passed through the filter
and 2Δf.

 gammatoneFilterBank

3-27

The derivative of the function relating Δf to the noise passed through the filter estimates the auditory
filter shape. Because Δf has an inverse relationship with the noise power passed through the filter,
the derivative of the function must be multiplied by –1. The resulting auditory filter shape is usually
approximated as a roex filter.

The equivalent rectangular bandwidth of the auditory filter is defined as the width of a rectangular
filter required to pass the same noise power as the auditory filter.

3 System Objects

3-28

[4] defines ERB as a function of center frequency for young listeners with normal hearing and a
moderate noise level:

ERB = 24.7(0.00437fc + 1)

The ERB scale (ERBs) is an extension of the relationship between ERB and center frequency, derived
by integrating the reciprocal of the ERB function:

ERBs = 21.4log10(0.00437f + 1)

To design a gammatone filter bank, [2] suggests distributing the center frequencies of the filters in
proportion to their bandwidth. To accomplish this, gammatoneFilterBank defines the center
frequencies as linearly spaced on the ERB scale, covering the specified frequency range with the
desired number of filters. You can specify the frequency range and desired number of filters using the
FrequencyRange and NumFilters properties.

Gammatone Filter

The gammatone filter was introduced in [3]. The continuous impulse response is:

g(t) = atn− 1e−2πbtcos(2πfct + ϕ)

where

• a –– amplitude factor
• t –– time in seconds
• n –– filter order (set to four to model human hearing)
• fc–– center frequency
• b –– bandwidth, set to 1.019*hz2erb(fc).
• ϕ –– phase factor

 gammatoneFilterBank

3-29

The gammatone filter is similar to the roex filter derived from the notched-noise experiment.
gammatoneFilterBank implements the digital filter as a cascade of four second-order sections, as
described in [1].

References
[1] Slaney, Malcolm. "An Efficient Implementation of the Patterson-Holdworth Auditory Filter Bank."

Apple Computer Technical Report 35, 1993.

[2] Patterson, R.d., K. Robinson, J. Holdsworth, D. Mckeown, C. Zhang, and M. Allerhand. "Complex
Sounds and Auditory Images." Auditory Physiology and Perception. 1992, pp. 429–446.

[3] Aertsen, A. M. H. J., and P. I. M. Johannesma. "Spectro-temporal Receptive Fields of Auditory
Neurons in the Grassfrog." Biological Cybernetics. Vol. 38, Issue 4, 1980, pp. 223–234.

[4] Glasberg, Brian R., and Brian CJ Moore. "Derivation of Auditory Filter Shapes from Notched-Noise
Data." Hearing Research. Vol. 47. Issue 1-2, 1990, pp. 103 –138.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
crossoverFilter | octaveFilterBank

Introduced in R2019a

3 System Objects

3-30

coeffs
Get filter coefficients

Syntax
[B,A] = coeffs(obj)

Description
[B,A] = coeffs(obj) returns the coefficients of the filters created by obj.

Examples

Get graphicEQ Coefficients

Cascade Structure

Create a graphicEQ and then call coeffs to get its coefficients. The coefficients are returned as
second-order sections. The dimensions of B are 3-by-(M * EQOrder / 2), where M is the number of
bandpass equalizers. The dimensions of A are 2-by-(M * EQOrder / 2). The leading unity coefficient is
not returned.

fs = 44.1e3;
x = 0.1*randn(fs*5,1);
equalizer = graphicEQ('SampleRate',fs, ...
 'Gains',[-10,-10,10,10,-10,-10,10,10,-10,-10], ...
 'EQOrder',2);

[B,A] = coeffs(equalizer);

Compare using filter with coefficients B and A and the output of graphicEQ. For simplicity,
compare output channel five only.

channelToCompare = 5;
y = x;
for section = 1:equalizer.EQOrder/2
 for i = 1:numel(equalizer.Gains)
 y = filter(B(:,i*section),[1;A(:,i*section)],y);
 end
end
audioOut_filter = y;

audioOut = equalizer(x);

subplot(2,1,1)
plot(abs(fft(audioOut)))
title('graphicEQ')
ylabel('Magnitude Response')

subplot(2,1,2)
plot(abs(fft(audioOut_filter)))

 coeffs

3-31

title('Filter function')
xlabel('Bin')
ylabel('Magnitude Response')

Get gammatoneFilterBank Coefficients

Create the default gammatoneFilterBank, and then call coeffs to get its coefficients. Each
gammatone filter is an eighth-order IIR filter composed of a cascade of four second-order sections.
The size of B is 4-by-3-by- NumFilters. The size of A is 4-by-2-by- NumFilters.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

gammaFiltBank = gammatoneFilterBank('SampleRate',fs);

[B,A] = coeffs(gammaFiltBank);

Compare using filter with coefficients B and A and the output of gammaFiltBank. For simplicity,
compare output channel eight only.

channelToCompare = 8;
y1 = filter(B(1,:,channelToCompare),[1,A(1,:,channelToCompare)],audioIn);
y2 = filter(B(2,:,channelToCompare),[1,A(2,:,channelToCompare)],y1);
y3 = filter(B(3,:,channelToCompare),[1,A(3,:,channelToCompare)],y2);
audioOut_filter = filter(B(4,:,channelToCompare),[1,A(4,:,channelToCompare)],y3);

audioOut = gammaFiltBank(audioIn);

3 System Objects

3-32

t = (0:(size(audioOut,1)-1))'/fs;

subplot(2,1,1)
plot(t,audioOut(:,channelToCompare))
title('Gammatone Filter Bank')
ylabel('Amplitude')

subplot(2,1,2)
plot(t,audioOut_filter)
title('Filter Function')
xlabel('Time (s)')
ylabel('Amplitude')

Get octaveFilterBank Coefficients

Create the default octaveFilterBank, and then call coeffs to get its coefficients. The coefficients
are returned as fourth-order sections. The dimensions of B and A are T-by-5-by-M , where T is the
number of sections and M is the number of filters.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

octFiltBank = octaveFilterBank('SampleRate',fs);

[B,A] = coeffs(octFiltBank);

 coeffs

3-33

Compare using filter with coefficients B and A and the output of octaveFilterBank. For
simplicity, compare output channel eight only.

channelToCompare = 5;
y1 = filter(B(1,:,channelToCompare),A(1,:,channelToCompare),audioIn);
audioOut_filter = y1;

audioOut = octFiltBank(audioIn);

subplot(2,1,1)
plot(audioOut(:,channelToCompare))
title('Octave Filter Bank')

subplot(2,1,2)
plot(audioOut_filter)
title('Filter function')

Input Arguments
obj — Object to get filter coefficients from
gammatoneFilterBank | octaveFilterBank | graphicEQ

Object to get filter coefficients from, specified as an object of gammatoneFilterBank,
octaveFilterBank, or graphicEQ.

3 System Objects

3-34

Output Arguments
B — Numerator filter coefficients
matrix | 3-D array

Numerator filter coefficients, returned as a 2-D matrix or 3-D array, depending on obj.
Data Types: single | double

A — Denominator filter coefficients
matrix | 3-D array

Numerator filter coefficients, returned as a 2-D matrix or 3-D array, depending on obj.
Data Types: single | double

See Also
gammatoneFilterBank | graphicEQ | octaveFilterBank

Introduced in R2019a

 coeffs

3-35

freqz
Compute frequency response

Syntax
[H,f] = freqz(obj)
[H,f] = freqz(obj,ind)
[H,f] = freqz(___ ,Name,Value)
freqz(___)

Description
[H,f] = freqz(obj) returns a matrix of complex frequency responses for each filter designed by
obj.

[H,f] = freqz(obj,ind) returns the frequency response of filters with indices corresponding to
the elements in vector ind.

[H,f] = freqz(___ ,Name,Value) specifies options using one or more Name,Value pair
arguments.

freqz(___) with no output arguments plots the frequency response of the filter bank.

Examples

Frequency Response of gammatoneFilterBank

Create a gammatoneFilterBank object. Call freqz to get the complex frequency response, H, of
the filter bank and a vector of frequencies, f, at which the response is calculated. Plot the magnitude
frequency response of the filter bank.

gammaFiltBank = gammatoneFilterBank;
[H,f] = freqz(gammaFiltBank);

plot(f,abs(H))
xlabel('Frequency (Hz)')

3 System Objects

3-36

To get the frequency response of a subset of filters in the filter bank, specify the second argument as
a row vector of indices between one and the number of filters in the filter bank. Get the frequency
response of the 10th filter in the filter bank and plot the magnitude frequency response.

[H,f] = freqz(gammaFiltBank,10);

plot(f,abs(H))
xlabel('Frequency (Hz)')

 freqz

3-37

To specify the number of FFT points used to compute the frequency response, use the NFFT name-
value pair. Specify that the frequency response is calculated using a 128-point FFT. Plot the
magnitude frequency response.

[H,f] = freqz(gammaFiltBank,'NFFT',128);

plot(f,abs(H))
xlabel('Frequency (Hz)')

3 System Objects

3-38

To visualize the magnitude frequency response only, call freqz without any output arguments. Plot
the magnitude frequency response, in dB, of filters 20, 21, and 22 using a 1024-point DFT.

freqz(gammaFiltBank,[20,21,22],'NFFT',1024)

 freqz

3-39

Frequency Response of octaveFilterBank

Create an octaveFilterBank object. Call freqz to get the complex frequency response, H, of the
filter bank and a vector of frequencies, f, at which the response is calculated. Plot the magnitude
frequency response in dB.

octFiltBank = octaveFilterBank;
[H,f] = freqz(octFiltBank);

plot(f,20*log10(abs(H)))
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
set(gca,'XScale','log')
axis([10 octFiltBank.SampleRate/2 -100 2])

3 System Objects

3-40

To get the frequency response of a subset of filters in the filter bank, specify the second argument as
a row vector of indices between one and the number of filters in the filter bank. Get the frequency
response of the 5th filter in the filter bank and plot the magnitude frequency response in dB.

[H,f] = freqz(octFiltBank,5);

plot(f,20*log10(abs(H)))
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
set(gca,'XScale','log')
axis([10 octFiltBank.SampleRate/2 -100 2])

 freqz

3-41

To specify the number of FFT points used to compute the frequency response, use the NFFT name-
value pair. Specify that the frequency response is calculated using a 8192-point FFT. Plot the
magnitude frequency response in dB.

[H,f] = freqz(octFiltBank,'NFFT',8192);

plot(f,20*log10(abs(H)))
xlabel('Frequency (Hz)')
ylabel('Magnitude (dB)')
set(gca,'XScale','log')
axis([10 octFiltBank.SampleRate/2 -100 2])

3 System Objects

3-42

To visualize the magnitude frequency response only, call freqz without any output arguments. Plot
the magnitude frequency response, in dB, of filters 4, 5, and 6 using a 1024-point DFT.

freqz(octFiltBank,[4,5,6],'NFFT',1024)

 freqz

3-43

Input Arguments
obj — Object to get filter frequency responses from
gammatoneFilterBank | octaveFilterBank

Object to get filter frequency responses from, specified as an object of gammatoneFilterBank or
octaveFilterBank.

ind — Indices of filters to calculate frequency responses from
1:N (default) | row vector of integers with values in the range [1, N]

Indices of filters to calculate frequency responses from, specified as a row vector of integers with
values in the range [1, N]. N is the total number of filters designed by obj.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NFFT',2048

NFFT — Number of DFT bins
8192 (default) | positive integer

Number of DFT bins, specified as a positive integer.

3 System Objects

3-44

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
H — Complex frequency response of each filter
matrix

Complex frequency response of each filter, returned as an M-by-N matrix. M is the number of DFT
bins, specified by NFFT. N is the number of filters, which is either length(ind) or, if ind is not
specified, the total number of filters in the filter bank.
Data Types: double

f — Frequencies at which response is computed (Hz)
column vector

Frequencies at which the response is computed in Hz, returned as a column vector.
Data Types: double

See Also
fvtool | gammatoneFilterBank | octaveFilterBank

Introduced in R2019a

 freqz

3-45

fvtool
Visualize filter bank

Syntax
fvtool(obj)
fvtool(obj,ind)
fvtool(___ ,Name,Value)

Description
fvtool(obj) visualizes the filters in the filter bank using the Filter Visualization Tool (FVTool).

fvtool(obj,ind) visualizes the filters corresponding to the elements in the vector ind.

fvtool(___ ,Name,Value) specifies options using one or more Name,Value pair arguments.

Examples

View octaveFilterBank in FVTool

Create an octaveFilterBank object. Call fvtool to visualize the filter bank.

octFiltBank = octaveFilterBank;
fvtool(octFiltBank);

3 System Objects

3-46

To visualize a subset of filters in the filter bank, specify the second argument as a row vector of
indices between one and the number of filters in the filter bank. If not specified, fvtool visualizes 1
to N filters of the filter bank, where N is the smallest of octFiltBank.NumFilters and 64.
Visualize the ninth filter.

fvtool(octFiltBank,9);

 fvtool

3-47

To specify the number of FFT points used to compute the frequency response, use the NFFT name-
value pair. Specify that the frequency response is calculated using a 8192-point FFT.

fvtool(octFiltBank,'NFFT',8192);

3 System Objects

3-48

View gammatoneFilterBank in FVTool

Create a gammatoneFilterBank object. Call fvtool to visualize the filter bank.

gammaFiltBank = gammatoneFilterBank;
fvtool(gammaFiltBank);

 fvtool

3-49

To visualize a subset of filters in the filter bank, specify the second argument as a row vector of
indices between one and the number of filters in the filter bank. If not specified, fvtool visualizes 1
to N filters of the filter bank, where N is the smallest of gammaFiltBank.NumFilters and 64.
Visualize the ninth filter.

fvtool(gammaFiltBank,9);

3 System Objects

3-50

To specify the number of FFT points used to compute the frequency response, use the NFFT name-
value pair. Specify that the frequency response is calculated using a 8192-point FFT.

fvtool(gammaFiltBank,'NFFT',8192);

 fvtool

3-51

Input Arguments
obj — Object to get filter frequency responses from
gammatoneFilterBank | octaveFilterBank

Object to get filter frequency responses from, specified as an object of gammatoneFilterBank or
octaveFilterBank.

ind — Indices of filters to calculate frequency responses from
1:max(N,64) (default) | row vector of integers with values in the range [1, N]

Indices of filters to calculate frequency responses from, specified as a row vector of integers with
values in the range [1, N]. N is the total number of filters designed by obj.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NFFT',2048

NFFT — Number of DFT bins
8192 (default) | positive integer

Number of DFT bins, specified as a positive integer.

3 System Objects

3-52

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

See Also
gammatoneFilterBank | octaveFilterBank

Introduced in R2019a

 fvtool

3-53

getBandedgeFrequencies
Get filter bandedges

Syntax
bandEdges = getBandedgeFrequencies(obj)
[bandEdges,centerFrequencies] = getBandedgeFrequencies(obj)

Description
bandEdges = getBandedgeFrequencies(obj) returns the bandedge frequencies of the filters
designed by obj. If there are M filters, then there are M center frequencies and M+1 band edge
frequencies.

[bandEdges,centerFrequencies] = getBandedgeFrequencies(obj) returns the center
frequencies of the filters designed by obj.

Examples

Get Bandedge Frequencies

Create a default octaveFilterBank object.

octFiltBank = octaveFilterBank;

Call getBandedgeFrequencies to return a vector of bandedge frequencies.

bE = getBandedgeFrequencies(octFiltBank)

bE = 1×11
104 ×

 0.0022 0.0045 0.0089 0.0178 0.0355 0.0708 0.1413 0.2818 0.5623 1.1178 2.2050

Call freqz to get the frequency response of the filter bank. Plot the magnitude frequency response.
Use the bandedge frequencies to label the frequency axis.

[H,f] = freqz(octFiltBank);
semilogx(f,abs(H))
xticks(round(bE))
xlabel('Frequency (Hz)')
ylabel('Magnitude')
grid on
h = gcf;
set(h,'Position',[h.Position(1) h.Position(2) h.Position(3)*2 h.Position(4)])

3 System Objects

3-54

Input Arguments
obj — Object to get filter information from
octaveFilterBank object

Object to get filter information from, specified as an object of octaveFilterBank.

Output Arguments
bandEdges — Bandedges of filters (Hz)
row vector

Bandedges of filters designed by obj in Hz, returned as a row vector.
Data Types: double | single

centerFrequencies — Center frequencies of filters (Hz)
row vector

Center frequencies of filters designed by obj in Hz, returned as a row vector.
Data Types: double | single

See Also
octaveFilterBank

Introduced in R2019a

 getBandedgeFrequencies

3-55

getCenterFrequencies
Center frequencies of filters

Syntax
cf = getCenterFrequencies(obj)

Description
cf = getCenterFrequencies(obj) returns the center frequencies of the filters created by obj,
in Hz.

Examples

Center Frequencies of gammatoneFilterBank

Create a gammatoneFilterBank and get the center frequencies of the filters in the filter bank.

gammaFiltBank = gammatoneFilterBank;

cf = getCenterFrequencies(gammaFiltBank)

cf = 1×32
103 ×

 0.0500 0.0822 0.1181 0.1581 0.2027 0.2525 0.3081 0.3700 0.4391 0.5162 0.6022 0.6980 0.8050 0.9242 1.0573 1.2056 1.3711 1.5557 1.7616 1.9912 2.2473 2.5329 2.8515 3.2069 3.6032 4.0453 4.5384 5.0883 5.7017 6.3858 7.1489 8.0000

Center frequencies of a gammatone filter bank are spaced evenly on the ERB scale. Convert the
center frequencies vector to the ERB scale and calculate the differences between center frequencies.

diff(hz2erb(cf))

ans = 1×31

 1.0130

Center Frequencies of octaveFilterBank

Create an octaveFilterBank and get the center frequencies of the filters in the filter bank.

octFiltBank = octaveFilterBank;

cf = getCenterFrequencies(octFiltBank)

cf = 1×10
104 ×

3 System Objects

3-56

 0.0032 0.0063 0.0126 0.0251 0.0501 0.1000 0.1995 0.3981 0.7943 1.5729

Center frequencies of an octave filter bank are spaced evenly on a logarithmic scale. Convert the
center frequencies vector to the log scale and calculate the differences between center frequencies.

diff(log10(cf))

ans = 1×9

 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.2967

Get Center Frequencies of Octave Filter Bank Used in splMeter

Create an octave bandwidth splMeter and get the center frequencies of the octave filter bank.
Round the center frequencies to two significant digits for display purposes.

SPL = splMeter('SampleRate',44100,'Bandwidth','1 octave');
cf = getCenterFrequencies(SPL);
round(cf,2,'significant')

ans = 1×10

 32 63 130 250 500 1000 2000 4000 7900 16000

Input Arguments
obj — Object to get filter bank center frequencies from
gammatoneFilterBank | octaveFilterBank | splMeter

Object to get filter bank center frequencies from, specified as an object of gammatoneFilterBank,
octaveFilterBank, or splMeter.

Output Arguments
cf — Filter bank center frequencies (Hz)
scalar | vector

Filter bank center frequencies in Hz, returned a scalar or vector.

See Also
gammatoneFilterBank | octaveFilterBank | splMeter

Introduced in R2019a

 getCenterFrequencies

3-57

getBandwidths
Get filter bandwidths

Syntax
bw = getBandwidths(obj)

Description
bw = getBandwidths(obj) returns the bandwidths of the filters created by obj, in Hz.

Examples

Get Filter Bandwidths of gammatoneFilterBank

Create a default gammatoneFilterBank. Call getBandwidths to get the bandwidths of the filters,
in Hz.

gammaFiltBank = gammatoneFilterBank;

bw = getBandwidths(gammaFiltBank)

bw = 1×32

 30.6688 34.2080 38.1555 42.5583 47.4691 52.9463 59.0554 65.8692 73.4690 81.9456 91.3999 101.9449 113.7064 126.8246 141.4561 157.7754 175.9773 196.2789 218.9225 244.1782 272.3473 303.7659 338.8089 377.8944 421.4887 470.1119 524.3441 584.8325 652.2986 727.5474 811.4768 905.0880

Input Arguments
obj — Object to get filter bandwidth from
gammatoneFilterBank

Object to get filter bandwidth from, specified as an object of gammatoneFilterBank.

Output Arguments
bw — Filter bandwidths (Hz)
scalar | vector

Filter bandwidths in Hz, returned a scalar or vector.

See Also
gammatoneFilterBank

Introduced in R2019a

3 System Objects

3-58

getGroupDelays
Get group delays

Syntax
groupDelays = getGroupDelays(obj)
[groupDelays,centerFrequencies] = getGroupDelays(obj)

Description
groupDelays = getGroupDelays(obj) returns the group delay of each filter at its center
frequency.

[groupDelays,centerFrequencies] = getGroupDelays(obj) returns the center frequency of
each filter.

Examples

Get Group Delays

Create a default octaveFilterBank object. Call getGroupDelays to get the group delay of each
octave filter at its center frequency.

octFiltBank = octaveFilterBank;
[gd,cf] = getGroupDelays(octFiltBank);

Plot the group delay as a function of filter center frequency.

loglog(cf,gd,'k-',cf,gd,'bo')
grid on
xlabel('Frequency (Hz)')
ylabel('Delay (samples)')
xticks(round(cf))
yticks(round(fliplr(gd)))

 getGroupDelays

3-59

Input Arguments
obj — Object to get group delays from
octaveFilterBank

Object to get group delays from, specified as an object of octaveFilterBank.

Output Arguments
groupDelays — Group delays (samples)
row vector

Group delay of each filter at its center frequency in samples, returned as a row vector.

centerFrequencies — Center frequencies of filters (Hz)
row vector

Center frequencies of filters designed by obj in Hz, returned as a row vector.
Data Types: double | single

See Also
octaveFilterBank

3 System Objects

3-60

Introduced in R2019a

 getGroupDelays

3-61

octaveFilterBank
Octave and fractional-octave filter bank

Description
octaveFilterBank decomposes a signal into octave or fractional-octave subbands. An octave-band
is a frequency band where the highest frequency is twice the lowest frequency. Octave-band and
fractional octave-band filters are commonly used to mimic how humans perceive loudness.

To apply a bank of octave-band or fractional octave-band filters:

1 Create the octaveFilterBank object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
octFiltBank = octaveFilterBank
octFiltBank = octaveFilterBank(bandwidth)
octFiltBank = octaveFilterBank(bandwidth,fs)
octFiltBank = octaveFilterBank(___ ,Name,Value)

Description

octFiltBank = octaveFilterBank returns an octave filter bank. The objects filters data
independently across each input channel over time.

3 System Objects

3-62

octFiltBank = octaveFilterBank(bandwidth) sets the Bandwidth property to bandwidth.

octFiltBank = octaveFilterBank(bandwidth,fs) sets the SampleRate property to fs.

octFiltBank = octaveFilterBank(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: octFiltBank = octaveFilterBank('1/2 octave','FrequencyRange',
[62.5,12000]) creates a ½ octave-band filter bank, octFiltBank, with bandpass filters placed
between 62.5 Hz and 12,000 Hz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

Bandwidth — Filter bandwidth (octave)
'1 octave' (default) | '2/3 octave' | '1/2 octave' | '1/3 octave' | '1/6 octave' | '1/12
octave' | '1/24 octave' | '1/48 octave'

Filter bandwidth in octaves, specified as '1 octave', '2/3 octave', '1/2 octave', '1/3
octave', '1/6 octave', '1/12 octave', '1/24 octave', or '1/48 octave'.

Tunable: No
Data Types: char | string

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

FrequencyRange — Frequency range of filter bank (Hz)
[22 22050] (default) | two-element row vector of positive monotonically increasing values

Frequency range of the filter bank in Hz, specified as a two-element row vector of positive
monotonically increasing values. The filter bank center frequencies are placed according to the
Bandwidth, RefererenceFrequency, and OctaveRatioBase properties. Filters that have a center
frequency outside FrequencyRange are ignored.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ReferenceFrequency — Reference frequency (Hz)
1000 (default) | positive integer scalar

 octaveFilterBank

3-63

Reference frequency of the filter bank in Hz, specified as a positive integer scalar. The reference
frequency defines one of the center frequencies. All other center frequencies are set relative to the
reference frequency.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FilterOrder — Order of octave filters
2 (default) | even integer

Order of the octave filters, specified as an even integer. The filter order applies to each individual
filter in the filter bank.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OctaveRatioBase — Octave ratio base
10 (default) | 2

Octave ratio base, specified as 10 or 2. The octave ratio base determines the distribution of the
center frequencies of the octave filters. The ANSI S1.11 standard recommends base 10. Base 2 is
popular for music applications. Base 2 defines an octave as a factor of 2, and base 10 defines an
octave as a factor of 100.3.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
audioOut = octFiltBank(audioIn)

Description

audioOut = octFiltBank(audioIn) applies the octave filter bank on the input and returns the
filtered output.

Input Arguments

audioIn — Audio input to octave filter bank
scalar | vector | matrix

Audio input to the octave filter bank, specified as a scalar, vector, or matrix. If specified as a matrix,
the columns are treated as independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from octave filter bank
matrix | 3-D array

3 System Objects

3-64

Audio output from octave filter bank, returned as a scalar, vector, matrix, or 3-D array. The shape of
audioOut depends on the shape of audioIn and the number of filters in the filter bank. If M is the
number of filters, and audioIn is an L-by-N matrix, then audioOut is returned as an L-by-M-by-N
array. If N is 1, then audioOut is a matrix.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to octaveFilterBank
coeffs Get filter coefficients
freqz Compute frequency response
fvtool Visualize filter bank
getBandedgeFrequencies Get filter bandedges
getCenterFrequencies Center frequencies of filters
getGroupDelays Get group delays
info Get filter information

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Apply Octave Filter Bank

Create a 1/3-octave filter bank for a signal sampled at 48 kHz. Set the frequency range to [18
22000] Hz.

octFilBank = octaveFilterBank('1/3 octave',48000, ...
 'FrequencyRange',[18 22000]);

Use fvtool to visualize the response of the filter bank. To get a high-resolution view on the lower
frequencies, set the scale of the x-axis to log and NFFT to 2^16. Add a legend indicating the filter
bank center frequencies.

fvtool(octFilBank,'NFFT',2^16);
set(gca,'XScale','log')
axis([.01 24 -20 1])

fc = getCenterFrequencies(octFilBank);
fcc = cell(size(fc));
for ii = find(fc<1000)
 fcc{ii} = sprintf('%.0f',round(fc(ii),2,'significant'));
end

 octaveFilterBank

3-65

for ii = find(fc>=1000)
 fcc{ii} = sprintf('%.1fk',fc(ii)/1000);
end
legend(fcc,'Location','eastoutside')

Process white Gaussian noise through the filter bank. Use a spectrum analyzer to view the spectrum
of the filter outputs.

sa = dsp.SpectrumAnalyzer('SampleRate',16e3,...
 'PlotAsTwoSidedSpectrum',false,...
 'FrequencyScale','log',...
 'SpectralAverages',100);

for index = 1:500
 x = randn(256,1);
 y = octFilBank(x);
 sa(y);
end

3 System Objects

3-66

Analysis and Synthesis

The octaveFilterBank enables good reconstruction of a signal after analyzing or modifying its
subbands.

Read in an audio file and listen to its contents.

[audioIn,fs] = audioread('RandomOscThree-24-96-stereo-13secs.aif');
sound(audioIn,fs)

Create a default octaveFilterBank. The default frequency range of the filter bank is 22 to 22,050
Hz. Frequencies outside of this range are attenuated in the reconstructed signal.

octFiltBank = octaveFilterBank('SampleRate',fs);

Pass the audio signal through the octave filter bank. The number of outputs depends on the
FrequencyRange, ReferenceFrequency, OctaveRatioBase, and Bandwidth properties of the
octave filter bank. Each channel of the input is passed through a filter bank independently and is
returned as a separate page in the output.

audioOut = octFiltBank(audioIn);

[N,numFilters,numChannels] = size(audioOut)

 octaveFilterBank

3-67

N = 1265935

numFilters = 10

numChannels = 2

The octave filter bank introduces various group delays. To compensate for the group delay, remove
the beginning delay from the individual filter outputs and zero-pad the ends of the signals so that they
are all the same size. Use getGroupDelays to get the group delays. Listen to the group delay-
compensated reconstruction.

groupDelay = round(getGroupDelays(octFiltBank)); % round for simplicity

audioPadded = [audioOut;zeros(max(groupDelay),numFilters,numChannels)];

for i = 1:numFilters
 audioOut(:,i,:) = audioPadded(groupDelay(i)+1:N+groupDelay(i),i,:);
end

To reconstruct the original signal, sum the outputs of the filter banks for each channel. Use squeeze
to move the second channel from the third dimension to the second in the reconstructed signal.

reconstructedSignal = squeeze(sum(audioOut,2));
sound(reconstructedSignal,fs)

Algorithms
The octaveFilterBank is implemented as a parallel structure of octave filters. Individual octave
filters are designed as described by octaveFilter. By default, the octave filter bank center
frequencies are placed as specified by the ANSI S1.11-2004 standard. You can modify the filter
placements using the Bandwidth, FrequencyRange, ReferenceFrequency, and
OctaveRatioBase properties.

References
[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice Hall,

2010.

[2] Acoustical Society of America. American National Standard Specification for Octave-Band and
Fractional-Octave-Band Analog and Digital Filters. ANSI S1.11-2004. Melville, NY: Acoustical
Society of America, 2009.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
gammatoneFilterBank | graphicEQ | octaveFilter | splMeter

3 System Objects

3-68

Topics
“Octave-Band and Fractional Octave-Band Filters”

Introduced in R2019a

 octaveFilterBank

3-69

splMeter
Measure sound pressure level of audio signal

Description
The splMeter System object computes sound pressure level measurements. The object returns
measurements for:

• frequency-weighted sound levels
• fast or slow time-weighted sound levels
• equivalent-continuous sound levels
• peak sound levels
• maximum sound levels

To implement SPL metering:

1 Create the splMeter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
SPL = splMeter
SPL = splMeter(Name,Value)

Description

SPL = splMeter creates a System object, SPL, that performs SPL metering.

3 System Objects

3-70

SPL = splMeter(Name,Value) sets each property Name to the specified Value. Unspecified
properties have default values.
Example: SPL = splMeter('FrequencyWeighting','C-weighting','SampleRate',12000)
creates a System object, SPL, that performs C-weighting and operates at 12 kHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

Bandwidth — Width of analysis bands
'Full band' (default) | '1 octave' | '2/3 octave' | '1/3 octave'

Width of analysis bands, specified as 'Full band', '1 octave', '2/3 octave', or '1/3
octave'. If Bandwidth is specified as 'Full band', the SPL meter returns one set of
measurements for the whole frequency band. If Bandwidth is specified as '1 octave', '2/3
octave', or '1/3 octave', the SPL meter returns one set of measurements per octave or
fractional-octave band.

Tunable: No
Data Types: char | string

OctaveFilterOrder — Order of octave filter
2 (default) | even integer

Order of the octave filter, specified as an even integer.

Tunable: No

Dependencies

To enable this property, set Bandwidth to '1 octave', '2/3 octave', or '1/3 octave'.
Data Types: single | double

FrequencyWeighting — Frequency weighting applied to input
'A-weighting' (default) | 'C-weighting' | 'Z-weighting' (no weighting)

Frequency weighting applied to input, specified as 'A-weighting', 'C-weighting', or 'Z-
weighting', where Z-weighting corresponds to no weighting. The frequency weighting is designed
and implemented using the weightingFilter System object.

Tunable: No
Data Types: char | string

TimeWeighting — Time weighting (s)
'Fast' (default) | 'Slow'

 splMeter

3-71

Time weighting, in seconds, for calculation of time-weighted sound level and maximum time-weighted
sound level, specified as 'Fast' or 'Slow'. The TimeWeighting property is used to specify the
coefficient of a lowpass filter.

• 'Fast' – 1/8
• 'Slow' – 1

Tunable: Yes
Data Types: char | string

PressureReference — Reference pressure for dB calculations (Pa)
2e-5 (default) | positive scalar

Reference pressure for dB calculations in Pa, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

TimeInterval — Time interval for reporting level measurements (s)
1 (default) | positive scalar

Time interval, in seconds, to report equivalent-continuous, peak, and maximum time-weighted sound
levels, specified as a positive scalar integer.

Tunable: No
Data Types: single | double

CalibrationFactor — Scalar calibration factor multiplied by input
1 (default) | positive finite scalar

Scalar calibration factor multiplied by input.

To set the calibration factor using a reference tone, use calibrate.

Tunable: No
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: No
Data Types: single | double

Usage

Syntax
[Lt,Leq,Lpeak,Lmax] = SPL(audioIn)

3 System Objects

3-72

Description

[Lt,Leq,Lpeak,Lmax] = SPL(audioIn) returns measurement values for the time-weighted (Lt)
sound level of the current input frame, audioIn. The object also returns the equivalent-continuous
(Leq), peak (Lpeak), and maximum time-weighted (Lmax) sound levels of the input to your SPL
meter.

Input Arguments

audioIn — Audio input to SPL meter
column vector | matrix

Audio input to the SPL meter, specified as a column vector or matrix. The columns of the matrix are
treated as independent audio channels.
Data Types: single | double

Output Arguments

Lt — Time-weighted sound level (dB)
column vector | matrix | 3-D array

Time-weighted sound level in dB, returned as a column vector, matrix, or 3-D array the same type as
audioIn.

Size and interpretation of the outputs depend on what the Bandwidth property is set to:

• 'Full band' (default) –– Lt, Leq, Lpeak, and Lmax are returned as column vectors or matrices
the same size as audioIn.

• '1 octave', '2/3 octave', or '1/3 octave' –– Lt, Leq, Lpeak, and Lmax are returned as L-
by-B-by-C arrays.

• L –– Number of rows in audioIn
• B –– Number of octave bands
• C –– Number of columns in audioIn

Data Types: single | double

Leq — Equivalent-continuous sound level (dB)
column vector | matrix | 3-D array

Equivalent-continuous sound level in dB, returned as a column vector, matrix, or 3-D array the same
type as audioIn.

Size and interpretation of the outputs depend on what the Bandwidth property is set to:

• 'Full band' (default) –– Lt, Leq, Lpeak, and Lmax are returned as column vectors or matrices
the same size as audioIn.

• '1 octave', '2/3 octave', or '1/3 octave' –– Lt, Leq, Lpeak, and Lmax are returned as L-
by-B-by-C arrays.

• L –– Number of rows in audioIn
• B –– Number of octave bands

 splMeter

3-73

• C –– Number of columns in audioIn

Data Types: single | double

Lpeak — Peak sound level (dB)
column vector | matrix | 3-D array

Peak sound level in dB, returned as a column vector, matrix, or 3-D array the same type as audioIn.

Size and interpretation of the outputs depend on what the Bandwidth property is set to:

• 'Full band' (default) –– Lt, Leq, Lpeak, and Lmax are returned as column vectors or matrices
the same size as audioIn.

• '1 octave', '2/3 octave', or '1/3 octave' –– Lt, Leq, Lpeak, and Lmax are returned as L-
by-B-by-C arrays.

• L –– Number of rows in audioIn
• B –– Number of octave bands
• C –– Number of columns in audioIn

Data Types: single | double

Lmax — Maximum time-weighted sound level (dB)
column vector | matrix | 3-D array

Maximum time-weighted sound level in dB, returned as a column vector, matrix, or 3-D array the
same type as audioIn.

Size and interpretation of the outputs depend on what the Bandwidth property is set to:

• 'Full band' (default) –– Lt, Leq, Lpeak, and Lmax are returned as column vectors or matrices
the same size as audioIn.

• '1 octave', '2/3 octave', or '1/3 octave' –– Lt, Leq, Lpeak, and Lmax are returned as L-
by-B-by-C arrays.

• L –– Number of rows in audioIn
• B –– Number of octave bands
• C –– Number of columns in audioIn

Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to splMeter
calibrate Calibrate meter using calibration tone with known level
getCenterFrequencies Center frequencies of filters

3 System Objects

3-74

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Measure SPL of Audio Signal

Use the splMeter System object™ to measure the A-weighted sound pressure level of a streaming
audio signal. Specify a two second time-interval for reporting and a fast time-weighting. Visualize the
SPL measurements using the dsp.TimeScope System object.

Create a dsp.AudioFileReader object to read in an audio file frame by frame. Create an
audioDeviceWriter object to listen to the audio signal. Create a dsp.TimeScope object to
visualize SPL measurements. Create an splMeter to measure the sound pressure level of the audio
file. Use the default calibration factor of 1.

source = dsp.AudioFileReader('Ambiance-16-44p1-mono-12secs.wav');
fs = source.SampleRate;

player = audioDeviceWriter('SampleRate',fs);

scope = dsp.TimeScope('SampleRate',fs, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',3,'ShowGrid',true, ...
 'YLimits',[20 110],'AxesScaling','Auto', ...
 'ShowLegend',true,'BufferLength',4*3*fs, ...
 'ChannelNames', ...
 {'Lt_AF','Leq_A','Lpeak_A','Lmax_AF'}, ...
 'Name','Sound Pressure Level Meter');

SPL = splMeter('TimeWeighting','Fast', ...
 'FrequencyWeighting','A-weighting', ...
 'SampleRate',fs, ...
 'TimeInterval',2);

In an audio stream loop:

1 Read in the audio signal frame.
2 Play the audio signal to your output device.
3 Call the SPL meter to return the time-weighted, equivalent-continuous, peak, and maximum time-

weighted sound levels in dB.
4 Display the sound levels using the scope.

As a best practice, release your objects once complete.

while ~isDone(source)
 x = source();
 player(x);
 [Lt,Leq,Lpeak,Lmax] = SPL(x);
 scope([Lt,Leq,Lpeak,Lmax])

 splMeter

3-75

end

release(source)
release(player)
release(SPL)
release(scope)

Octave SPL Metering

The splMeter enables you to monitor sound pressure level for octave and fractional-octave bands. In
this example, you monitor the equivalent-continuous sound pressure level of 1/3-octave bands.

Create a dsp.AudioFileReader object to read in an audio file frame by frame. Create an
audioDeviceWriter object so you can listen to the audio signal. Create an splMeter to measure
the octave sound pressure level of the audio file. Use the default calibration factor of 1. Create a
dsp.ArrayPlot object to visualize the equivalent-continuous SPL for each octave band.

source = dsp.AudioFileReader('JetAirplane-16-11p025-mono-16secs.wav');
fs = source.SampleRate;

3 System Objects

3-76

player = audioDeviceWriter('SampleRate',fs);

SPL = splMeter(...
 'Bandwidth','1/3 octave', ...
 'SampleRate',fs);
centerFrequencies = getCenterFrequencies(SPL);

scope = dsp.ArrayPlot(...
 'XDataMode','Custom', ...
 'CustomXData',centerFrequencies, ...
 'XLabel','Octave Band Center Frequencies (Hz)', ...
 'YLabel','Equivalent-Continuous Sound Level (dB)', ...
 'YLimits',[20 90], ...
 'ShowGrid',true, ...
 'Name','Sound Pressure Level Meter');

In an audio stream loop:

1 Read in the audio signal frame.
2 Play the audio signal to your output device.
3 Call the SPL meter to return the equivalent-continuous sound pressure level in dB.
4 Display the sound levels using the scope. Update the scope only when the equivalent-continuous

sound pressure level has changed.

As a best practice, release your objects once complete.

LeqPrevious = zeros(size(centerFrequencies));
while ~isDone(source)
 x = source();
 player(x);
 [~,Leq] = SPL(x);

 for i = 1:size(Leq,1)
 if LeqPrevious ~= Leq(i,:)
 scope(Leq(i,:)')
 LeqPrevious = Leq(i,:);
 end
 end

end

release(source)
release(player)
release(SPL)
release(scope)

 splMeter

3-77

Algorithms
Sound pressure level calculations follow the algorithms described in [1]. You can specify property
values to conform to standards [2] and [3].

Calibration

To account for environmental and input device effects in SPL measurements, the audio input is
multiplied by a calibration factor:

x = audioIn × CalibrationFactor

The CalibrationFactor property can be set directly, or by using the calibrate function, which
compares a known level with acquired data. The known level is determined using a physical
calibrator.

Frequency Weighting

A-, C-, or Z-frequency weighting is applied. The frequency weighting is implemented using the
weightingFilter System object.

3 System Objects

3-78

Analysis Bands

If you specify the Bandwidth property as '1 octave', '2/3 octave' or '1/3 octave', then the
SPL calculations are applied to each octave or fractional-octave band. These analysis bands are
determined after frequency weighting.

Time-Weighted Sound Level

Time-weighted sound level is defined as the ratio of the time-weighted root mean squared sound
pressure to the reference sound pressure, converted to dB. That is,

Lt = 10log10

1 τ ∫tst
y(ξ)2e− t − ξ /τdξ

po
2

= 10log10
h(y2)

po
2

h(y2) can be interpreted as the convolution of y2 with a filter with impulse response 1 τ e−t τ. y is the
output of the frequency-weighting filter. The impulse response corresponds to a lowpass filter of the

form H s =
1 τ

s + 1 τ
. Using impulse invariance, the discrete filter can be interpreted as,

H z =
1 τ × f s

1− e−1 τ × f s z−1
.

• τ is specified by the time-weighting coefficient as 0.125 (if TimeWeighting is set to 'Fast') or 1
(if TimeWeighting is set to'Slow').

• fs is the sample rate specified by the SampleRate property.

Equivalent-Continuous Sound Level

Equivalent-continuous sound level is also called time-average sound level. It is defined as the ratio of
root mean squared sound pressure to the reference sound pressure, converted to dB. That is,

Leq = 10log10

1 T ∫t1
t2

y2dt

po
2

= 20log10 rms y /po

where

• y is the output of the frequency-weighting filter.
• po is the reference sound pressure, specified by the PressureReference property.

Peak Sound Level

Peak sound level is defined as the ratio of peak sound pressure to the reference sound pressure,
converted to dB. That is,

Lpeak = 20log10 max y /po

 splMeter

3-79

where

• y is the output of the frequency-weighting filter.
• po is the reference sound pressure, specified by the PressureReference property.

Max Time-Weighted Sound Level

Maximum time-weighted sound level is defined as the greatest time-weighted sound level within a
stated time interval.

References
[1] Harris, Cyril M. Handbook of Acoustical Measurements and Noise Control. 3rd ed. American

Institute of Physics, 1998.

[2] International Electrotechnical Commission. Electroacoustics - Sound level meters - Part 1:
Specifications. IEC 61672-1:2013.

[3] American National Standards Institute. ANSI S1.4: Specification for Sound Level Meters. 1983.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Loudness Meter | integratedLoudness | loudnessMeter

Topics
“Sound Pressure Measurement of Octave Frequency Bands”

Introduced in R2018a

3 System Objects

3-80

calibrate
Calibrate meter using calibration tone with known level

Syntax
calibrate(SPL,micRecording,SPLreading)

Description
calibrate(SPL,micRecording,SPLreading) sets the CalibrationFactor property of the
splMeter object. The calibration factor is based on the computed sound pressure level (SPL) of
micRecording and the known SPLreading.

To calibrate, first set the SampleRate property of the splMeter object to match the micRecording,
and the PressureReference and FrequencyWeighting properties to match the values from the physical
SPL meter.

Input Arguments
SPL — splMeter System object
object

splMeter System object to be calibrated.

micRecording — Audio signal used to calibrate microphone
column vector

Audio signal used to calibrate microphone, specified as a column vector. micRecording must be
acquired from the microphone you want to calibrate. The recording should consist of a 1 kHz test
tone.
Data Types: single | double

SPLreading — Sound pressure level reported from physical meter (dB)
scalar

Sound pressure level (SPL) reported from physical meter in dB, specified as a scalar.
Data Types: single | double

Algorithms
To set the CalibrationFactor property on an splMeter object, the calibrate function uses:

• A calibration tone recorded from the microphone you want to calibrate
• The sample rate used by your sound card for AD conversion.
• The known loudness, usually determined using a physical SPL meter.
• The frequency weighting used by your physical SPL meter.

 calibrate

3-81

• The atmospheric pressure at the recording location.

The diagram indicates a typical physical setup and the locations of required information.

The CalibrationFactor property is set according to the equation:

CalibrationFactor = 10 SPLreading−k /20

rms(x)

where x is the microphone recording passed through the weighting filter specified by the
FrequencyWeighting property of the splMeter object. k is 1 pascal relative to the reference pressure
calculated in dB:

k = 20log10
1

PressureReference .

See Also
calibrateMicrophone | splMeter

Introduced in R2018a

3 System Objects

3-82

voiceActivityDetector

Detect presence of speech in audio signal

Description
The voiceActivityDetector System object detects the presence of speech in an audio segment.
You can also use the voiceActivityDetector System object to output an estimate of the noise
variance per frequency bin.

To detect the presence of speech:

1 Create the voiceActivityDetector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
VAD = voiceActivityDetector
VAD = voiceActivityDetector(Name,Value)

Description

VAD = voiceActivityDetector creates a System object, VAD, that detects the presence of speech
independently across each input channel.

VAD = voiceActivityDetector(Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: VAD = voiceActivityDetector('InputDomain','Frequency') creates a System
object, VAD, that accepts frequency-domain input.

 voiceActivityDetector

3-83

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

InputDomain — Domain of input signal
'Time' (default) | 'Frequency'

Domain of the input signal, specified as 'Time' or 'Frequency'.

Tunable: No
Data Types: char | string

FFTLength — FFT length
[] (default) | positive scalar

FFT length, specified as a positive scalar. The default is [], which means that the FFTLength is
equal to the number of rows of the input.

Tunable: No

Dependencies

To enable this property, set InputDomain to 'Time'.
Data Types: single | double

Window — Window function for FFT
'Hann' (default) | 'Chebyshev' | 'Flat Top' | 'Hamming' | 'Kaiser' | 'Rectangular'

Time-domain window function applied before calculating the discrete-time Fourier transform (DTFT),
specified as 'Hann', 'Rectangular', 'Flat Top', 'Hamming', 'Chebyshev', or 'Kaiser'.

The window function is designed using the algorithms of the following functions:

• Hann –– hann
• Chebyshev –– chebwin
• Flat Top –– flattopwin
• Hamming –– hamming
• Kaiser –– kaiser

Tunable: No

Dependencies

To enable this property, set InputDomain to 'Time'.
Data Types: char | string

3 System Objects

3-84

SidelobeAttenuation — Sidelobe attenuation of window (dB)
60 (default) | real positive scalar

Sidelobe attenuation of the window in dB, specified as a real positive scalar.

Tunable: No

Dependencies

To enable this property, set InputDomain to 'Time' and Window to 'Chebyshev' or 'Kaiser'.
Data Types: single | double

SilenceToSpeechProbability — Probability of transition from a frame of silence to a
frame of speech
0.2 (default) | scalar in the range [0,1]

Probability of transition from a frame of silence to a frame of speech, specified as a scalar in the
range [0,1].

Tunable: Yes
Data Types: single | double

SpeechToSilenceProbability — Probability of transition from a frame of speech to a
frame of silence
0.1 (default) | scalar in the range [0,1]

Probability of transition from a frame of speech to a frame of silence, specified as a scalar in the
range [0,1].

Tunable: Yes
Data Types: single | double

Usage

Syntax
[probability,noiseEstimate] = VAD(audioIn)

Description

[probability,noiseEstimate] = VAD(audioIn) applies a voice activity detector on the input,
audioIn, and returns the probability that speech is present. It also returns the estimated noise
variance per frequency bin.

Input Arguments

audioIn — Audio input to voice activity detector
scalar | vector | matrix

Audio input to the voice activity detector, specified as a scalar, vector, or matrix. If audioIn is a
matrix, the columns are treated as independent audio channels.

 voiceActivityDetector

3-85

The size of the audio input is locked after the first call to the voiceActivityDetector object. To
change the size of audioIn, call release on the object.

If InputDomain is set to 'Time', audioIn must be real-valued. If InputDomain is set to
'Frequency', audioIn can be real-valued or complex-valued.
Data Types: single | double
Complex Number Support: Yes

Output Arguments

probability — Probability that speech is present
scalar | row vector

Probability that speech is present, returned as a scalar or row vector with the same number of
columns as audioIn.
Data Types: single | double

noiseEstimate — Estimate of noise variance per frequency bin
column vector | matrix

Estimate of the noise variance per frequency bin, returned as a column vector or matrix with the
same number of columns as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

Examples

Detect Voice Activity

Use the default voiceActivityDetector System object? to detect the presence of speech in a
streaming audio signal.

Create an audio file reader to stream an audio file for processing. Define parameters to chunk the
audio signal into 10 ms non-overlapping frames.

3 System Objects

3-86

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
fs = fileReader.SampleRate;
fileReader.SamplesPerFrame = ceil(10e-3*fs);

Create a default voiceActivityDetector System object to detect the presence of speech in the
audio file.

VAD = voiceActivityDetector;

Create a scope to plot the audio signal and corresponding probability of speech presence as detected
by the voice activity detector. Create an audio device writer to play the audio through your sound
card.

scope = dsp.TimeScope(...
 'NumInputPorts',2, ...
 'SampleRate',fs, ...
 'TimeSpan',3, ...
 'BufferLength',3*fs, ...
 'YLimits',[-1.5 1.5], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowLegend',true, ...
 'ChannelNames',{'Audio','Probability of speech presence'});
deviceWriter = audioDeviceWriter('SampleRate',fs);

In an audio stream loop:

1 Read from the audio file.
2 Calculate the probability of speech presence.
3 Visualize the audio signal and speech presence probability.
4 Play the audio signal through your sound card.

while ~isDone(fileReader)
 audioIn = fileReader();
 probability = VAD(audioIn);
 scope(audioIn,probability*ones(fileReader.SamplesPerFrame,1))
 deviceWriter(audioIn);
end

 voiceActivityDetector

3-87

Detect Voice Activity Using Overlapped Frames

Use a voice activity detector to detect the presence of speech in an audio signal. Plot the probability
of speech presence along with the audio samples.

Create a dsp.AudioFileReader System object? to read a speech file.

afr = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
fs = afr.SampleRate;

Chunk the audio into 20 ms frames with 75% overlap between successive frames. Convert the frame
time in seconds to samples. Determine the hop size (the increment of new samples). In the audio file
reader, set the samples per frame to the hop size. Create a default dsp.AsyncBuffer object to
manage overlapping between audio frames.

frameSize = ceil(20e-3*fs);
overlapSize = ceil(0.75*frameSize);
hopSize = frameSize - overlapSize;
afr.SamplesPerFrame = hopSize;

3 System Objects

3-88

inputBuffer = dsp.AsyncBuffer('Capacity',frameSize);

Create a voiceActivityDetector System object. Specify an FFT length of 1024.

VAD = voiceActivityDetector('FFTLength',1024);

Create a scope to plot the audio signal and corresponding probability of speech presence as detected
by the voice activity detector. Create an audioDeviceWriter System object to play audio through
your sound card.

scope = dsp.TimeScope('NumInputPorts',2, ...
 'SampleRate',fs, ...
 'TimeSpan',3, ...
 'BufferLength',3*fs, ...
 'YLimits',[-1.5,1.5], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowLegend',true, ...
 'ChannelNames',{'Audio','Probability of speech presence'});

player = audioDeviceWriter('SampleRate',fs);

Initialize a vector to hold the probability values.

pHold = ones(hopSize,1);

In an audio stream loop:

1 Read a hop worth of samples from the audio file and save the samples into the buffer.
2 Read a frame from the buffer with specified overlap from the previous frame.
3 Call the voice activity detector to get the probability of speech for the frame under analysis.
4 Set the last element of the probability vector to the new probability decision. Visualize the audio

and speech presence probability using the time scope.
5 Play the audio through your sound card.
6 Set the probability vector to the most recent result for plotting in the next loop.

while ~isDone(afr)
 x = afr();
 n = write(inputBuffer,x);

 overlappedInput = read(inputBuffer,frameSize,overlapSize);

 p = VAD(overlappedInput);

 pHold(end) = p;
 scope(x,pHold)

 player(x);

 pHold(:) = p;
end

 voiceActivityDetector

3-89

Release the player once the audio finishes playing.

release(player)

Frequency-Domain Voice Activity Detection and Cepstral Feature Extraction

Many feature extraction techniques operate on the frequency domain. Converting an audio signal to
the frequency domain only once is efficient. In this example, you convert a streaming audio signal to
the frequency domain and feed that signal into a voice activity detector. If speech is present, mel-
frequency cepstral coefficients (MFCC) features are extracted from the frequency-domain signal
using the cepstralFeatureExtractor System object™.

Create a dsp.AudioFileReader System object to read from an audio file.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
fs = fileReader.SampleRate;

Process the audio in 30 ms frames with a 10 ms hop. Create a default dsp.AsyncBuffer object to
manage overlap between audio frames.

3 System Objects

3-90

samplesPerFrame = ceil(0.03*fs);
samplesPerHop = ceil(0.01*fs);
samplesPerOverlap = samplesPerFrame - samplesPerHop;

fileReader.SamplesPerFrame = samplesPerHop;
buffer = dsp.AsyncBuffer;

Create a voiceActivityDetector System object and a cepstralFeatureExtractor System
object. Specify that they operate in the frequency domain. Create a dsp.SignalSink to log the
extracted cepstral features.

VAD = voiceActivityDetector('InputDomain','Frequency');
cepFeatures = cepstralFeatureExtractor('InputDomain','Frequency','SampleRate',fs,'LogEnergy','Replace');
sink = dsp.SignalSink;

In an audio stream loop:

1 Read one hop's of samples from the audio file and save the samples into the buffer.
2 Read a frame from the buffer with specified overlap from the previous frame.
3 Call the voice activity detector to get the probability of speech for the frame under analysis.
4 If the frame under analysis has a probability of speech greater than 0.75, extract cepstral

features and log the features using the signal sink. If the frame under analysis has a probability
of speech less than 0.75, write a vector of NaNs to the sink.

threshold = 0.75;
nanVector = nan(1,13);
while ~isDone(fileReader)
 audioIn = fileReader();
 write(buffer,audioIn);

 overlappedAudio = read(buffer,samplesPerFrame,samplesPerOverlap);
 X = fft(overlappedAudio,2048);

 probabilityOfSpeech = VAD(X);
 if probabilityOfSpeech > threshold
 xFeatures = cepFeatures(X);
 sink(xFeatures')
 else
 sink(nanVector)
 end
end

Visualize the cepstral coefficients over time.

timeVector = linspace(0,15,size(sink.Buffer,1));
plot(timeVector,sink.Buffer)
xlabel('Time (s)')
ylabel('MFCC Amplitude')
legend('Log-Energy','c1','c2','c3','c4','c5','c6','c7','c8','c9','c10','c11','c12')

 voiceActivityDetector

3-91

Determine Pitch Contour using pitch and voiceActivityDetector

Read in an entire speech file and determine the fundamental frequency of the audio using the pitch
function. Then use the voiceActivityDetector to remove irrelevant pitch information that does
not correspond to the speaker.

Read in the audio file and associated sample rate.

[audio,fs] = audioread('Counting-16-44p1-mono-15secs.wav');

Specify pitch detection using a 50 ms window length and 40 ms overlap (10 ms hop). Specify that the
pitch function searches for the fundamental frequency over the range 50-150 Hz and postprocesses
the results with a median filter. Plot the results.

windowLength = round(0.05*fs);
overlapLength = round(0.04*fs);
hopLength = windowLength - overlapLength;

[f0,loc] = pitch(audio,fs, ...
 'WindowLength',windowLength, ...
 'OverlapLength',overlapLength, ...
 'Range',[50 150], ...
 'MedianFilterLength',3);

3 System Objects

3-92

plot(loc/fs,f0)
ylabel('Fundamental Frequency (Hz)')
xlabel('Time (s)')

Create a dsp.AsyncBuffer System object™ to chunk the audio signal into overlapped frames. Also
create a voiceActivityDetector System object™ to determine if the frames contain speech.

buffer = dsp.AsyncBuffer(numel(audio));
write(buffer,audio);
VAD = voiceActivityDetector;

While there are enough samples to hop, read from the buffer and determine the probability that the
frame contains speech. To mimic the decision spacing in time of the pitch function, the first frame
read from the buffer has no overlap.

n = 1;
probabilityVector = zeros(numel(loc),1);
while buffer.NumUnreadSamples >= hopLength
 if n==1
 x = read(buffer,windowLength);
 else
 x = read(buffer,windowLength,overlapLength);
 end
 probabilityVector(n) = VAD(x);
 n = n+1;
end

 voiceActivityDetector

3-93

Use the probability vector determined by the voiceActivityDetector to plot a pitch contour for
the speech file that corresponds to regions of speech.

validIdx = probabilityVector>0.99;
loc(~validIdx) = nan;
f0(~validIdx) = nan;
plot(loc/fs,f0)
ylabel('Fundamental Frequency (Hz)')
xlabel('Time (s)')

Algorithms
The voiceActivityDetector implements the algorithm described in [1].

3 System Objects

3-94

If InputDomain is specified as 'Time', the input signal is windowed and then converted to the
frequency domain according to the Window, SidelobeAttenuation, and FFTLength properties. If
InputDomain is specified as frequency, the input is assumed to be a windowed discrete time Fourier
transform (DTFT) of an audio signal. The signal is then converted to the power domain. Noise
variance is estimated according to [2]. The posterior and prior SNR are estimated according to the
Minimum Mean-Square Error (MMSE) formula described in [3]. A log likelihood ratio test and Hidden
Markov Model (HMM)-based hang-over scheme determine the probability that the current frame
contains speech, according to [1].

References
[1] Sohn, Jongseo., Nam Soo Kim, and Wonyong Sung. "A Statistical Model-Based Voice Activity

Detection." Signal Processing Letters IEEE. Vol. 6, No. 1, 1999.

[2] Martin, R. "Noise Power Spectral Density Estimation Based on Optimal Smoothing and Minimum
Statistics." IEEE Transactions on Speech and Audio Processing. Vol. 9, No. 5, 2001, pp. 504–
512.

[3] Ephraim, Y., and D. Malah. "Speech Enhancement Using a Minimum Mean-Square Error Short-
Time Spectral Amplitude Estimator." IEEE Transactions on Acoustics, Speech, and Signal
Processing. Vol. 32, No. 6, 1984, pp. 1109–1121.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Voice Activity Detector | audioFeatureExtractor | cepstralFeatureExtractor | mfcc | pitch

Introduced in R2018a

 voiceActivityDetector

3-95

cepstralFeatureExtractor
Extract cepstral features from audio segment

Description
The cepstralFeatureExtractor System object extracts cepstral features from an audio segment.
Cepstral features are commonly used to characterize speech and music signals.

To extract cepstral features:

1 Create the cepstralFeatureExtractor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
cepFeatures = cepstralFeatureExtractor
cepFeatures = cepstralFeatureExtractor(Name,Value)

Description

cepFeatures = cepstralFeatureExtractor creates a System object, cepFeatures, that
calculates cepstral features independently across each input channel. Columns of the input are
treated as individual channels.

cepFeatures = cepstralFeatureExtractor(Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: cepFeatures =
cepstralFeatureExtractor('InputDomain','Frequency','SampleRate',fs,'LogEnergy
','Replace') accepts a signal in the frequency domain, sampled at fs Hz. The first element of the
coefficients vector is replaced by the log energy value.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

FilterBank — Type of filter bank
'Mel' (default) | 'Gammatone'

3 System Objects

3-96

Type of filter bank, specified as either 'Mel' or 'Gammatone'. When FilterBank is set to Mel, the
object computes the mel frequency cepstral coefficients (MFCC). When FilterBank is set to
Gammatone, the object computes the gammatone cepstral coefficients (GTCC).
Data Types: char | string

InputDomain — Domain of input signal
'Time' (default) | 'Frequency'

Domain of the input signal, specified as either 'Time' or 'Frequency'.
Data Types: char | string

NumCoeffs — Number of coefficients to return
13 (default) | positive integer

Number of coefficients to return, specified as an integer in the range [2, v], where v is the number of
valid passbands. The number of valid passbands depends on the type of filter bank:

• Mel –– The number of valid passbands is defined as sum(BandEdges <= floor(SampleRate/
2))-2.

• Gammatone –– The number of valid passbands is defined as
ceil(hz2erb(FrequencyRange(2))-hz2erb(FrequencyRange(1))).

Data Types: single | double

Rectification — Nonlinear rectification type
'Log' (default) | 'Cubic-Root'

Nonlinear rectification type, specified as 'Log' or 'Cubic-Root'.
Data Types: char | string

FFTLength — FFT length
[] (default) | positive integer

FFT length, specified as a positive integer. The default, [], means that the FFT length is equal to the
number of rows in the input signal.
Dependencies

To enable this property, set InputDomain to 'Time'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LogEnergy — Specify how the log energy is shown
'Append' (default) | 'Replace' | 'Ignore'

Specify how the log energy is shown in the coefficients vector output, specified as:

• 'Append' –– The object prepends the log energy to the coefficients vector. The length of the
coefficients vector is 1 + NumCoeffs.

• 'Replace' –– The object replaces the first coefficient with the log energy of the signal. The
length of the coefficients vector is NumCoeffs.

• 'Ignore' –– The object does not calculate or return the log energy.

Data Types: char | string

 cepstralFeatureExtractor

3-97

SampleRate — Input sample rate (Hz)
16000 (default) | positive scalar

Input sample rate in Hz, specified as a real positive scalar.
Data Types: single | double

Advanced properties

BandEdges — Band edges of mel filter bank (Hz)
row vector

Band edges of the filter bank in Hz, specified as a nonnegative monotonically increasing row vector in
the range [0, ∞). The maximum bandedge frequency can be any finite number. The number of
bandedges must be in the range [4, 80].

The default band edges are spaced linearly for the first ten and then logarithmically after. The default
band edges are set as recommended by [1].
Dependencies

To enable this property, set FilterBank to Mel.
Data Types: single | double

FrequencyRange — Frequency range of gammatone filter bank (Hz)
[50 8000] (default) | two-element row vector

Frequency range of the filter bank in Hz, specified as a positive, monotonically increasing two-
element row vector. The maximum frequency can be any finite number. The center frequencies of the
filter bank are equally spaced between hz2erb(FrequencyRange(1)) and
hz2erb(FrequencyRange(2)) on the ERB scale.
Dependencies

To enable this property, set FilterBank to Gammatone.
Data Types: single | double

FilterBankDesignDomain — Domain for mel filter bank design
'Hz' (default) | 'Bin'

Domain for filter bank design, specified as either 'Hz' or 'Bin'. The filter bank is designed as
overlapped triangles with band edges specified by the BandEdges property.

The BandEdges property is specified in Hz. When you set the design domain to:

• 'Hz' –– Filter bank triangles are drawn in Hz and are mapped onto bins.

Here is an example that plots the filter bank in bins when the FilterBankDesignDomain is set
to 'Hz':

[audioFile, fs] = audioread('NoisySpeech-16-22p5-mono-5secs.wav');
duration = round(0.02*fs); % 20 ms audio segment
audioSegment = audioFile(5500:5500+duration-1);
cepFeatures = cepstralFeatureExtractor('SampleRate',fs)

cepFeatures =
 cepstralFeatureExtractor with properties:

3 System Objects

3-98

 Properties
 InputDomain: 'Time'
 NumCoeffs: 13
 FFTLength: []
 LogEnergy: 'Append'
 SampleRate: 22500

 Advanced Properties
 BandEdges: [1×42 double]
 FilterBankDesignDomain: 'Hz'
 FilterBankNormalization: 'Bandwidth'

Pass the audio segment as an input to the cepstral feature extractor algorithm to lock the object.

[coeffs,delta,deltaDelta] = cepFeatures(audioSegment);

Use the getFilters function to get the filter bank. Plot the filter bank.

[filterbank, freq] = getFilters(cepFeatures);
plot(freq(1:150),filterbank(1:150,:))

 cepstralFeatureExtractor

3-99

For details, see [1].
• 'Bin' –– The bandedge frequencies in 'Hz' are converted to bins. The filter bank triangles are

drawn symmetrically in bins.

Change the FilterBankDesignDomain property to 'Bin':

release(cepFeatures);
cepFeatures.FilterBankDesignDomain = 'Bin';
[coeffs,delta,deltaDelta] = cepFeatures(audioSegment);
[filterbank, freq] = getFilters(cepFeatures);
plot(freq(1:150),filterbank(1:150,:))

For details, see [2].

Dependencies

To enable this property, set FilterBank to Mel.
Data Types: char | string

FilterBankNormalization — Normalize filter bank
'Bandwidth' (default) | 'Area' | 'None'

3 System Objects

3-100

Normalization technique used on the weights of the filter bank, specified as:

• 'Bandwidth' –– The weights of each bandpass filter are normalized by the corresponding
bandwidth of the filter.

• 'Area' –– The weights of each bandpass filter are normalized by the corresponding area of the
bandpass filter.

• 'None' –– The weights of the filter are not normalized.

Data Types: char | string

Usage

Syntax
[coeffs,delta,deltaDelta] = cepFeatures(audioIn)

Description

[coeffs,delta,deltaDelta] = cepFeatures(audioIn) returns the cepstral coefficients, the
log energy, the delta, and the delta-delta.

The log energy value prepends the coefficient vector or replaces the first element of the coefficients
vector based on whether you set the LogEnergy property to 'Append' or 'Replace'. For details,
see “coeffs” on page 3-0 .

Input Arguments

audioIn — Input signal
column vector | matrix

Input signal, specified as a column vector or matrix. If InputDomain is set to 'Time', specify
audioIn as a real-valued frame of audio data. If InputDomain is set to 'Frequency', specify
audioIn as a real- or complex-valued discrete Fourier transform. If specified as a matrix, the
columns are treated as independent audio channels.
Data Types: single | double
Complex Number Support: Yes

Output Arguments

coeffs — Cepstral coefficients
column vector | matrix

Cepstral coefficients, returned as a column vector or a matrix. If the coefficients matrix is an N-by-M
matrix, N is determined by the values you specify in NumCoeffs and LogEnergy properties. M
equals the number of input audio channels.

When the LogEnergy property is set to:

• 'Append' –– The object prepends the log energy value to the coefficients vector. The length of the
coefficients vector is 1 + NumCoeffs. This is the default setting of the LogEnergy property.

• 'Replace' –– The object replaces the first coefficient with the log energy of the signal. The
length of the coefficients vector is NumCoeffs.

 cepstralFeatureExtractor

3-101

• 'Ignore' –– The object does not calculate or return the log energy.

Data Types: single | double

delta — Change in coefficients
column vector | matrix

Change in coefficients over consecutive calls to the algorithm, returned as a vector or a matrix. The
delta array is of the same size and data type as the coeffs array.

In this example, cepFeatures is the cepstral feature extractor that accepts audio input signal
sampled at 12 kHz. Stream in three segments of audio signal on three consecutive calls to the object
algorithm. Return the cepstral coefficients of the filter bank and the corresponding delta values.
cepFeatures = cepstralFeatureExtractor('SampleRate',12000);
[coeff1,delta1] = cepFeatures(audioIn);
[coeff2,delta2] = cepFeatures(audioIn);
[coeff3,delta3] = cepFeatures(audioIn);

delta2 is computed as coeff2-coeff1, while delta3 is computed as coeff3-coeff2. The initial
array, delta1, is an array of zeros.
Data Types: single | double

deltaDelta — Change in delta values
column vector | matrix

Change in delta values over consecutive calls to the algorithm, returned as a vector or a matrix. The
deltaDelta array is the same size and data type as the coeffs and delta arrays.

In this example, consecutive calls to the cepstral feature extractor algorithm return the deltaDelta
values in addition to the coefficients and the delta values.
cepFeatures = cepstralFeatureExtractor('SampleRate',12000);
[coeff1,delta1,deltaDelta1] = cepFeatures(audioIn);
[coeff2,delta2,deltaDelta2] = cepFeatures(audioIn);
[coeff3,delta3,deltaDelta3] = cepFeatures(audioIn);

deltaDelta2 is computed as delta2-delta1, while deltaDelta3 is computed as delta3-
delta2. The initial array, deltaDelta1, is an array of zeros.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to cepstralFeatureExtractor
getFilters Get auditory filter bank

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use

3 System Objects

3-102

release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object
step Run System object algorithm

Examples

Get MFCC Data for Speech Segment

Extract the mel frequency cepstral coefficients and the log energy values of segments in a speech file.
Return delta, the difference between current and the previous cepstral coefficients, and
deltaDelta, the difference between the current and the previous delta values. The log energy
value the object computes can prepend the coefficients vector or replace the first element of the
coefficients vector. This is done based on whether you set the LogEnergy property of the
cepstralFeatureExtractor object to 'Replace' or 'Append'.

Read an audio signal from 'Counting-16-44p1-mono-15secs.wav' file. Extract a 40 ms segment
from the audio data. Create a cepstralFeatureExtractor object. The cepstral coefficients
computed by the default object are the mel frequency coefficients. In addition, the object computes
the log energy, delta, and delta-delta values of the audio segment.

[audioFile, fs] = audioread('Counting-16-44p1-mono-15secs.wav');
duration = round(0.04*fs); % 40 ms
audioSegment = audioFile(40000:40000+duration-1);
cepFeatures = cepstralFeatureExtractor('SampleRate',fs)

cepFeatures =
 cepstralFeatureExtractor with properties:

 Properties
 FilterBank: 'Mel'
 InputDomain: 'Time'
 NumCoeffs: 13
 Rectification: 'Log'
 FFTLength: []
 LogEnergy: 'Append'
 SampleRate: 44100

 Show all properties

The LogEnergy property is set to 'Append'. The first element in the coefficients vector is the log
energy value and the remaining elements are the 13 cepstral coefficients computed by the object. The
number of cepstral coefficients is determined by the value you specify in the NumCoeffs property.

[coeffs,delta,deltaDelta] = cepFeatures(audioSegment)

coeffs = 14×1

 5.2999
 -4.9406
 3.6130
 0.4397
 -0.2280
 -1.1068

 cepstralFeatureExtractor

3-103

 0.6679
 0.6367
 -0.3869
 0.6127
 ⋮

delta = 14×1

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 ⋮

deltaDelta = 14×1

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 ⋮

The initial values for the delta and deltaDelta arrays are always zero. Consider another 40 ms
audio segment in the file and extract the cepstral features from this segment.

audioSegmentTwo = audioFile(5820:5820+duration-1);
[coeffsTwo,deltaTwo,deltaDeltaTwo] = cepFeatures(audioSegmentTwo)

coeffsTwo = 14×1

 -0.1582
 -15.9507
 2.4295
 0.2835
 0.4345
 0.4382
 0.6040
 0.4168
 0.1846
 0.2636
 ⋮

3 System Objects

3-104

deltaTwo = 14×1

 -5.4581
 -11.0101
 -1.1836
 -0.1561
 0.6625
 1.5449
 -0.0639
 -0.2199
 0.5715
 -0.3491
 ⋮

deltaDeltaTwo = 14×1

 -5.4581
 -11.0101
 -1.1836
 -0.1561
 0.6625
 1.5449
 -0.0639
 -0.2199
 0.5715
 -0.3491
 ⋮

Verify that the difference between coeffsTwo and coeffs vectors equals deltaTwo.

isequal(coeffsTwo-coeffs,deltaTwo)

ans = logical
 1

Verify that the difference between deltaTwo and delta vectors equals deltaDeltaTwo.

isequal(deltaTwo-delta,deltaDeltaTwo)

ans = logical
 1

Frequency-Domain Voice Activity Detection and Cepstral Feature Extraction

Many feature extraction techniques operate on the frequency domain. Converting an audio signal to
the frequency domain only once is efficient. In this example, you convert a streaming audio signal to
the frequency domain and feed that signal into a voice activity detector. If speech is present, mel-
frequency cepstral coefficients (MFCC) features are extracted from the frequency-domain signal
using the cepstralFeatureExtractor System object™.

Create a dsp.AudioFileReader System object to read from an audio file.

 cepstralFeatureExtractor

3-105

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
fs = fileReader.SampleRate;

Process the audio in 30 ms frames with a 10 ms hop. Create a default dsp.AsyncBuffer object to
manage overlap between audio frames.

samplesPerFrame = ceil(0.03*fs);
samplesPerHop = ceil(0.01*fs);
samplesPerOverlap = samplesPerFrame - samplesPerHop;

fileReader.SamplesPerFrame = samplesPerHop;
buffer = dsp.AsyncBuffer;

Create a voiceActivityDetector System object and a cepstralFeatureExtractor System
object. Specify that they operate in the frequency domain. Create a dsp.SignalSink to log the
extracted cepstral features.

VAD = voiceActivityDetector('InputDomain','Frequency');
cepFeatures = cepstralFeatureExtractor('InputDomain','Frequency','SampleRate',fs,'LogEnergy','Replace');
sink = dsp.SignalSink;

In an audio stream loop:

1 Read one hop's of samples from the audio file and save the samples into the buffer.
2 Read a frame from the buffer with specified overlap from the previous frame.
3 Call the voice activity detector to get the probability of speech for the frame under analysis.
4 If the frame under analysis has a probability of speech greater than 0.75, extract cepstral

features and log the features using the signal sink. If the frame under analysis has a probability
of speech less than 0.75, write a vector of NaNs to the sink.

threshold = 0.75;
nanVector = nan(1,13);
while ~isDone(fileReader)
 audioIn = fileReader();
 write(buffer,audioIn);

 overlappedAudio = read(buffer,samplesPerFrame,samplesPerOverlap);
 X = fft(overlappedAudio,2048);

 probabilityOfSpeech = VAD(X);
 if probabilityOfSpeech > threshold
 xFeatures = cepFeatures(X);
 sink(xFeatures')
 else
 sink(nanVector)
 end
end

Visualize the cepstral coefficients over time.

timeVector = linspace(0,15,size(sink.Buffer,1));
plot(timeVector,sink.Buffer)
xlabel('Time (s)')
ylabel('MFCC Amplitude')
legend('Log-Energy','c1','c2','c3','c4','c5','c6','c7','c8','c9','c10','c11','c12')

3 System Objects

3-106

Extract GTCC from Streaming Audio

Create a dsp.AudioFileReader object to read in audio data frame-by-frame. Create an
audioDeviceWriter to write the audio to your sound card. Create a dsp.ArrayPlot to visualize
the GTCC over time.

fileReader = dsp.AudioFileReader('RandomOscThree-24-96-stereo-13secs.aif');
deviceWriter = audioDeviceWriter(fileReader.SampleRate);
scope = dsp.ArrayPlot;

Create a cepstralFeatureExtractor that extracts GTCC.

cepFeatures = cepstralFeatureExtractor('FilterBank','Gammatone', ...
 'SampleRate',fileReader.SampleRate);

In an audio stream loop:

1 Read in a frame of audio data.
2 Extract the GTCC from the frame of audio.
3 Visualize the GTCC.
4 Write the audio frame to your device.

while ~isDone(fileReader)
 audioIn = fileReader();

 cepstralFeatureExtractor

3-107

 coeffs = cepFeatures(audioIn);
 scope(coeffs)
 deviceWriter(audioIn);
end

release(cepFeatures)
release(scope)
release(fileReader)

Algorithms
Auditory Cepstrum Coefficients

Auditory cepstrum coefficients are popular features extracted from speech signals for use in
recognition tasks. In the source-filter model of speech, cepstral coefficients are understood to
represent the filter (vocal tract). The vocal tract frequency response is relatively smooth, whereas the
source of voiced speech can be modeled as an impulse train. As a result, the vocal tract can be
estimated by the spectral envelope of a speech segment.

The motivating idea of cepstral coefficients is to compress information about the vocal tract
(smoothed spectrum) into a small number of coefficients based on an understanding of the cochlea.
Although there is no hard standard for calculating the coefficients, the basic steps are outlined by the
diagram.

3 System Objects

3-108

Two popular implementations of the filter bank are the mel filter bank and the gammatone filter bank.

Mel Filter Bank

The default mel filter bank linearly spaces the first 10 triangular filters and logarithmically spaces the
remaining filters.

Gammatone Filter Bank

The default gammatone filter bank is composed of gammatone filters spaced linearly on the ERB
scale between 50 and 8000 Hz. The filter bank is designed by gammatoneFilterBank.

 cepstralFeatureExtractor

3-109

Log Energy

If the input (x) is a time-domain signal, the log energy is computed using the following equation:

logE = log(sum(x2))

If the input (x) is a frequency-domain signal, the log energy is computed using the following equation:

logE = log sum x 2 /FFTLength

References
[1] Auditory Toolbox. https://engineering.purdue.edu/~malcolm/interval/1998-010/

AuditoryToolboxTechReport.pdf

[2] ETSI ES 201 108 V1.1.3 (2003-09). https://www.etsi.org/deliver/etsi_es/
201100_201199/201108/01.01.03_60/es_201108v010103p.pdf

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Cepstral Feature Extractor | Voice Activity Detector | gammatoneFilterBank | gtcc | mfcc | pitch
| voiceActivityDetector

3 System Objects

3-110

https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf
https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf
https://www.etsi.org/deliver/etsi_es/201100_201199/201108/01.01.03_60/es_201108v010103p.pdf
https://www.etsi.org/deliver/etsi_es/201100_201199/201108/01.01.03_60/es_201108v010103p.pdf

Topics
“Speaker Identification Using Pitch and MFCC”

Introduced in R2018a

 cepstralFeatureExtractor

3-111

getFilters
Get auditory filter bank

Syntax
[filterbank,freq] = getFilters(cepFeatures)

Description
[filterbank,freq] = getFilters(cepFeatures) returns the filter bank and the
corresponding frequency bins in Hz. Each column of the filter bank corresponds to a single bandpass
filter. The filterbank is undefined until the object is locked.

Examples

Get Auditory Filter Bank

The auditory filter bank contains a set of bandpass filters. The getFilters function returns the
auditory filter bank and the corresponding frequency bins.

Read an audio signal from 'SpeechDFT-16-8-mono-5secs.wav' file. Extract a 40 ms segment
from the audio data. Create a cepstralFeatureExtractor System object™ that accepts a time-
domain audio input signal sampled at 8 kHz.

[audioFile, fs] = audioread('SpeechDFT-16-8-mono-5secs.wav');
duration = round(0.04*fs); % 40 ms
audioSegment = audioFile(5500:5500+duration-1);
cepFeatures = cepstralFeatureExtractor('SampleRate',fs)

cepFeatures =
 cepstralFeatureExtractor with properties:

 Properties
 FilterBank: 'Mel'
 InputDomain: 'Time'
 NumCoeffs: 13
 Rectification: 'Log'
 FFTLength: []
 LogEnergy: 'Append'
 SampleRate: 8000

 Show all properties

Pass the 40 ms audio segment as an input to the cepstralFeatureExtractor algorithm. The
algorithm computes the mel frequency coefficients, log energy, delta, and delta-delta values of the
audio segment.

[coeffs,delta,deltaDelta] = cepFeatures(audioSegment);

3 System Objects

3-112

Input Arguments
cepFeatures — Input cepstral feature extractor System object
cepstralFeatureExtractor System object

Input cepstral feature extractor, specified as a cepstralFeatureExtractor System object. To use
the getFilters function, the object must be locked. The filter bank is defined only when the object
is locked. The object is locked when you call the object algorithm.

Output Arguments
filterbank — Auditory filter bank
matrix

Filter bank used to calculate cepstral features, returned as a matrix. Each column of the matrix
corresponds to a single bandpass filter in the filter bank. The number of columns in the matrix is
given by m – 2, where m is the length of the vector you specify in the BandEdges property of the
System object. The number of rows in the matrix corresponds to the FFT length. By default, the FFT
length equals the number of rows in the input signal. You can also specify the FFT length through the
FFTLength property of the System object.
Data Types: single | double

freq — Frequency bins corresponding to filter bank (Hz)
row vector

Frequency bins corresponding to the filter bank in Hz, returned as a row vector. The length of the
vector equals the FFT length.
Data Types: single | double

See Also
cepstralFeatureExtractor

Introduced in R2018a

 getFilters

3-113

visualize
Visualize static characteristic of dynamic range controller

Syntax
visualize(dynamicRangeController)
visualize(dynamicRangeController,inputRange)
outputLevel = visualize(___)

Description
visualize(dynamicRangeController) plots the static characteristic of the dynamic range
control object. The plot is updated automatically when properties of the object change.

visualize(dynamicRangeController,inputRange) enables you to specify the input range.

outputLevel = visualize(___) returns the dB output level corresponding to the input range.
You can use any of the input arguments from previous syntaxes.

Note This syntax is only available for the compressor, limiter, and expander System objects. It
is not available for the noiseGate System object.

Examples

Plot Static Characteristic

Create an object of the compressor System object™, and then plot the static characteristic.

dynamicRangeCompressor = compressor;
visualize(dynamicRangeCompressor)

3 System Objects

3-114

The static characteristic plot updates automatically if you modify a property of the object.

dynamicRangeCompressor.Threshold = -30;

 visualize

3-115

Specify Range of Static Characteristic Plot

Create an object of the expander System object™. Plot the static characteristic over the range -15 to
-5, in 0.001 dB increments.

dynamicRangeExpander = expander;
visualize(dynamicRangeExpander,-15:0.001:-5)

3 System Objects

3-116

Get Output Level From Static Characteristic

Create an object of the limiter System object™. Get the output level of the static characteristic
over a specified range.

dynamicRangeLimiter = limiter;
inputLevel = -15:1:-5

inputLevel = 1×11

 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5

outputLevel = visualize(dynamicRangeLimiter,inputLevel)

outputLevel = 1×11

 -15 -14 -13 -12 -11 -10 -10 -10 -10 -10 -10

 visualize

3-117

Input Arguments
dynamicRangeController — Dynamic range control object
object

Dynamic range control object, specified as an object of compressor, expander, limiter or
noiseGate.

inputRange — Range to calculate static characteristic output
vector of monotonically increasing values

Range over which to calculate the output of the static characteristic.

The default input range depends on the dynamic range control object:

• compressor –– [-50:0.01:0] dB
• limiter –– [-50:0.01:0] dB
• expander –– [-50:0.01:0] dB
• noiseGate –– [0:0.001:1] linear

3 System Objects

3-118

Output Arguments
outputLevel — Output level (dB)
vector

Output level in dB, returned as a vector the same size as inputRange.

This output is only available for the compressor, limiter, and expander System objects. It is not
available for the noiseGate System object.

See Also
compressor | expander | limiter | noiseGate

Topics
“Dynamic Range Control”

Introduced in R2016a

 visualize

3-119

createAudioPluginClass
Create audio plugin class that implements functionality of System object

Syntax
createAudioPluginClass(obj)
createAudioPluginClass(obj,pluginName)

Description
createAudioPluginClass(obj) creates a System object plugin that implements the functionality
of the Audio Toolbox System object, obj. The name of the created class is the System object variable
name, obj, followed by 'Plugin', for example, objPlugin.

If the object is locked, the number of input and output channels of the plugin is equal to the number
of channels of the object. Otherwise, the number of channels is equal to 2.

createAudioPluginClass(obj,pluginName) specifies the name of your created System object
plugin class.
Example: createAudioPluginClass(obj,'coolEffect') creates a System object plugin with
class name 'coolEffect'.

Examples

Create an Audio Plugin Class From a System Object

Create a compressor object. Call createAudioPluginClass to create a System object™ plugin
class that implements the functionality of the compressor object.

cmpr = compressor;
createAudioPluginClass(cmpr)

Specify Name of Created Plugin Class

Create an object of the reverberator System object™. Call createAudioPluginClass to create a
System object™ plugin class that implements the functionality of the reverberator object,
specifying the plugin class name as the second argument.

reverb = reverberator;
createAudioPluginClass(reverb,'Garage');

Input Arguments
obj — System object to create plugin class from
Audio Toolbox System object

3 System Objects

3-120

System object from which to create a plugin class.

pluginName — Name of created plugin class
character vector

Name of created plugin class, specified as a character vector with fewer than 64 elements.
Data Types: char

See Also
audioOscillator | compressor | crossoverFilter | expander | graphicEQ | limiter |
multibandParametricEQ | noiseGate | octaveFilter | reverberator |
wavetableSynthesizer | weightingFilter

Topics
“Audio Plugins in MATLAB”
“Export a MATLAB Plugin to a DAW”

Introduced in R2016a

 createAudioPluginClass

3-121

getFilter
Return biquad filter object with design parameters set

Syntax
biquad = getFilter(obj)

Description
biquad = getFilter(obj) returns a dsp.BiquadFilter object, biquad. The SOSMatrix and
ScaleValues properties of the biquad filter object are set as specified by the obj System object.

Use getFilter for the design capabilities of the obj System object and the processing capabilities
of the dsp.BiquadFilter System object.

Examples

Get Biquad Filter for Octave Filter Design

Create an octaveFilter System object™. Call getFilter on your object to return a
dsp.BiquadFilter object with design parameters specified by your octaveFilter System object.

octFilt = octaveFilter;
biquad = getFilter(octFilt)

biquad =
 FourthOrderSectionFilter with properties:

 Numerator: [2x5 double]
 Denominator: [2x5 double]

Get Biquad Filter for Weighting Filter Design

Create a weightingFilter System object™.

weightFilt = weightingFilter;

Call getFilter on your object to return a dsp.BiquadFilter object with design parameters
specified by your weightingFilter System object. Use fvtool to visualize the biquad filter.

biquad = getFilter(weightFilt)

biquad =
 dsp.BiquadFilter with properties:

 Structure: 'Direct form II transposed'
 SOSMatrixSource: 'Property'

3 System Objects

3-122

 SOSMatrix: [3x6 double]
 ScaleValues: [4x1 double]
 InitialConditions: 0
 OptimizeUnityScaleValues: true

 Show all properties

fvtool(biquad,'FrequencyScale','log')

Input Arguments
obj — System object to get filter from
System object

System object that you want to get a biquad filter object from.

Output Arguments
biquad — Object of dsp.BiquadFilter
object

dsp.BiquadFilter object.

 getFilter

3-123

See Also
dsp.BiquadFilter | octaveFilter | weightingFilter

Topics
“Audio Weighting Filters”
“Octave-Band and Fractional Octave-Band Filters”
“Sound Pressure Measurement of Octave Frequency Bands”

Introduced in R2016b

3 System Objects

3-124

info
Get audio device information

Syntax
infoStruct = info(obj)

Description
infoStruct = info(obj) returns a structure, infoStruct, containing information about the
System object, obj.

Examples

Get Input Audio Device Information

Create an object of the audioDeviceReader System object™ and then call info to return a
structure containing information about the selected driver, device name, and the maximum number of
input channels.

deviceReader = audioDeviceReader;
info(deviceReader)

Get Output Audio Device Information

Create an object of the audioDeviceWriter System object™ and then call info to return a
structure containing information about the selected driver, device name, and the maximum number of
output channels.

deviceWriter = audioDeviceWriter;
info(deviceWriter)

Get Audio I/O Device Information

Create an object of the audioPlayerRecorder System object™ and then call info to return a
structure containing information about the selected driver, device name, and the maximum number of
input and output channels.

playRec = audioPlayerRecorder;
info(playRec)

 info

3-125

Input Arguments
obj — System object to get information from
System object

System object to get information from.

Output Arguments
infoStruct — Struct containing object information
struct

Struct containing information about the System object, obj. Fields of the struct depend on the
System object.

See Also
audioDeviceReader | audioDeviceWriter | audioPlayerRecorder

Introduced in R2016a

3 System Objects

3-126

cost
Estimate implementation cost of audio System objects

Syntax
implementationCost = cost(audioObj)

Description
implementationCost = cost(audioObj) returns a structure, implementationCost, whose
fields contain information about the computation cost of implementing the audio System object,
audioObj.

Examples

Estimate Implementation Cost of Crossover Filter

Create a crossover filter with 2 crossovers with 48 dB/octave slopes. Call cost to get an estimate of
the implementation cost.

crossFilt = crossoverFilter('NumCrossovers',2,'CrossoverSlopes',48);
cost1 = cost(crossFilt)

cost1 = struct with fields:
 NumCoefficients: 120
 NumStates: 48
 MultiplicationsPerInputSample: 120
 AdditionsPerInputSample: 97

Reduce the crossover slopes for both crossovers to 12 dB/octave. Call cost to get an estimate of the
new implementation cost.

crossFilt.CrossoverSlopes = 12;
cost2 = cost(crossFilt)

cost2 = struct with fields:
 NumCoefficients: 36
 NumStates: 12
 MultiplicationsPerInputSample: 36
 AdditionsPerInputSample: 25

Input Arguments
audioObj — Audio System object
crossoverFilter object

Specify the input as a supported audio System object.

 cost

3-127

Data Types: object

Output Arguments
implementationCost — Estimate of implementation cost
struct

Estimate of the implementation cost of a filter, returned as struct:

Structure Field Description
NumCoefficients Number of filter coefficients (excluding

coefficients with values 0, 1 or -1)
NumStates Number of states
MultiplicationsPerInputSample Number of multiplication per input sample
AdditionsPerInputSample Number of additions per input sample

See Also
crossoverFilter,

Introduced in R2016a

3 System Objects

3-128

audioPlayerRecorder
Simultaneously play and record using an audio device

Description
The audioPlayerRecorder System object reads and writes audio samples using your computer’s
audio device. To use audioPlayerRecorder, you must have an audio device and driver capable of
simultaneous playback and record.

See “Audio I/O: Buffering, Latency, and Throughput” for a detailed explanation of the data flow.

To simultaneously play and record:

1 Create the audioPlayerRecorder object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
playRec = audioPlayerRecorder
playRec = audioPlayerRecorder(sampleRateValue)
playRec = audioPlayerRecorder(___ ,Name,Value)

Description

playRec = audioPlayerRecorder returns a System object, playRec, that plays audio samples to
an audio device and records samples from the same audio device, in real time.

 audioPlayerRecorder

3-129

playRec = audioPlayerRecorder(sampleRateValue) sets the SampleRate property to
sampleRateValue.

playRec = audioPlayerRecorder(___ ,Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: playRec = audioPlayerRecorder(48000,'BitDepth','8-bit integer') creates
a System object, playRec, that operates at a 48 kHz sample rate and an 8-bit integer bit depth.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

Device — Device used to play and record audio data
default audio device (default) | character vector | string

Device used to play and record audio data, specified as a character vector or string. The object
supports only devices enabled for simultaneous playback and recording (full-duplex mode). Use
getAudioDevices to list available devices.

Supported drivers for audioPlayerRecorder are platform-specific:

• Windows –– ASIO
• Mac –– CoreAudio
• Linux –– ALSA

Note The default audio device is the default device of your machine only if it supports full-duplex
mode. If your machine’s default audio device does not support full-duplex mode,
audioPlayerRecorder specifies as the default device the first available device it detects that is
capable of full-duplex mode. Use the info method to get the device name associated with your
audioPlayerRecorder object.

Data Types: char | string

SampleRate — Sample rate used by device to record and play audio data (Hz)
44100 (default) | positive integer

Sample rate used by device to record and play audio data, in Hz, specified as a positive integer. The
range of SampleRate depends on your audio hardware.
Data Types: single | double

BitDepth — Data type used by device
'16-bit integer' (default) | '8-bit integer' | '32-bit float' | '24-bit integer'

Data type used by device, specified as a character vector or string.

3 System Objects

3-130

Data Types: char | string

SupportVariableSize — Support variable frame size
false (default) | true

Option to support variable frame size, specified as false or true.

• false –– If the audioPlayerRecorder object is locked, the input must have the same frame size
at each call. The buffer size of your audio device is the same as the input frame size. If you are
using the object on Windows, open the ASIO UI to set the sound card buffer to the frame size
value.

• true –– If the audioPlayerRecorder object is locked, the input frame size can change at each
call. The buffer size of your audio device is specified through the BufferSize property.

To minimize latency, set SupportVariableSize to false. If variable-size input is required by your
audio system, set SupportVariableSize to true.
Data Types: logical

BufferSize — Buffer size of audio device
1024 (default) | positive integer

Buffer size of audio device, specified as a positive integer.

Note If you are using the object on a Windows machine, use asiosettings to set the sound card
buffer size to the BufferSize value of your audioPlayerRecorder System object.

Dependencies

To enable this property, set SupportVariableSize to true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PlayerChannelMapping — Mapping between columns of played data and channels of device
[] (default) | scalar | vector

Mapping between columns of played data and channels of output device, specified as a scalar or as a
vector of valid channel indices. The default value of this property is [], which means that the default
channel mapping is used.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

RecorderChannelMapping — Mapping between channels of device and columns of recorded
data
1 (default) | scalar | vector

Mapping between channels of your audio device and columns of recorded data, specified as a scalar
or as a vector of valid channel indices. The default value is 1, which means that the first recording
channel on the device is used to acquire data and is mapped to a single-column matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 audioPlayerRecorder

3-131

Usage

Syntax
audioFromDevice = playRec(audioToDevice)
[audioFromDevice,numUnderrun] = playRec(audioToDevice)
[audioFromDevice,numUnderrun,numOverrun] = playRec(audioToDevice)

Description

audioFromDevice = playRec(audioToDevice) writes one frame of audio samples,
audioToDevice, to the selected audio device, and returns one frame of audio, audioFromDevice.

[audioFromDevice,numUnderrun] = playRec(audioToDevice) returns the number of
samples overrun since the last call to playRec.

[audioFromDevice,numUnderrun,numOverrun] = playRec(audioToDevice) returns the
number of samples underrun since the last call to playRec.

Note: When you call the audioPlayerRecorder System object, the audio device specified by the
Device property is locked. An audio device can be locked by only one audioPlayerRecorder at a
time. To release the audio device, call release on the audioPlayerRecorder System object.

Input Arguments

audioToDevice — Audio to device
matrix

Audio signal to write to device, specified as a matrix. The columns of the matrix are treated as
independent audio channels.
Data Types: single | double | int8 | int16 | int32 | uint8

Output Arguments

audioFromDevice — Audio from device
matrix

Audio signal read from device, returned as a matrix the same size and data type as audioToDevice.
Data Types: single | double | int16 | int32 | uint8

numUnderrun — Number of samples underrun
scalar

Number of samples by which the player queue was underrun since the last call to playRec.
Underrun refers to output signal silence. Output signal silence occurs if the device buffer is empty
when it is time for digital-to-analog conversion. This results when the processing loop in MATLAB
does not supply samples at the rate the sound card demands.
Data Types: uint32

numOverrun — Number of samples overrun
scalar

3 System Objects

3-132

Number of samples by which the recorder queue was overrun since the last call to playRec. Overrun
refers to input signal drops. Input signal drops occur when the processing stage does not keep pace
with the acquisition of samples.
Data Types: uint32

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to audioPlayerRecorder
getAudioDevices List available audio devices
info Get audio device information

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm
setup One-time set up tasks for System objects

Examples

Synchronize Playback and Recording

Synchronize playback and recording using a single audio device. If synchronization is lost, print
information about samples dropped.

Create objects to read from and write to an audio file. Create an audioPlayerRecorder object to
play an audio signal to your device and simultaneously record audio from your device.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',512);
fs = fileReader.SampleRate;

fileWriter = dsp.AudioFileWriter('Counting-PlaybackRecorded.wav', ...
 'SampleRate',fs);

aPR = audioPlayerRecorder('SampleRate',fs);

In a frame-based loop:

1 Read an audio signal from your file.
2 Play the audio signal to your device and simultaneously record audio from your device. Use the

optional nUnderruns and nOverruns output arguments to track any loss of synchronization.
3 Write your recorded audio to a file.

 audioPlayerRecorder

3-133

Once the loop is completed, release the objects to free devices and resources.

while ~isDone(fileReader)
 audioToPlay = fileReader();

 [audioRecorded,nUnderruns,nOverruns] = aPR(audioToPlay);

 fileWriter(audioRecorded)

 if nUnderruns > 0
 fprintf('Audio player queue was underrun by %d samples.\n',nUnderruns);
 end
 if nOverruns > 0
 fprintf('Audio recorder queue was overrun by %d samples.\n',nOverruns);
 end
end

Audio player queue was underrun by 512 samples.

release(fileReader)
release(fileWriter)
release(aPR)

Specify Nondefault Channel Mapping

The audioPlayerRecorder System object™ enables you to specify a nondefault mapping between
the channels of your audio device and the data sent to and received from your audio device. To run
this example, your audio device must have at least two channels and be capable of full-duplex mode.

Using Default Settings

Create an audioPlayerRecorder object with default settings. The audioPlayerRecorder is
automatically configured to a compatible device and driver.

aPR = audioPlayerRecorder;

The audioPlayerRecorder combines reading from your device and writing to your device in a
single call: audioFromDevice = aPR(audioToDevice). Calling the audioPlayerRecorder with
default settings:

• Maps columns of audioToDevice to output channels of your device
• Maps input channels of your device to columns of audioFromDevice

By default, audioFromDevice is a one-column matrix corresponding to channel 1 of your audio
device. To view the maximum number of input and output channels of your device, use the info
method.

aPRInfo = info(aPR);

aPRInfo is returned as a structure with fields containing information about your selected driver,
audio device, and the maximum number of input and output channels in your configuration.

Call the audioPlayerRecorder with a two-column matrix. By default, column 1 is mapped to output
channel 1, and column 2 is mapped to output channel 2. The audioPlayerRecorder returns a one-
column matrix with the same number of rows as the audioToDevice matrix.

3 System Objects

3-134

highToneGenerator = audioOscillator('Frequency',600,'SamplesPerFrame',256);
lowToneGenerator = audioOscillator('Frequency',200,'SamplesPerFrame',256);

for i = 1:250
 C = highToneGenerator();
 D = lowToneGenerator();
 audioToDevice = [C,D];
 audioFromDevice = aPR(audioToDevice);
end

Nondefault Channel Mapping for Audio Output

Specify a nondefault channel mapping for your audio output. Specify that column 1 of
audioToDevice maps to channel 2, and that column 2 of audioToDevice maps to channel 1. To
modify the channel mapping, the audioPlayerRecorder object must be unlocked.

Run the audioPlayerRecorder object. If you are using headphones or stereo speakers, notice that
the high frequency and low frequency tones have switched speakers.

release(aPR)
aPR.PlayerChannelMapping = [2,1];

for i = 1:250
 C = highToneGenerator();
 D = lowToneGenerator();
 audioToDevice = [C,D];
 audioFromDevice = aPR(audioToDevice);
end

 audioPlayerRecorder

3-135

Nondefault Channel Mapping for Audio Input

Specify a nondefault channel mapping for your audio input. Record data from only channel two of
your device. In this case, channel 2 is mapped to a one-column matrix. Use size to verify that
audioFromDevice is a 256-by-1 matrix.

release(aPR)
aPR.RecorderChannelMapping = 2;

audioFromDevice = aPR(audioToDevice);

[rows,col] = size(audioFromDevice)

rows =

 256

col =

 1

As a best practice, release your audio device once complete.

release(aPR)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)
• The executable generated from this System object relies on prebuilt dynamic library files (.dll
files) included with MATLAB. Use the packNGo function to package the code generated from this
object and all the relevant files in a compressed zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another development environment where MATLAB is not
installed. For more details, see “Run Audio I/O Features Outside MATLAB and Simulink”.

3 System Objects

3-136

See Also
Functions
asiosettings | audioDeviceReader | audioDeviceWriter | dsp.AudioFileReader |
getAudioDevices

Blocks
Audio Device Reader | Audio Device Writer

Topics
“Audio I/O: Buffering, Latency, and Throughput”
“Run Audio I/O Features Outside MATLAB and Simulink”
“Real-Time Audio in MATLAB”

Introduced in R2017a

 audioPlayerRecorder

3-137

audioDeviceReader
Record from sound card

Description
The audioDeviceReader System object reads audio samples using your computer’s audio input
device.

See “Audio I/O: Buffering, Latency, and Throughput” for a detailed explanation of the audio device
reader data flow.

The audio device reader specifies the driver, the device and its attributes, and the data type and size
output from your System object.

To stream data from an audio device:

1 Create the audioDeviceReader object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation
Syntax
deviceReader = audioDeviceReader
deviceReader = audioDeviceReader(sampleRateValue)
deviceReader = audioDeviceReader(sampleRateValue,sampPerFrameValue)
deviceReader = audioDeviceReader(___ ,Name,Value)

Description

deviceReader = audioDeviceReader returns a System object, deviceReader, that reads audio
samples using an audio input device in real time.

3 System Objects

3-138

deviceReader = audioDeviceReader(sampleRateValue) sets the SampleRate property to
sampleRateValue.

deviceReader = audioDeviceReader(sampleRateValue,sampPerFrameValue) sets the
SamplesPerFrame property to sampPerFrameValue.

deviceReader = audioDeviceReader(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: deviceReader = audioDeviceReader(16000,'BitDepth','8-bit integer')
creates a System object, deviceReader, that operates at a 16 kHz sample rate and an 8-bit integer
bit depth.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

Driver — Driver used to access audio device (Windows only)
'DirectSound' (default) | 'ASIO' | 'WASAPI'

Driver used to access your audio device, specified as 'DirectSound', 'ASIO', or 'WASAPI'.

• ASIO drivers do not come pre-installed on Windows machines. To use the 'ASIO' driver option,
install an ASIO driver outside of MATLAB.

Note If Driver is specified as 'ASIO', use asiosettings to set the sound card buffer size to
the SamplesPerFrame value of your audioDeviceReader System object.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and WASAPI drivers, set
SampleRate to a sample rate supported by your audio device.

This property applies only on Windows machines. Linux machines always use the ALSA driver. Mac
machines always use the CoreAudio driver.
Data Types: char | string

Device — Device used to acquire audio samples
default audio device (default) | character vector | string

Device used to acquire audio samples, specified as a character vector or string. Use
getAudioDevices to list available devices for the selected driver.
Data Types: char | string

NumChannels — Number of input channels acquired by audio device
1 (default) | integer

 audioDeviceReader

3-139

Number of input channels acquired by audio device, specified as an integer. The range of
NumChannels depends on your audio hardware.
Dependencies

To enable this property, set ChannelMappingSource to 'Auto'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SamplesPerFrame — Frame size read from audio device
1024 (default) | integer

Frame size read from audio device, specified as a positive integer. SamplesPerFrame is also the size
of your device buffer and the number of columns of the output matrix returned by your
audioDeviceReader object.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SampleRate — Sample rate used by device to acquire audio data (Hz)
44100 (default) | positive integer

Sample rate used by device to acquire audio data, in Hz, specified as a positive integer. The range of
SampleRate depends on your audio hardware.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BitDepth — Data type used by device to acquire audio data
'16-bit integer' (default) | '8-bit integer' | '32-bit float' | '24-bit integer'

Data type used by device to acquire audio data, specified as a character vector or string.
Data Types: char | string

ChannelMappingSource — Source of mapping between device channels and output matrix
'Auto' (default) | 'Property'

Source of mapping between the channels of your audio input device and columns of the output
matrix, specified as 'Auto' or 'Property'.

• 'Auto' –– The default settings determine the mapping between device channels and output
matrix. For example, suppose that your audio device has six channels available, and you set
NumChannels to 6. The output from a call to your audio device reader is a six-column matrix.
Column 1 corresponds to channel 1, column 2 corresponds to channel 2, and so on.

• 'Property' –– The ChannelMapping property determines the mapping between channels of your
audio device and columns of the output matrix.

Data Types: char | string

ChannelMapping — Nondefault mapping between device channels and output matrix
[1:MaximumInputChannels] (default) | scalar | vector

Nondefault mapping between channels of your audio input device and columns of the output matrix,
specified as a vector of valid channel indices. See “Specify Channel Mapping for audioDeviceReader”
on page 3-145 for more information.
Dependencies

To enable this property, set ChannelMappingSource to 'Property'.

3 System Objects

3-140

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

OutputDataType — Data type of the output
'double' (default) | 'single' | 'int32' | 'int16' | 'uint8'

Data type of the output, specified as a character vector or string.

Note If OutputDataType is specified as 'double' or 'single', the audio device reader outputs
data in the range [–1, 1]. For other data types, the range is [min, max] of the specified data type.

Data Types: char | string

Usage

Syntax
audioFromDevice = deviceReader()
[audioFromDevice,numOverrun] = deviceReader()

Description

audioFromDevice = deviceReader() returns one frame of audio samples from the selected
audio input device.

[audioFromDevice,numOverrun] = deviceReader() returns the number of samples by which
the audio reader's queue was overrun since the last call to deviceReader.

Note: When you call the audioDeviceReader System object, the audio device specified by the
Device property is locked. An audio device can be locked by only one audioDeviceReader at a time.
To release the audio device, call release on your audioDeviceReader object.

Output Arguments

audioFromDevice — Audio from device
matrix

Audio signal read from device, returned as a matrix. The specified number of channels and the
SamplesPerFrame property determine the matrix size. The data type of the matrix depends on the
OutputDataType property.
Data Types: single | double | int16 | int32 | uint8

numOverrun — Number of samples overrun
scalar

Number of samples by which the audio reader's queue was overrun since the last call to
deviceReader.
Data Types: uint32

 audioDeviceReader

3-141

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to audioDeviceReader
getAudioDevices List available audio devices
info Get audio device information

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm
setup One-time set up tasks for System objects

Examples

Read from Microphone and Write to Audio File

Record 10 seconds of speech with a microphone and send the output to a WAV file.

Create an audioDeviceReader object with default settings. Call setup to reduce the computational
load of initialization in an audio stream loop.

deviceReader = audioDeviceReader;
setup(deviceReader)

Create a dsp.AudioFileWriter System object. Specify the file name and type to write.

fileWriter = dsp.AudioFileWriter('mySpeech.wav','FileFormat','WAV');

Record 10 seconds of speech. In an audio stream loop, read an audio signal frame from the device,
and write the audio signal frame to a specified file. The file saves to your current folder.

disp('Speak into microphone now.')

Speak into microphone now.

tic
while toc < 10
 acquiredAudio = deviceReader();
 fileWriter(acquiredAudio);
end
disp('Recording complete.')

Recording complete.

Release the audio device and close the output file.

3 System Objects

3-142

release(deviceReader)
release(fileWriter)

Reduce Latency Due to Input Device Buffer

Latency due to the input device buffer is the time delay of acquiring one frame of data. In this
example, you modify default properties of your audioDeviceReader object to reduce latency.

Create an audioDeviceReader object with default settings.

deviceReader = audioDeviceReader

deviceReader =
 audioDeviceReader with properties:

 Driver: 'DirectSound'
 Device: 'Default'
 NumChannels: 1
 SamplesPerFrame: 1024
 SampleRate: 44100

 Show all properties

Calculate the latency due to your device buffer.

fprintf('Latency due to device buffer: %f seconds.\n',deviceReader.SamplesPerFrame/deviceReader.SampleRate)

Latency due to device buffer: 0.023220 seconds.

Set the SamplesPerFrame property of your audioDeviceReader object to 64. Calculate the
latency.

deviceReader.SamplesPerFrame = 64;
fprintf('Latency due to device buffer: %f seconds.\n',deviceReader.SamplesPerFrame/deviceReader.SampleRate)

Latency due to device buffer: 0.001451 seconds.

Set the SampleRate property of your audioDeviceReader System object to 96000. Calculate the
latency.

deviceReader.SampleRate = 96000;
fprintf('Latency due to device buffer: %f seconds.\n',deviceReader.SamplesPerFrame/deviceReader.SampleRate)

Latency due to device buffer: 0.000667 seconds.

Determine and Decrease Overrun

Overrun refers to input signal drops, which occur when the audio stream loop does not keep pace
with the device. Determine overrun of an audio stream loop, add an artificial computational load to
the audio stream loop, and then modify properties of your audioDeviceReader object to decrease
overrun. Your results depend on your computer.

 audioDeviceReader

3-143

Create an audioDeviceReader System object with SamplesPerFrame set to 256 and SampleRate
set to 44100. Call setup to reduce the computational load of initialization in an audio stream loop.

deviceReader = audioDeviceReader(...
 'SamplesPerFrame',256, ...
 'SampleRate',44100);
setup(deviceReader)

Create a dsp.AudioFileWriter object. Specify the file name and data type to write.

fileWriter = dsp.AudioFileWriter('mySpeech.wav','FileFormat','WAV');

Record 5 seconds of speech. In an audio stream loop, read an audio signal frame from your device,
and write the audio signal frame to a specified file.

totalOverrun = 0;
disp('Speak into microphone now.')

Speak into microphone now.

tic
while toc < 5
 [input,numOverrun] = deviceReader();
 totalOverrun = totalOverrun + numOverrun;
 fileWriter(input);
end
fprintf('Recording complete.\n')

Recording complete.

fprintf('Total number of samples overrun: %d.\n',totalOverrun)

Total number of samples overrun: 0.

fprintf('Total seconds overrun: %d.\n',double(totalOverrun)/double(deviceReader.SampleRate))

Total seconds overrun: 0.

Release your audioDeviceReader and dsp.AudioDeviceWriter objects and zero your counter
variable.

release(fileWriter)
release(deviceReader)
totalOverrun = 0;

Use pause to add an artificial computational load to your audio stream loop. The computational load
causes the audio stream loop to go slower than the device, which causes acquired samples to be
dropped.

disp('Speak into microphone now.')

Speak into microphone now.

tic
while toc < 5
 [input,numOverrun] = deviceReader();
 totalOverrun = totalOverrun + numOverrun;
 fileWriter(input);
 pause(0.01)

3 System Objects

3-144

end
fprintf('Recording complete.\n')

Recording complete.

fprintf('Total number of samples overrun: %d.\n',totalOverrun)

Total number of samples overrun: 97536.

fprintf('Total seconds overrun: %d.\n',double(totalOverrun)/double(deviceReader.SampleRate))

Total seconds overrun: 2.211701e+00.

Release your audioDeviceReader and dsp.AudioFileWriter objects, and set the
SamplePerFrame property to 512. The device buffer size increases so that the device now takes
longer to acquire a frame of data. Set your counter variable to zero.

release(fileWriter)
release(deviceReader)
deviceReader.SamplesPerFrame = 512;
totalOverrun = 0;

Calculate the total overrun of the audio stream loop using your modified SamplesPerFrame
property.

disp('Speak into microphone now.')

Speak into microphone now.

tic
while toc < 5
 [input,numOverrun] = deviceReader();
 totalOverrun = totalOverrun + numOverrun;
 fileWriter(input);
 pause(0.01)
end
fprintf('Recording complete.\n')

Recording complete.

fprintf('Total number of samples overrun: %d.\n',totalOverrun)

Total number of samples overrun: 0.

fprintf('Total seconds overrun: %f.\n',totalOverrun/deviceReader.SampleRate)

Total seconds overrun: 0.000000.

Specify Channel Mapping for audioDeviceReader

Specify nondefault channel mapping for an audioDeviceReader object. This example is hardware
specific. It assumes that your computer has a default audio input device with two available channels.

Create an audioDeviceReader object with default settings.

deviceReader = audioDeviceReader;

 audioDeviceReader

3-145

The default number of channels is 1. Call your audioDeviceReader object like a function with no
arguments to read one frame of data from your audio device. Verify that the output data matrix has
one column.

x = deviceReader();
[frameLength,numChannels] = size(x)

frameLength = 1024

numChannels = 1

Use info to determine the maximum number of input channels available with your specified Driver
and Device configuration.

info(deviceReader)

ans = struct with fields:
 Driver: 'DirectSound'
 DeviceName: 'Primary Sound Capture Driver'
 MaximumInputChannels: 2

Set ChannelMappingSource to 'Property'. The audioDeviceReader object must be unlocked to
change this property.

release(deviceReader)
deviceReader.ChannelMappingSource = 'Property'

deviceReader =
 audioDeviceReader with properties:

 Driver: 'DirectSound'
 Device: 'Default'
 SamplesPerFrame: 1024
 SampleRate: 44100

 Show all properties

By default, if ChannelMappingSource is set to 'Property', all available channels are mapped to
the output. Call your audioDeviceReader object to read one frame of data from your audio device.
Verify that the output data matrix has two columns.

x = deviceReader();
[frameLength,numChannels] = size(x)

frameLength = 1024

numChannels = 2

Use the ChannelMapping property to specify an alternative mapping between channels of your
device and columns of the output matrix. Indicate the input channel number at an index
corresponding to the output column. To change this property, first unlock the audioDeviceReader
object.

release(deviceReader)
deviceReader.ChannelMapping = [2,1];

Now when you call your audioDeviceReader:

3 System Objects

3-146

• Input channel 1 of your device maps to the second column of your output matrix.
• Input channel 2 of your device maps to the first column of your output matrix.

Acquire a specific channel from your input device.

deviceReader.ChannelMapping = 2;

If you call your audioDeviceReader, input channel 2 of your device maps to an output vector.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)
• The executable generated from this System object relies on prebuilt dynamic library files (.dll
files) included with MATLAB. Use the packNGo function to package the code generated from this
object and all the relevant files in a compressed zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another development environment where MATLAB is not
installed. For more details, see “Run Audio I/O Features Outside MATLAB and Simulink”.

See Also
Functions
asiosettings | audioDeviceWriter | audioPlayerRecorder | dsp.AudioFileReader |
getAudioDevices

Blocks
Audio Device Reader

Topics
“Audio I/O: Buffering, Latency, and Throughput”
“Run Audio I/O Features Outside MATLAB and Simulink”
“Real-Time Audio in MATLAB”

Introduced in R2016a

 audioDeviceReader

3-147

audioDeviceWriter
Play to sound card

Description
The audioDeviceWriter System object writes audio samples to an audio output device. Properties
of the audio device writer specify the driver, the device, and device attributes such as sample rate, bit
depth, and buffer size.

See “Audio I/O: Buffering, Latency, and Throughput” for a detailed explanation of the audio device
writer data flow.

To stream data to an audio device:

1 Create the audioDeviceWriter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation
Syntax
deviceWriter = audioDeviceWriter
deviceWriter = audioDeviceWriter(sampleRateValue)
deviceWriter = audioDeviceWriter(___ ,Name,Value)

Description

deviceWriter = audioDeviceWriter returns a System object, deviceWriter, that writes audio
samples to an audio output device in real time.

deviceWriter = audioDeviceWriter(sampleRateValue) sets the SampleRate property to
sampleRateValue.

3 System Objects

3-148

deviceWriter = audioDeviceWriter(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: deviceWriter = audioDeviceWriter(48000,'BitDepth','8-bit integer')
creates a System object, deviceWriter, that operates at a 48 kHz sample rate and an 8-bit integer
bit depth.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

Driver — Driver used to access audio device (Windows only)
'DirectSound' (default) | 'ASIO' | 'WASAPI'

Driver used to access your audio device, specified as 'DirectSound', 'ASIO', or 'WASAPI'.

• ASIO drivers do not come pre-installed on Windows machines. To use the 'ASIO' driver option,
install an ASIO driver outside of MATLAB.

Note If Driver is specified as 'ASIO', use asiosettings to set the sound card buffer size to
the buffer size of your audioDeviceWriter System object.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and WASAPI drivers, set
SampleRate to a sample rate supported by your audio device.

This property applies only on Windows machines. Linux machines always use the ALSA driver. Mac
machines always use the CoreAudio driver.

To specify nondefault Driver values, you must have an Audio Toolbox licence. If the toolbox is not
installed, specifying nondefault Driver values returns an error.
Data Types: char | string

Device — Device used to play audio samples
default audio device (default) | character vector | string scalar

Device used to play audio samples, specified as a character vector or string scalar. Use
getAudioDevices to list available devices for the selected driver.
Data Types: char | string

SampleRate — Sample rate of signal sent to audio device (Hz)
44100 (default) | positive integer

Sample rate of signal sent to audio device, in Hz, specified as a positive integer. The range of
SampleRate depends on your audio hardware.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

 audioDeviceWriter

3-149

BitDepth — Data type used by the device
'16-bit integer' (default) | '8-bit integer' | '24-bit integer' | '32-bit float'

Data type used by the device, specified as a character vector or string scalar. Before performing
digital-to-analog conversion, the input data is cast to a data type specified by BitDepth.

To specify a nondefault BitDepth, you must have an Audio Toolbox licence. If the toolbox is not
installed, specifying a nondefault BitDepth returns an error.
Data Types: char | string

SupportVariableSizeInput — Support variable frame size
false (default) | true

Option to support variable frame size, specified as true or false.

• false –– If the audioDeviceWriter object is locked, the input must have the same frame size at
each call. The buffer size of your audio device is the same as the input frame size.

• true –– If the audioDeviceWriter object is locked, the input frame size can change at each call.
The buffer size of your audio device is specified through the BufferSize property.

Data Types: char

BufferSize — Buffer size of audio device
4096 (default) | positive integer

Buffer size of audio device, specified as a positive integer.

Note If Driver is specified as 'ASIO', open the ASIO UI to set the sound card buffer size to the
BufferSize value of your audioDeviceWriter System object.

Dependencies

To enable this property, set SupportVariableSizeInput to true.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ChannelMappingSource — Source of mapping between input matrix and device channels
'Auto' (default) | 'Property'

Source of mapping between columns of input matrix and channels of audio output device, specified as
'Auto' or 'Property'.

• 'Auto' –– Default settings determine the mapping between columns of input matrix and channels
of audio output device. For example, suppose that your input is a matrix with four columns, and
your audio device has four channels available. Column 1 of your input data writes to channel 1 of
your device, column 2 of your input data writes to channel 2 of your device, and so on.

• 'Property' –– The ChannelMapping property determines the mapping between columns of input
matrix and channels of audio output device.

Data Types: char | string

ChannelMapping — Nondefault mapping between input matrix and device channels
[1:MaximumOutputChannels] (default) | scalar | vector

3 System Objects

3-150

Nondefault mapping between columns of input matrix and channels of output device, specified as a
scalar or vector of valid channel indices. See the “Specify Channel Mapping for audioDeviceWriter”
on page 3-155 example for more information.

To selectively map between columns of the input matrix and your sound card's output channels, you
must have an Audio Toolbox licence. If the toolbox is not installed, specifying a nondefault
ChannelMapping returns an error.

Dependencies

To enable this property, set ChannelMappingSource to 'Property'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
numUnderrun = deviceWriter(audioToDevice)

Description

numUnderrun = deviceWriter(audioToDevice) writes one frame of audio samples,
audioToDevice, to the selected audio device and returns the number of audio samples underrun
since the last call to deviceWriter.

Note: When you call the audioDeviceWriter System object, the audio device specified by the
Device property is locked. An audio device can be locked by only one audioDeviceWriter at a
time. To release the audio device, call release on your audioDeviceWriter System object.

Input Arguments

audioToDevice — Audio to device
matrix

Audio signal to write to device, specified as a matrix. The columns of the matrix are treated as
independent audio channels.

If audioToDevice is of data type 'double' or 'single', the audio device writer clips values
outside the range [–1, 1]. For other data types, the allowed input range is [min, max] of the specified
data type.
Data Types: single | double | int16 | int32 | uint8

Output Arguments

numUnderrun — Number of samples underrun
scalar

Number of samples by which the audio device writer queue was underrun since the last call to
deviceWriter.
Data Types: uint32

 audioDeviceWriter

3-151

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to audioDeviceWriter
getAudioDevices List available audio devices
info Get audio device information

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm
setup One-time set up tasks for System objects

Examples

Read from File and Write to Audio Device

Read an MP3 audio file and play it through your default audio output device.

Create a dsp.AudioFileReader object with default settings. Use the audioinfo function to return
a structure containing information about the audio file.

fileReader = dsp.AudioFileReader('speech_dft.mp3');
fileInfo = audioinfo('speech_dft.mp3')

fileInfo = struct with fields:
 Filename: 'B:\matlab\toolbox\dsp\dsp\speech_dft.mp3'
 CompressionMethod: 'MP3'
 NumChannels: 1
 SampleRate: 22050
 TotalSamples: 112893
 Duration: 5.1199
 Title: []
 Comment: []
 Artist: []
 BitRate: 64

Create an audioDeviceWriter object and specify the sample rate.

deviceWriter = audioDeviceWriter('SampleRate',fileInfo.SampleRate);

Call setup to reduce the computational load of initialization in an audio stream loop.

setup(deviceWriter,zeros(fileReader.SamplesPerFrame,fileInfo.NumChannels))

Use the info function to obtain the characteristic information about the device writer.

3 System Objects

3-152

info(deviceWriter)

ans = struct with fields:
 Driver: 'DirectSound'
 DeviceName: 'Primary Sound Driver'
 MaximumOutputChannels: 2

In an audio stream loop, read an audio signal frame from the file, and write the frame to your device.

while ~isDone(fileReader)
 audioData = fileReader();
 deviceWriter(audioData);
end

Close the input file and release the device.

release(fileReader)
release(deviceWriter)

Reduce Latency due to Output Device Buffer

Latency due to the output device buffer is the time delay of writing one frame of data. Modify default
properties of your audioDeviceWriter System object™ to reduce latency due to device buffer size.

Create a dsp.AudioFileReader System object to read an audio file with default settings.

fileReader = dsp.AudioFileReader('speech_dft.mp3');

Create an audioDeviceWriter System object and specify the sample rate to match that of the audio
file reader.

deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Calculate the latency due to your device buffer, in seconds.

bufferLatency = fileReader.SamplesPerFrame/deviceWriter.SampleRate %#ok

bufferLatency = 0.0464

Set the SamplesPerFrame property of your dsp.AudioFileReader System object to 256.
Calculate the buffer latency in seconds.

fileReader.SamplesPerFrame = 256;
bufferLatency = fileReader.SamplesPerFrame/deviceWriter.SampleRate

bufferLatency = 0.0116

Determine and Decrease Underrun

Underrun refers to output signal silence, which occurs when the audio stream loop does not keep
pace with the output device. Determine the underrun of an audio stream loop, add artificial

 audioDeviceWriter

3-153

computational load to the audio stream loop, and then modify properties of your
audioDeviceWriter object to decrease underrun. Your results depend on your computer.

Create a dsp.AudioFileReader object, and specify the file to read. Use the audioinfo function to
return a structure containing information about the audio file.

fileReader = dsp.AudioFileReader('speech_dft.mp3');
fileInfo = audioinfo('speech_dft.mp3');

Create an audioDeviceWriter object. Use the SampleRate of the file reader as the SampleRate
of the device writer. Call setup to reduce the computational load of initialization in an audio stream
loop.

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
setup(deviceWriter,zeros(fileReader.SamplesPerFrame,fileInfo.NumChannels))

Run your audio stream loop with input from file and output to device. Print the total samples
underrun and the underrun in seconds.

totalUnderrun = 0;
while ~isDone(fileReader)
 input = fileReader();
 numUnderrun = deviceWriter(input);
 totalUnderrun = totalUnderrun + numUnderrun;
end
fprintf('Total samples underrun: %d.\n',totalUnderrun)

Total samples underrun: 0.

fprintf('Total seconds underrun: %d.\n',double(totalUnderrun)/double(deviceWriter.SampleRate))

Total seconds underrun: 0.

Release your dsp.AudioFileReader and audioDeviceWriter objects and set your counter
variable to zero.

release(fileReader)
release(deviceWriter)
totalUnderrun = 0;

Use pause to mimic an algorithm that takes 0.075 seconds to process. The pause causes the audio
stream loop to go slower than the device, which results in periods of silence in the output audio
signal.

while ~isDone(fileReader)
 input = fileReader();
 numUnderrun = deviceWriter(input);
 totalUnderrun = totalUnderrun + numUnderrun;
 pause(0.075)
end
fprintf('Total samples underrun: %d.\n',totalUnderrun)

Total samples underrun: 71680.

fprintf('Total seconds underrun: %d.\n',double(totalUnderrun)/double(deviceWriter.SampleRate))

Total seconds underrun: 3.250794e+00.

3 System Objects

3-154

Release your audioDeviceReader and dsp.AudioFileWriter and set the counter variable to
zero.

release(fileReader)
release(deviceWriter)
totalUnderrun = 0;

Set the frame size of your audio stream loop to 2048. Because the SupportVariableSizeInput
property of your audioDeviceWriter System object is set to false, the buffer size of your audio
device is the same size as the input frame size. Increasing your device buffer size decreases
underrun.

fileReader = dsp.AudioFileReader('speech_dft.mp3');
fileReader.SamplesPerFrame = 2048;
fileInfo = audioinfo('speech_dft.mp3');

deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
setup(deviceWriter,zeros(fileReader.SamplesPerFrame,fileInfo.NumChannels))

Calculate the total underrun.

while ~isDone(fileReader)
 input = fileReader();
 numUnderrun = deviceWriter(input);
 totalUnderrun = totalUnderrun + numUnderrun;
 pause(0.075)
end
fprintf('Total samples underrun: %d.\n',totalUnderrun)

Total samples underrun: 0.

fprintf('Total seconds underrun: %d.\n',double(totalUnderrun)/double(deviceWriter.SampleRate))

Total seconds underrun: 0.

The increased frame size reduces the total underrun of your audio stream loop. However, increasing
the frame size also increases latency. Other approaches to reduce underrun include:

• Increasing the buffer size independent of input frame size. To increase buffer size independent of
input frame size, you must first set SupportVariableSizeInput to true. This approach also
increases latency.

• Decreasing the sample rate. Decreasing the sample rate reduces both latency and underrun at the
cost of signal resolution.

• Choosing an optimal driver and device for your system.

Specify Channel Mapping for audioDeviceWriter

Specify nondefault channel mapping for an audioDeviceWriter object. This example is hardware
specific. It assumes that your computer has a default audio output device with two available channels.

Create an audioDeviceWriter object with default settings.

deviceWriter = audioDeviceWriter;

 audioDeviceWriter

3-155

By default, the audioDeviceWriter object writes the maximum number of channels available,
corresponding to the columns of the input matrix. Use info to get the maximum number of channels
of your device.

info(deviceWriter)

ans = struct with fields:
 Driver: 'DirectSound'
 DeviceName: 'Primary Sound Driver'
 MaximumOutputChannels: 2

If deviceWriter is called with one column of data, two channels are written to your audio output
device. Both channels correspond to the one column of data.

Use the audioOscillator object to output a tone to your audioDeviceWriter object. Your object,
sineGenerator, returns a vector when called.

sineGenerator = audioOscillator;

Write the sine tone to your audio device. If you are using headphones, you can hear the tone from
both channels.

count = 0;
while count < 500
 sine = sineGenerator();
 deviceWriter(sine);
 count = count + 1;
end

If your audioDeviceWriter object is called with two columns of data, two channels are written to
your audio output device. The first column corresponds to channel 1 of your audio output device, and
the second column corresponds to channel 2 of your audio output device.

Write a two-column matrix to your audio output device. Column 1 corresponds to the sine tone, and
column 2 corresponds to a static signal. If you are using headphones, you can hear the tone from one
speaker and the static from the other speaker.

count = 0;
while count < 500
 sine = sineGenerator();
 static = randn(length(sine),1);
 deviceWriter([sine,static]);
 count = count + 1;
end

Specify alternative mappings between channels of your device and columns of the output matrix by
indicating the output channel number at an index corresponding to the input column. Set
ChannelMappingSource to 'Property'. Indicate that the first column of your input data writes to
channel 2 of your output device, and that the second column of your input data writes to channel 1 of
your output device. To modify the channel mapping, you must first unlock the audioDeviceReader
object.

release(deviceWriter)
deviceWriter.ChannelMappingSource = 'Property';
deviceWriter.ChannelMapping = [2,1];

3 System Objects

3-156

Play your audio signals with reversed mapping. If you are using headphones, notice that the tone and
static have switched speakers.

count = 0;
while count < 500
 sine = sineGenerator();
 static = randn(length(sine),1);
 deviceWriter([sine,static]);
 count = count + 1;
end

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• “System Objects in MATLAB Code Generation” (MATLAB Coder)
• The executable generated from this System object relies on prebuilt dynamic library files (.dll
files) included with MATLAB. Use the packNGo function to package the code generated from this
object and all the relevant files in a compressed zip file. Using this zip file, you can relocate,
unpack, and rebuild your project in another development environment where MATLAB is not
installed. For more details, see “Run Audio I/O Features Outside MATLAB and Simulink”.

See Also
Audio Device Writer | asiosettings | audioDeviceReader | audioPlayerRecorder |
dsp.AudioFileReader | dsp.AudioFileWriter | getAudioDevices

Topics
“Run Audio I/O Features Outside MATLAB and Simulink”
“Audio I/O: Buffering, Latency, and Throughput”
“Measure Audio Latency”
“Real-Time Audio in MATLAB”

Introduced in R2016a

 audioDeviceWriter

3-157

audioOscillator

Generate sine, square, and sawtooth waveforms

Description
The audioOscillator System object generates tunable waveforms. Typical uses include the
generation of test signals for test benches, and the generation of control signals for audio effects.
Properties of the audioOscillator System object specify the type of waveform generated.

To generate tunable waveforms:

1 Create the audioOscillator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
osc = audioOscillator
osc = audioOscillator(signalTypeValue)
osc = audioOscillator(signalTypeValue,frequencyValue)
osc = audioOscillator(___ ,Name,Value)

Description

osc = audioOscillator creates an audio oscillator System object, osc, with default property
values.

osc = audioOscillator(signalTypeValue) sets the SignalType property to
signalTypeValue.

osc = audioOscillator(signalTypeValue,frequencyValue) sets the Frequency property to
frequencyValue.

3 System Objects

3-158

osc = audioOscillator(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: osc =
audioOscillator('SignalType','sine','Frequency',8000,'DCOffset',1) creates a
System object, osc, which generates 8 kHz sinusoids with a DC offset of one.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

SignalType — Type of generated waveform
'sine' (default) | 'square' | 'sawtooth'

Type of waveform generated by your audioOscillator object, specified as 'sine', 'square', or
'sawtooth'.

The waveforms are generated using the algorithms specified by the sin, square, and sawtooth
functions.

Tunable: No
Data Types: char | string

Frequency — Frequency of generated waveform (Hz)
100 (default) | real scalar | vector of real scalars

Frequency of generated waveform in Hz, specified as a real scalar or vector of real scalars greater
than or equal to 0.

• For sine waveforms, specify Frequency as a scalar or as a vector of length NumTones.
• For square waveforms, specify Frequency as a scalar.
• For sawtooth waveforms, specify Frequency as a scalar.

Tunable: Yes
Data Types: single | double

Amplitude — Amplitude of generated waveform
1 (default) | real scalar | vector of real scalars

Amplitude of generated waveform, specified as a real scalar or vector of real scalars greater than or
equal to 0.

• For sine waveforms, specify Amplitude as a vector of length NumTones.
• For square waveforms, specify Amplitude as a scalar.
• For sawtooth waveforms, specify Amplitude as a scalar.

 audioOscillator

3-159

The generated waveform is multiplied by the value specified by Amplitude at the output, before
DCOffset is applied.

Tunable: Yes
Data Types: single | double

PhaseOffset — Normalized phase offset of generated waveform
0 (default) | real scalar | vector of real scalars

Normalized phase offset of generated waveform, specified as a real scalar or vector of real scalars
with values in the range [0, 1]. The range is a normalized 2π-radian interval.

• For sine waveforms, specify PhaseOffset as a vector of length NumTones.
• For square waveforms, specify PhaseOffset as a scalar.
• For sawtooth waveforms, specify PhaseOffset as a scalar.

Tunable: No
Data Types: single | double

DCOffset — Value added to each element of generated waveform
0 (default) | real scalar | vector of real scalars

Value added to each element of generated waveform, specified as a real scalar or vector of real
scalars.

• For sine waveforms, specify DCOffset as a vector of length NumTones.
• For square waveforms, specify DCOffset as a scalar.
• For sawtooth waveforms, specify DCOffset as a scalar.

Tunable: Yes
Data Types: single | double

NumTones — Number of pure sine waveform tones
1 (default) | positive integer

Number of pure sine waveform tones summed and then generated by the audio oscillator.

Individual tones are generated based on values specified by Frequency, Amplitude, PhaseOffset,
and DCOffset.

Tunable: No

Dependencies

To enable this property, set SignalType to 'sine'.
Data Types: single | double

DutyCycle — Square waveform duty cycle
0.5 (default) | scalar in the range [0, 1]

Square waveform duty cycle, specified as a scalar in the range [0, 1].

3 System Objects

3-160

Square waveform duty cycle is the percentage of one period in which the waveform is above the
median amplitude. A DutyCycle of 1 or 0 is equivalent to a DC offset.

Tunable: Yes

Dependencies

To enable this property, set SignalType to 'square'.
Data Types: single | double

Width — Sawtooth width
1 (default) | scalar in the range [0, 1]

Sawtooth width, specified as a scalar in the range [0, 1].

Sawtooth width determines the point in a sawtooth waveform period at which the maximum occurs.

Tunable: Yes

Dependencies

To enable this property, set SignalType to 'sawtooth'.
Data Types: single | double

SamplesPerFrame — Number of samples per frame
512 (default) | positive integer

Number of samples per frame, specified as a positive integer in the range [1, 192000].

This property determines the vector length that your audioOscillator object outputs.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SampleRate — Sample rate of generated waveform (Hz)
44100 (default) | positive scalar

Sample rate of generated waveform in Hz, specified as a positive scalar greater than twice the value
specified by Frequency.

Tunable: Yes
Data Types: single | double

OutputDataType — Data type of generated waveform
'double' (default) | 'single'

Data type of generated waveform, specified as 'double' or 'single'.

Tunable: Yes
Data Types: char | string

 audioOscillator

3-161

Usage

Syntax
waveform = osc()

Description

waveform = osc() generates a waveform output, waveform. The type of waveform is specified by
the algorithm and properties of the System object, osc.

Output Arguments

waveform — Waveform output from oscillator
column vector

Waveform output from the audio oscillator, returned as a column vector with length specified by the
SamplesPerFrame property.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to audioOscillator
createAudioPluginClass Create audio plugin class that implements functionality of System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties of the
audioOscillator System object to user-facing parameters:

Property Range Mapping Units
Frequency [0.1, 20000] log Hz

3 System Objects

3-162

Property Range Mapping Units
Amplitude [0, 10] linear no units
DCOffset [–10, 10] linear no units
DutyCycle (available
when you set
SignalType to
'square')

[0, 1] linear no units

Width (available when
you set SignalType to
'sawtooth')

[0, 1] linear no units

Examples

Generate Variable-Frequency Sine Wave

Use the audioOscillator to generate a variable-frequency sine wave.

Create an audio oscillator to generate a sine wave. Use the default settings.

osc = audioOscillator;

Create a time scope to visualize the variable-frequency sine wave generated by the audio oscillator.

scope = dsp.TimeScope(...
 'SampleRate',osc.SampleRate, ...
 'TimeSpan',0.1, ...
 'YLimits',[-1.5,1.5], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'Title','Variable-Frequency Sine Wave');

Place the audio oscillator in an audio stream loop. Increase the frequency of your sine wave in 50-Hz
increments.

counter = 0;
while (counter < 1e4)
 counter = counter + 1;
 sineWave = osc();
 scope(sineWave);
 if mod(counter,1000)==0
 osc.Frequency = osc.Frequency + 50;
 end
end

 audioOscillator

3-163

Create a Melody by Tuning Oscillation Frequency

Tune the frequency of an audio oscillator at regularly spaced intervals to create a melody. Play the
melody to your audio output device.

Create a structure to hold the frequency values of notes in a melody.

notes = struct('C4',261.63,'E4',329.63,'G4sharp',415.30,'A4',440,'B4',493.88, ...
 'C5',523.25,'D5',587.25,'D5sharp',622.25,'E5',659.25,'Silence',0);

Create audioOscillator and audioDeviceWriter objects. Use the default settings.

osc = audioOscillator;
aDW = audioDeviceWriter;

Create a vector with the initial melody of Fur Elise.

melody = [notes.Silence notes.Silence,...
 notes.E5 notes.D5sharp notes.E5 notes.D5sharp notes.E5 notes.B4 ...

3 System Objects

3-164

 notes.D5 notes.C5 notes.A4 notes.A4 notes.Silence ...
 notes.C4 notes.E4 notes.A4 notes.B4 notes.B4 notes.Silence ...
 notes.E4 notes.G4sharp notes.B4 notes.C5 notes.C5 notes.Silence];

Specify the note duration in seconds. In an audio stream loop, call your audio oscillator and write the
sound to your audio device. Update the frequency of the audio oscillator in noteDuration time steps
to follow the melody. As a best practice, release your objects once complete.

noteDuration = 0.3;

i = 1;
tic
while i < numel(melody)
 tone = osc();
 aDW(tone);
 if toc >= noteDuration
 i = i + 1;
 osc.Frequency = melody(i);
 tic
 end
end

release(osc)
release(aDW)

Control Cutoff Frequency of Lowpass Filter

Create a low-frequency oscillator (LFO) lowpass filter, using the audioOscillator as a control
signal.

Create dsp.AudioFileReader and audioDeviceWriter System objects to read from an audio file
and write to your audio device. Create a biquad filter object to apply lowpass filtering to your audio
signal.

fileReader = dsp.AudioFileReader('Filename','Engine-16-44p1-stereo-20sec.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
lowpassFilter = dsp.BiquadFilter(...
 'SOSMatrixSource','Input port', ...
 'ScaleValuesInputPort',false);

Create an audio oscillator object. Your audio oscillator controls the cutoff frequency of the lowpass
filter in an audio stream loop.

osc = audioOscillator('SignalType','sawtooth', ...
 'DCOffset',0.05, ...
 'Amplitude',0.03, ...
 'SamplesPerFrame',fileReader.SamplesPerFrame, ...
 'SampleRate',fileReader.SampleRate, ...
 'Frequency',5);

In a loop, filter the audio signal through the lowpass filter. Write the output signal to your audio
device.

while ~isDone(fileReader)
 audioIn = fileReader();

 audioOscillator

3-165

 ctrlSignal = osc();
 [B,A] = designVarSlopeFilter(48,ctrlSignal(end));
 audioOut = lowpassFilter(audioIn,B,A);
 deviceWriter(audioOut);
end

As a best practice, release objects once complete.

release(osc)
release(fileReader)
release(deviceWriter)

For a more complete implementation of an LFO Filter, see audiopluginexample.LFOFilter in the
“Audio Plugin Example Gallery”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Audio Oscillator | wavetableSynthesizer

Introduced in R2016a

3 System Objects

3-166

crossoverFilter
Audio crossover filter

Description
The crossoverFilter System object implements an audio crossover filter, which is used to split an
audio signal into two or more frequency bands. Crossover filters are multiband filters whose overall
magnitude frequency response is flat.

To implement an audio crossover filter:

1 Create the crossoverFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
crossFilt = crossoverFilter
crossFilt = crossoverFilter(nCrossovers)
crossFilt = crossoverFilter(nCrossovers,xFrequencies)
crossFilt = crossoverFilter(nCrossovers,xFrequencies,xSlopes)
crossFilt = crossoverFilter(nCrossovers,xFrequencies,xSlopes,Fs)
crossFilt = crossoverFilter(___ ,Name,Value)

Description

crossFilt = crossoverFilter creates a System object, crossFilt, that implements an audio
crossover filter.

 crossoverFilter

3-167

crossFilt = crossoverFilter(nCrossovers) sets the NumCrossovers property to
nCrossovers.

crossFilt = crossoverFilter(nCrossovers,xFrequencies) sets the CrossoverFrequencies
property to xFrequencies.

crossFilt = crossoverFilter(nCrossovers,xFrequencies,xSlopes) sets the
CrossoverSlopes property to xSlopes.

crossFilt = crossoverFilter(nCrossovers,xFrequencies,xSlopes,Fs) sets the
SampleRate property to Fs.

crossFilt = crossoverFilter(___ ,Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: crossFilt = crossoverFilter(2,'CrossoverFrequencies',
[100,800],'CrossoverSlopes',[6,48]) creates a System object, crossFilt, with two
crossovers located at 100 Hz and 800 Hz, and crossover slopes of 6 dB/octave and 48 dB/octave,
respectively.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

NumCrossovers — Number of magnitude response band crossings
1 (default) | 2 | 3 | 4

Number of magnitude response band crossings, specified as a scalar integer in the range 1 to 4.

The number of bands output when implementing crossover filtering is one more than the
NumCrossovers value.

Number of magnitude response band
crossings

Number of bands output

1 two-band
2 three-band
3 four-band
4 five-band

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CrossoverFrequencies — Crossover frequencies (Hz)
100 (default) | scalar | vector

Crossover frequencies in Hz, specified as a scalar or vector of real values of length NumCrossovers.

3 System Objects

3-168

Crossover frequencies are the intersections of magnitude response bands of the individual two-band
crossover filters used in the multiband crossover filter.

Tunable: Yes
Data Types: single | double

CrossoverSlopes — Crossover slopes (dB/octave)
12 (default) | scalar | vector

Crossover slopes in dB/octave, specified as a scalar or vector of real values in the range [6:6:48]. If a
specified crossover slope is not inside the range, the slope is rounded to the nearest allowed value.

• If CrossoverSlopes is a scalar, all two-band component crossover slopes take that value.
• If CrossoverSlopes is a vector of length NumCrossovers, the respective two-band component

crossover slopes take those values.

Crossover slopes are the slopes of individual bands at the associated crossover frequency, as specified
in the two-band component crossover.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
[band1,...,bandN] = crossFilt(audioIn)

Description

[band1,...,bandN] = crossFilt(audioIn) applies a crossover filter on the input, audioIn,
and returns the filtered output bands, [band1,...,bandN], where N = NumCrossovers + 1.

Input Arguments

audioIn — Audio input to crossover filter
matrix

Audio input to the crossover filter, specified as a matrix. The columns of the matrix are treated as
independent audio channels.
Data Types: single | double

 crossoverFilter

3-169

Output Arguments

[band1,...,bandN] — Audio bands output from crossover filter
set of matrices

Audio bands output from the crossover filter, returned as a set of N bands. The NumCrossovers
property determines the number of return arguments: N = NumCrossovers + 1. The size of each
output argument is the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to crossoverFilter
visualize Visualize magnitude response of crossover filter
cost Estimate implementation cost of audio System objects
createAudioPluginClass Create audio plugin class that implements functionality of System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties of the
crossoverFilter System object to user-facing parameters:

Property Range Mapping Unit
CrossoverFrequenci
es

[20, 20000] linear Hz

CrossoverSlopes [6, 48] linear dB/octave

Examples

Pass Noise Signal Through Crossover Filter

Use the crossoverFilter object to split Gaussian noise into three separate frequency bands.

3 System Objects

3-170

Create a 5 second noise signal that assumes a 24 kHz sample rate.

fs = 24e3;
noise = randn(fs*5,1);

Create a crossoverFilter object with 2 crossovers (3 bands), crossover frequencies at 4 kHz and 8
kHz, a slope of 48 dB/octave, and a sample rate of 24 kHz.

crossFilt = crossoverFilter(...
 'NumCrossovers',2, ...
 'CrossoverFrequencies',[4000,8000], ...
 'CrossoverSlopes',48, ...
 'SampleRate',fs);

Visualize the magnitude response of your crossover filter object.

visualize(crossFilt)

Call your crossover filter like a function with the noise signal as the argument.

[y1,y2,y3] = crossFilt(noise);

Visualize the results using a spectrogram.

figure('Position',[100,100,800,700])

 crossoverFilter

3-171

subplot(4,1,1)
spectrogram(noise,120,100,6000,fs,'yaxis')
title('Noise')

subplot(4,1,2)
spectrogram(y1,120,100,6000,fs,'yaxis')
title('y1')

subplot(4,1,3)
spectrogram(y2,120,100,6000,fs,'yaxis')
title('y2')

subplot(4,1,4)
spectrogram(y3,120,100,6000,fs,'yaxis')
title('y3')

3 System Objects

3-172

Split Audio Signal into Three Bands

Use the crossoverFilter object to split an audio signal into three frequency bands.

Create the dsp.AudioFileReader and audioDeviceWriter objects. Use the sample rate of the
reader as the sample rate of the writer.

samplesPerFrame = 256;

fileReader = dsp.AudioFileReader(...
 'RockGuitar-16-44p1-stereo-72secs.wav', ...
 'SamplesPerFrame',samplesPerFrame);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Create a crossoverFilter object with 2 crossovers (3 bands), crossover frequencies at 500 Hz and
1 kHz, and a slope of 18 dB/octave. Use the sample rate of the reader as the sample rate of the
crossover filter.

crossFilt = crossoverFilter(...
 'NumCrossovers',2, ...
 'CrossoverFrequencies',[500,1000], ...
 'CrossoverSlopes',18, ...
 'SampleRate',fileReader.SampleRate);

Visualize the bands of the crossover filter.

visualize(crossFilt)

 crossoverFilter

3-173

Get the cost of the crossover filter.

cost(crossFilt)

ans = struct with fields:
 NumCoefficients: 48
 NumStates: 18
 MultiplicationsPerInputSample: 48
 AdditionsPerInputSample: 37

Create a spectrum analyzer to visualize the effect of the crossover filter.

scope = dsp.SpectrumAnalyzer(...
 'SampleRate',fileReader.SampleRate, ...
 'PlotAsTwoSidedSpectrum',false, ...
 'FrequencyScale','Log', ...
 'FrequencyResolutionMethod','WindowLength', ...
 'WindowLength',samplesPerFrame, ...
 'Title','Crossover Bands and Reconstructed Signal', ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original Signal','Band 1','Band 2','Band 3','Sum'});

Play 10 seconds of the audio signal. Visualize the spectrum of the original audio, the crossover bands,
and the reconstructed signal (sum of bands).

3 System Objects

3-174

setup(scope,ones(samplesPerFrame,5))
count = 0;
while count < (fileReader.SampleRate/samplesPerFrame)*10
 originalSignal = fileReader();
 [band1,band2,band3] = crossFilt(originalSignal);
 sumOfBands = band1 + band2 + band3;
 scope([originalSignal(:,1), ...
 band1(:,1), ...
 band2(:,1), ...
 band3(:,1), ...
 sumOfBands(:,1)])
 deviceWriter(sumOfBands);
 count = count + 1;
end

release(fileReader)
release(crossFilt)
release(deviceWriter)
release(scope)

 crossoverFilter

3-175

Apply Split-Band De-Essing

De-essing is the process of diminishing sibilant sounds in an audio signal. Sibilance refers to the s, z,
and sh sounds in speech, which can be disproportionately emphasized during recording. es sounds
fall under the category of unvoiced speech with all consonants and have a higher frequency than
voiced speech. In this example, you apply split-band de-essing to a speech signal by separating the
signal into high and low frequencies, applying an expander to diminish the sibilant frequencies, and
then remixing the channels.

Create a dsp.AudioFileReader object and an audioDeviceWriter object to read from a sound
file and write to an audio device. Listen to the unprocessed signal. Then release the file reader and
device writer.

fileReader = dsp.AudioFileReader(...
 'Sibilance.wav');
deviceWriter = audioDeviceWriter;

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end

release(deviceWriter)
release(fileReader)

Create an expander System object to de-ess the audio signal. Set the sample rate of the expander to
the sample rate of the audio file. Create a two-band crossover filter with a crossover of 3000 Hz.
Sibilance is usually found in this range. Set the crossover slope to 12. Plot the frequency response of
the crossover filter to confirm your design visually.

dRExpander = expander(...
 'Threshold',-50, ...
 'AttackTime', 0.05, ...
 'ReleaseTime',0.05, ...
 'HoldTime',0.005, ...
 'SampleRate',fileReader.SampleRate);

crossFilt = crossoverFilter(...
 'NumCrossovers',1, ...
 'CrossoverFrequencies',3000, ...
 'CrossoverSlopes',12);
visualize(crossFilt)

3 System Objects

3-176

Create a dsp.TimeScope System object to visualize the original and processed audio signals.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',4, ...
 'BufferLength',fileReader.SampleRate*8, ...
 'YLimits',[-1,1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.
2 Split the audio signal into two bands.
3 Apply dynamic range expansion to the upper band.
4 Remix the channels.
5 Write the processed audio signal to your audio device for listening.
6 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

 crossoverFilter

3-177

while ~isDone(fileReader)
 audioIn = fileReader();

 [band1,band2] = crossFilt(audioIn);

 band2processed = dRExpander(band2);

 procAudio = band1 + band2processed;

 deviceWriter(procAudio);

 scope([audioIn procAudio]);
end

release(deviceWriter)
release(fileReader)
release(scope)

release(crossFilt)
release(dRExpander)

3 System Objects

3-178

Diminish Plosives from Speech Signal

Plosives are consonant sounds resulting from a sudden release of airflow. They are most pronounced
in words beginning with p, d, and g sounds. Plosives can be emphasized by the recording process and
are often displeasurable to hear. In this example, you minimize the plosives of a speech signal by
applying highpass filtering and low-band compression.

Create a dsp.AudioFileReader object and a audioDeviceWriter object to read an audio signal
from a file and write an audio signal to a device. Play the unprocessed signal. Then release the file
reader and device writer.

fileReader = dsp.AudioFileReader('audioPlosives.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end
release(deviceWriter)
release(fileReader)

Design a highpass filter with a steep rolloff of all frequencies below 120 Hz. Use a
dsp.BiquadFilter object to implement the highpass filter design. Create a crossover filter with
one crossover at 250 Hz. The crossover filter enables you to separate the band of interest for
processing. Create a dynamic range compressor to compress the dynamic range of plosive sounds. To
apply no make-up gain, set the MakeUpGainMode to "Property" and use the default 0 dB
MakeUpGain property value. Create a time scope to visualize the processed and unprocessed audio
signal.

[B,A] = designVarSlopeFilter(48,120/(fileReader.SampleRate/2),"hi");
biquadFilter = dsp.BiquadFilter(...
 "SOSMatrixSource","Input port", ...
 "ScaleValuesInputPort",false);

crossFilt = crossoverFilter(...
 "SampleRate",fileReader.SampleRate, ...
 "NumCrossovers",1, ...
 "CrossoverFrequencies",250, ...
 "CrossoverSlopes",48);

dRCompressor = compressor(...
 "Threshold",-35, ...
 "Ratio",10, ...
 "KneeWidth",20, ...
 "AttackTime",1e-4, ...
 "ReleaseTime",3e-1, ...
 "MakeUpGainMode","Property", ...
 "SampleRate",fileReader.SampleRate);

scope = dsp.TimeScope(...
 "SampleRate",fileReader.SampleRate, ...
 "TimeSpan",3, ...
 "BufferLength",fileReader.SampleRate*3*2, ...
 "YLimits",[-1 1], ...
 "ShowGrid",true, ...

 crossoverFilter

3-179

 "ShowLegend",true, ...
 "ChannelNames",{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.
2 Apply highpass filtering using your biquad filter.
3 Split the audio signal into two bands.
4 Apply dynamic range compression to the lower band.
5 Remix the channels.
6 Write the processed audio signal to your audio device for listening.
7 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioIn = biquadFilter(audioIn,B,A);
 [band1,band2] = crossFilt(audioIn);
 band1compressed = dRCompressor(band1);
 audioOut = band1compressed + band2;
 deviceWriter(audioOut);
 scope([audioIn audioOut])
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(crossFilt)
release(dRCompressor)
release(scope)

3 System Objects

3-180

Tune Crossover Filter Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create a audioDeviceWriter to
write audio to your sound card. Create a crossoverFilter to process the audio data. Call visualize
to plot the frequency responses of the filters.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

xFilt = crossoverFilter('SampleRate',fileReader.SampleRate);
visualize(xFilt)

 crossoverFilter

3-181

Call parameterTuner to open a UI to tune parameters of the crossover filter while streaming.

parameterTuner(xFilt)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply crossover filtering.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the crossover filter and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 [low,high] = xFilt(audioIn);
 deviceWriter([low(:,1),high(:,1)]);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(xFilt)

3 System Objects

3-182

Algorithms
The crossover System object is implemented as a binary tree of crossover pairs with additional phase-
compensating sections [1]. Odd-order crossovers are implemented with Butterworth filters, while
even-order crossovers are implemented with cascaded Butterworth filters (Linkwitz-Riley filters).

Odd-Order Crossover Pair

Odd-order two-band (one crossover) filters are implemented as parallel complementary highpass and
lowpass filters.

LP and HP are Butterworth filters of order N, implemented as direct-form Ⅱ transposed second-order
sections. The shared cutoff frequency used in their design corresponds to the crossover of the
resulting bands.

Even-Order Crossover Pair

Even-order two-band (one crossover) filters are implemented as parallel complementary highpass and
lowpass filters.

LP and HP are Butterworth filters of order N/2, where N is the order of the overall filter. The filters
are implemented as direct-form Ⅱ transposed second-order sections.

For overall filters of orders 2 and 6, XHI is multiplied by –1 internally so that the branches of your
crossover pair are in-phase.

Even-Order Three-Band Filter

Even-order three-band (two crossovers) filters are implemented as parallel complementary highpass
and lowpass filters organized in a tree structure.

 crossoverFilter

3-183

The phase-compensating section is equivalent to an allpass filter.

The design of four-band and five-band filters (three and four crossovers) are extensions of the pattern
developed for even-order and odd-order crossovers and the tree structure specified for three-band
(two crossover) filters.

References
[1] D’Appolito, Joseph A. "Active Realization of Multiway All-Pass Crossover Systems." Journal of

Audio Engineering Society. Vol. 35, Issue 4, 1987, pp. 239–245.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Objects
multibandParametricEQ

Blocks
Crossover Filter

Introduced in R2016a

3 System Objects

3-184

visualize
Visualize magnitude response of crossover filter

Syntax
visualize(crossFilt)
visualize(crossFilt,NFFT)

Description
visualize(crossFilt) plots the magnitude response of the crossoverFilter. The plot is
updated automatically when properties of the object change.

visualize(crossFilt,NFFT) specifies an N-point FFT used to calculate the magnitude response.

Examples

Visualize Magnitude Response of Crossover Filter

Create an object of the crossoverFilter object, and then call visualize to plot the magnitude
response of the filter.

crossFilt = crossoverFilter;
visualize(crossFilt)

 visualize

3-185

Modify the crossover frequency and observe that the plot is updated automatically.

crossFilt.CrossoverFrequencies = 500;

3 System Objects

3-186

Input Arguments
crossFilt — Crossover filter to visualize
object of crossoverFilter System object

Crossover filter whose magnitude response you want to plot.

NFFT — N-point FFT
2048 (default) | positive scalar

Number of bins used to calculate the DFT, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

See Also
crossoverFilter

Introduced in R2016a

 visualize

3-187

graphicEQ
Standards-based graphic equalizer

Description
The graphicEQ System object implements a graphic equalizer that can tune the gain on individual
octave or fractional octave bands. The object filters the data independently across each input channel
over time using the filter specifications. Center and edge frequencies of the bands are based on the
ANSI S1.11-2004 standard.

To equalize an audio signal:

1 Create the graphicEQ object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation
Syntax
equalizer = graphicEQ

3 System Objects

3-188

equalizer = graphicEQ(Name,Value)

Description

equalizer = graphicEQ creates a graphic equalizer with default values.

equalizer = graphicEQ(Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: equalizer = graphicEQ('Structure','Parallel','EQOrder','1/3 octave')
creates a System object, equalizer, which implements filtering using a parallel structure and one-
third octave filter bandwidth.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

Gains — Gain of each octave or fractional octave band (dB)
[0 0 0 0 0 0 0 0 0 0] (default) | 10-, 15-, or 30-element row vector

Gain of each octave of fractional octave band in dB, specified as a row vector with a length
determined by the Bandwidth property:

• '1 octave' –– Specify gains as a 10-element row vector.
• '2/3 octave' –– Specify gains as a 15-element row vector.
• '1/3 octave' –– Specify gains as a 30-element row vector.

Example: equalizer = graphicEQ('Bandwidth','2/3 octave','Gains',
[5,5,5,5,5,0,0,0,0,0,-5,-5,-5,-5,-5]) creates a two-third octave graphic equalizer with
specified gains.

You can tune the gains of your graphic equalizer when the object is locked. However, you cannot tune
the length of the gains when the object is locked.

Tunable: Yes
Data Types: single | double

EQOrder — Order of individual equalizer bands
2 (default) | positive even integer

Order of individual equalizer bands, specified as a positive even integer. All equalizer bands have the
same order.

Tunable: No
Data Types: single | double

Bandwidth — Filter bandwidth (octaves)
'1 octave' (default) | '2/3 octave' | '1/3 octave'

 graphicEQ

3-189

Filter bandwidth in octaves, specified as '1 octave', '2/3 octave', or '1/3 octave'.

The ANSI S1.11-2004 standard defines the center and edge frequencies of your equalizer. The ISO
266:1997(E) standard specifies corresponding preferred frequencies for labeling purposes.

1-Octave Bandwidth

Center frequencies 32 63 126 251 501 1000 1995 3981 7943
15849

Edge frequencies 22 45 89 178 355 708 1413 2818 5623
1122 22387

Preferred frequencies 31.5 63 125 250 500 1000 2000 4000
8000 16000

2/3-Octave Bandwidth

Center frequencies 25 40 63 100 158 251 398 631 1000 1585
2512 3981 6310 10000 15849

Edge frequencies 20 32 50 79 126 200 316 501 794 1259
1995 3162 5012 7943 12589 19953

Preferred frequencies 25 40 63 100 160 250 400 630 1000 1600
2500 4000 6300 10000 16000

1/3-Octave Bandwidth

Center frequencies 25 32 40 50 63 79 100 126 158 200 251
316 398 501 631 794 1000 1259 1585
1995 2512 3162 3981 5012 6310 7943
10000 12589 15849 19953

Edge frequencies 22 28 35 45 56 71 89 112 141 178 224
282 355 447 562 708 891 1122 1413 1778
2239 2818 3548 4467 5623 7079 8913
11220 14125 17783 22387

Preferred frequencies 25 31.5 40 50 63 80 100 125 160 200
250 315 400 500 630 800 1000 1250 1600
2000 2500 3150 4000 5000 6300 8000
10000 12500 16000 20000

Tunable: No
Data Types: char | string

Structure — Type of implementation
'Cascade' (default) | 'Parallel'

Type of implementation, specified as 'Cascade' or 'Parallel'. See “Algorithms” on page 3-195
and “Graphic Equalization” for information about these implementation structures.

Tunable: No
Data Types: char | string

3 System Objects

3-190

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = equalizer(audioIn)

Description

audioOut = equalizer(audioIn) performs graphic equalization on the input signal, audioIn,
and returns the equalized signal, audioOut. The type of equalization is specified by the algorithm
and properties of the graphicEQ System object, equalizer.

Input Arguments

audioIn — Audio input to graphic equalizer
matrix

Audio input to the graphic equalizer, specified as a matrix. The columns of the matrix are treated as
independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from graphic equalizer
matrix

Audio output from the graphic equalizer, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to graphicEQ
createAudioPluginClass Create audio plugin class that implements functionality of System object
coeffs Get filter coefficients
info Get filter information
visualize Visualize magnitude response of graphic equalizer
parameterTuner Tune object parameters while streaming

 graphicEQ

3-191

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties of the
graphicEQ System object to user-facing parameters:

Property Range Mapping Unit
Gains [–20, 20] linear dB

Examples

Perform Graphic Equalization

Create objects to read from an audio file and write to your audio device. Use the sample rate of the
reader as the sample rate of the writer.

frameLength = 512;
reader = dsp.AudioFileReader('RockDrums-48-stereo-11secs.mp3','SamplesPerFrame',frameLength);
player = audioDeviceWriter('SampleRate',reader.SampleRate);

In an audio stream loop, read audio from a file and play the audio through your audio device.

while ~isDone(reader)
 x = reader();
 player(x);
end
release(reader)
release(player)

Create a one-octave graphic equalizer implemented with a cascade structure. Use the sample rate of
the reader as the sample rate of the equalizer.

equalizer = graphicEQ(...
 'Bandwidth','1 octave', ...
 'Structure','Cascade', ...
 'SampleRate',reader.SampleRate);

Specify to increase the gain on low frequencies and then visualize the equalizer.

equalizer.Gains = [5,5,5,5,0,0,0,0,0,0];
visualize(equalizer)

3 System Objects

3-192

In an audio stream loop, read audio from a file, apply equalization, and then play the equalized audio
through your audio device.

while ~isDone(reader)
 x = reader();
 y = equalizer(x);
 player(y);
end
release(reader)
release(player)

Tune Graphic EQ Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an audioDeviceWriter
to write audio to your sound card. Create a graphicEQ to process the audio data. Call visualize to
plot the frequency response of the graphic equalizer.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3','SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

equalizer = graphicEQ('SampleRate',fileReader.SampleRate,'Gains',[0,10,-10,5,-5,2,-2,1,-1,0]);
visualize(equalizer)

 graphicEQ

3-193

Call parameterTuner to open a UI to tune parameters of the equalizer while streaming.

parameterTuner(equalizer)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply equalization.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the equalizer and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = equalizer(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(equalizer)

3 System Objects

3-194

Algorithms
The implementation of your graphic equalizer depends on the Structure property. See “Graphic
Equalization” for a discussion of the pros and cons of the parallel and cascade implementations. Refer
to the following sections to understand how these algorithms are implemented in Audio Toolbox.

Parallel Structure

Filter Bank Design

The parallel implementation designs the individual equalizers using the octaveFilter design
method and spaces them on the spectrum according to the ANSI S1.11-2004 standard.

If you set the SampleRate property so that the Nyquist frequency (SampleRate/2) is less than the
final bandpass edge defined by the ANSI S1.11-2004 standard, then:

• The final bandpass filter is the one whose upper bandpass edge is less than the Nyquist frequency.
• The final filter is implemented as a highpass filter designed by the designParamEQ function.

Real-Time Computation

1 The input signal is fed into a filterbank of M filters, where M depends on the specified
Bandwidth and SampleRate properties.

2 Each branch of the filterbank is multiplied by the linear form of the corresponding element of the
Gains property.

3 The branches are summed and the output signal is returned.

 graphicEQ

3-195

Cascade Structure

Filter Bank Design

The cascade implementation designs the graphic equalizer filter bank using the
multibandParametricEQ System object.
Gain Setting

If the EQOrder property is set to 2, then a gain correction is calculated according to [1]. The gain
correction is independent of the requested gains. The gain correction is recomputed during the real-
time processing only if the SampleRate property is modified.

If the EQOrder property is not set to 2, no gain correction is applied, and the requested gains are
passed on to the multibandParametricEQ object.
Real-Time Computation

The input signal is fed into a cascade of M biquad filters, where M depends on the specified
Bandwidth and SampleRate properties.

References
[1] Oliver, Richard J., and Jean-Marc Jot. "Efficient Multi-Band Digital Audio Graphic Equalizer with

Accurate Frequency Response Control." Presented at the 139th Convention of the AES, New
York, October 2015.

[2] Acoustical Society of America. American National Standard Specification for Octave-Band and
Fractional-Octave-Band Analog and Digital Filters. ANSI S1.11-2004. Melville, NY: Acoustical
Society of America, 2009.

[3] International Organization for Standardization. Acoustics –– Preferred frequencies. ISO
266:1997(E). Second Edition. 1997.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

3 System Objects

3-196

See Also
Blocks
Graphic EQ | Parametric EQ Filter

Functions
designParamEQ | designShelvingEQ | designVarSlopeFilter | multibandParametricEQ

Topics
“Graphic Equalization”
“Equalization”

Introduced in R2017b

 graphicEQ

3-197

info
Get filter information

Syntax
infoStruct = info(obj)

Description
infoStruct = info(obj) returns a structure, infoStruct, containing information about obj.

Examples

Get Graphic Equalizer Standards-Based Frequencies

Create a graphicEQ System object™. Call info to return a structure containing standards-based
center, edge, and preferred frequencies.

equalizer = graphicEQ;
info(equalizer)

ans = struct with fields:
 CenterFrequencies: [1x10 double]
 EdgeFrequencies: [1x11 double]
 PreferredFrequencies: [31.5000 63 125 250 500 1000 2000 4000 8000 16000]

octaveFilterBank Info

Create a default octaveFilterBank. Call info to return a struct containing information about the
octave filter bank.

octFiltBank = octaveFilterBank;

infoStruct = info(octFiltBank)

infoStruct = struct with fields:
 CenterFrequencies: [1x10 double]
 BandedgeFrequencies: [1x11 double]
 GroupDelays: [1x10 double]

gammatoneFilterBank Info

Create a default gammatoneFilterBank. Call info to return a struct containing information about
the octave filter bank.

3 System Objects

3-198

gammaFiltBank = gammatoneFilterBank;

infoStruct = info(gammaFiltBank)

infoStruct = struct with fields:
 CenterFrequencies: [1x32 double]
 Bandwidths: [1x32 double]
 GroupDelays: [1x32 double]

Input Arguments
obj — Object to get information from
graphicEQ | gammatoneFilterBank | octaveFilterBank

Object to get information from, specified as an object of gammatoneFilterBank,
octaveFilterBank, or graphicEQ.

Output Arguments
infoStruct — Struct containing object information
struct

Struct containing information about the input obj.

See Also
gammatoneFilterBank | graphicEQ | octaveFilterBank

Introduced in R2017b

 info

3-199

visualize
Visualize magnitude response of graphic equalizer

Syntax
visualize(equalizer)
visualize(equalizer,NFFT)

Description
visualize(equalizer) plots the magnitude response of the graphicEQ object, equalizer. The
plot is updated automatically when properties of the object change.

visualize(equalizer,NFFT) specifies an N-point FFT used to calculate the magnitude response.

Examples

Visualize Magnitude Response of Graphic Equalizer

Create a default object of the graphicEQ System object™ and then call visualize.

equalizer = graphicEQ;
visualize(equalizer)

3 System Objects

3-200

Set the gains of the graphic equalizer to new values. The visualization of the magnitude response
updates automatically.

equalizer.Gains = [-1,1,2,3,3,2,-10,5,5,-10];

 visualize

3-201

Input Arguments
equalizer — Graphic equalizer to visualize
object of graphicEQ System object

Graphic equalizer whose magnitude response you want to plot.

NFFT — N-point FFT
2048 (default) | positive scalar

Number of bins used to calculate the DFT, specified as a positive scalar.
Data Types: single | double

See Also
graphicEQ

Introduced in R2017b

3 System Objects

3-202

loudnessMeter
Standard-compliant loudness measurements

Description
The loudnessMeter System object computes the loudness, loudness range, and true-peak of an
audio signal in accordance with EBU R 128 and ITU-R BS.1770-4 standards.

To implement loudness metering:

1 Create the loudnessMeter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation
Syntax
loudMtr = loudnessMeter
loudMtr = loudnessMeter(Name,Value)

Description

loudMtr = loudnessMeter creates a System object, loudMtr, that performs loudness metering
independently across each input channel.

loudMtr = loudnessMeter(Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: loudMtr = loudnessMeter('ChannelWeights',[1.2,
0.8],'SampleRate',12000) creates a System object, loudMtr, with channel weights of 1.2 and
0.8, and a sample rate of 12 kHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

 loudnessMeter

3-203

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

ChannelWeights — Linear weighting applied to each input channel
[1, 1, 1, 1.41, 1.41] (default) | nonnegative row vector

Linear weighting applied to each input channel, specified as a row vector of nonnegative values. The
number of elements in the row vector must be equal to or greater than the number of input channels.
Excess values in the vector are ignored.

The default channel weights follow the ITU-R BS.1170-4 standard. To use the default channel weights,
specify the input signal channels as a matrix in this order: [Left, Right, Center, Left surround, Right
surround].

As a best practice, specify the ChannelWeights property in order: [Left, Right, Center, Left
surround, Right surround].

Tunable: Yes
Data Types: single | double

UseRelativeScale — Use relative scale for loudness measurements
false (default) | true

Use relative scale for loudness measurements, specified as a logical scalar.

• false –– The loudness measurements are absolute and returned in loudness units full scale
(LUFS).

• true –– The loudness measurements are relative to the TargetLoudness value and returned in
loudness units (LU).

Tunable: No
Data Types: logical

TargetLoudness — Target loudness level for relative scale (LUFS)
-23 (default) | real scalar

Target loudness level for relative scale in LUFS, specified as a real scalar.

For example, if the TargetLoudness is –23 LUFS, then a loudness value of –23 LUFS is reported as
0 LU.

Tunable: Yes

Dependencies

To enable this property, set UseRelativeScale to true.
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

3 System Objects

3-204

Tunable: Yes
Data Types: single | double

Usage

Syntax
[momentary,shortTerm,integrated,range,peak] = loudMtr(audioIn)

Description

[momentary,shortTerm,integrated,range,peak] = loudMtr(audioIn) returns
measurement values for momentary and short-term loudness of the input to your loudness meter, and
the true-peak value of the current input frame, audioIn. It also returns the integrated loudness and
loudness range of the input to your loudness meter since the last time reset was called.

Input Arguments

audioIn — Audio input to loudness meter
matrix

Audio input to the loudness meter, specified as a matrix. The columns of the matrix are treated as
independent audio channels.

Note If you use the default ChannelWeights of the loudnessMeter, as a best practice, specify
the input channels in this order: [Left, Right, Center, Left surround, Right surround].

Data Types: single | double

Output Arguments

momentary — Momentary loudness (LUFS)
column vector

Momentary loudness in loudness units relative to full scale (LUFS), returned as a column vector with
the same number of rows as audioIn.

By default, loudness measurements are returned in LUFS. If you set the UseRelativeScale
property to true, loudness measurements are returned in loudness units (LU).
Data Types: single | double

shortTerm — Short-term loudness (LUFS)
column vector

Short-term loudness in loudness units relative to full scale (LUFS), returned as a column vector with
the same number of rows as audioIn.

By default, loudness measurements are returned in LUFS. If you set the UseRelativeScale
property to true, loudness measurements are returned in loudness units (LU).
Data Types: single | double

 loudnessMeter

3-205

integrated — Integrated loudness (LUFS)
column vector

Integrated loudness in loudness units relative to full scale (LUFS), returned as a column vector with
the same number of rows as audioIn.

By default, loudness measurements are returned in LUFS. If you set the UseRelativeScale
property to true, loudness measurements are returned in loudness units (LU).
Data Types: single | double

range — Loudness range (LU)
column vector

Loudness range in loudness units (LU), returned as a column vector with the same number of rows as
audioIn.
Data Types: single | double

peak — True-peak loudness (dB-TP)
scalar

True-peak loudness in dB-TP, returned as a column vector with the same number of rows as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to loudnessMeter
visualize Open 'EBU Mode' meter display

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

Examples

Loudness of Audio Signal

Create a dsp.AudioFileReader System object™ to read in an audio file. Create a loudnesMeter
System object. Use the sample rate of the audio file as the sample rate of the loudnessMeter.

fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3');
loudMtr = loudnessMeter('SampleRate',fileReader.SampleRate);

3 System Objects

3-206

Read in the audio file in an audio stream loop. Use the loudness meter to determine the momentary,
short-term, and integrated loudness of the audio signal. Cache the loudness measurements for
analysis.

momentary = [];
shortTerm = [];
integrated = [];

while ~isDone(fileReader)
 x = fileReader();
 [m,s,i] = loudMtr(x);
 momentary = [momentary;m];
 shortTerm = [shortTerm;s];
 integrated = [integrated;i];
end

release(fileReader)

Plot the momentary, short-term, and integrated loudness of the audio signal.

t = linspace(0,11,length(momentary));
plot(t,[momentary,shortTerm,integrated])
title('Loudness Measurements')
legend('Momentary','Short-term','Integrated')
xlabel('Time (seconds)')
ylabel('LUFS')

 loudnessMeter

3-207

Plot Momentary Loudness and Loudness Range of Audio Stream

Create an audio file reader and an audio device writer.

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3', ...
 'SamplesPerFrame',1024);
fs = fileReader.SampleRate;
deviceWriter = audioDeviceWriter('SampleRate',fs);

Create a time scope to visualize your audio stream loop.

timeScope = dsp.TimeScope('NumInputPorts',2, ...
 'SampleRate',fs, ...
 'TimeSpanOverrunAction','Scroll', ...
 'LayoutDimensions',[2,1], ...
 'TimeSpan',5, ...
 'BufferLength',5*fs);

% Top subplot of scope
timeScope.Title = 'Momentary Loudness';
timeScope.YLabel = 'LUFS';
timeScope.YLimits = [-40, 0];

% Bottom subplot of scope
timeScope.ActiveDisplay = 2;
timeScope.Title = 'Loudness Range';
timeScope.YLabel = 'LU';
timeScope.YLimits = [-1, 2];

Create a loudness meter. Use the sample rate of your input file as the sample rate of your loudness
meter. Call visualize to open an 'EBU-mode' visualization for your loudness meter.

loudMtr = loudnessMeter('SampleRate',fs);
visualize(loudMtr)

In an audio stream loop:

• Read in your audio file.

3 System Objects

3-208

• Compute the momentary loudness and loudness range.
• Visualize the momentary loudness and loudness range on your time scope.
• Play the audio signal.

The 'EBU-mode' loudness meter visualization updates automatically while it is open. As a best
practice, release your file reader and device writer once the loop is completed.

while ~isDone(fileReader)
 audioIn = fileReader();
 [momentaryLoudness,~,~,LRA] = loudMtr(audioIn);
 timeScope(momentaryLoudness,LRA);
 deviceWriter(audioIn);
end

release(fileReader)
release(deviceWriter)

 loudnessMeter

3-209

Relative Scale for Loudness Measurements

Create an audio file reader to read in an audio file. Create an audio device writer to write the audio
file to your audio device. Use the sample rate of your file reader as the sample rate of your device
writer.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav',...
 'SamplesPerFrame',1024);
fs = fileReader.SampleRate;
deviceWriter = audioDeviceWriter('SampleRate',fs);

Create a loudness meter with the target loudness set to the default -23 LUFS. Open the 'EBU-mode'
loudness meter visualization.

loudMtr = loudnessMeter('UseRelativeScale',true);
visualize(loudMtr)

Create a time scope to visualize your audio signal and its measured relative momentary and short-
term loudness.

scope = dsp.TimeScope(...
 'NumInputPorts',3, ...

3 System Objects

3-210

 'SampleRate',fs, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',5, ...
 'BufferLength',5*fs, ...
 'Title','Audio Signal, Momentary Loudness, and Short-Term Loudness', ...
 'ChannelNames',{'Audio signal','Momentary loudness','Short-term loudness'}, ...
 'YLimits',[-16,16], ...
 'YLabel','Amplitude / LU', ...
 'ShowLegend',true);

In an audio stream loop, listen to and visualize the audio signal.

while ~isDone(fileReader)
 x = fileReader();
 [momentary,shortTerm] = loudMtr(x);
 scope(x,momentary,shortTerm)
 deviceWriter(x);
end

release(deviceWriter)
release(fileReader)

 loudnessMeter

3-211

Algorithms
The loudnessMeter System object calculates the momentary loudness, short-term loudness,
integrated loudness, loudness range (LRA), and true-peak value of an audio signal. You can specify
any number of channels and nondefault channel weights used for loudness measurements. The
loudnessMeter algorithm is described for the general case of n channels with default channel
weights.

3 System Objects

3-212

Loudness Measurements

The input channels, x, pass through a K-weighted weightingFilter. The K-weighted filter shapes
the frequency spectrum to reflect perceived loudness.

Momentary Loudness and Integrated Loudness

1 The K-weighted channels, y, are divided into 0.4-second segments with 0.3-second overlap. If the
required number of samples have not been collected yet, the loudnessMeter System object
returns the last computed values for momentary and integrated loudness. If enough samples
have been collected, then the power (mean square) of each segment of the K-weighted channels
is calculated:

mPi = 1
w ∑

k = 1

w
yi

2[k]

• mPi is the momentary power of the ith segment.
• w is the segment length in samples.

2 The momentary loudness, mL, is computed in LUFS for each segment:

mLi = − 0.691 + 10log10 ∑
c = 1

n
Gc × mP i, c

• Gc is the weighting for channel c.

mL is the momentary loudness returned by your loudnessMeter System object. It is also used
internally to calculate the integrated loudness (steps 3–6).

3 The integrated loudness measurement considers the audio signal since the last reset of your
loudness meter. To calculate integrated loudness, the momentary power is passed through a

 loudnessMeter

3-213

gating system. The gate system pauses the measurement during periods of low sound, such as
stretches of silence in a movie.

The momentary power segment is gated using the corresponding momentary loudness segment
calculation:

mPi mP j

j = i mLi ≥ − 70

mPj is cached until your loudnessMeter is reset.
4 The momentary power subset, mPj, passes through a relative threshold gate.

a The relative threshold, Γ, is computed:

Γ = − 0.691 + 10log10 ∑
c = 1

n
Gc × lc − 10

lc is the mean momentary power of channel c:

lc = 1
j ∑j mP j, c

b The momentary power subset, mPj, is gated using relative threshold Γ:

mP j mPk

k = j mP j ≥ Γ

The relative threshold is recomputed during each call to your loudnessMeter object. The
cached values of mPj are gated again depending on the updated value of Γ.

5 The momentary power segments are averaged:

P = 1
k ∑k mPk

6 The integrated loudness is computed in LUFS by passing the mean momentary power, P, through
the Compute Loudness system:

Integrated Loudness = − 0.691 + 10log10 ∑
c = 1

n
Gc × Pc

3 System Objects

3-214

Short-Term Loudness and Loudness Range

1 The K-weighted channels, y, are divided into 3-second segments with 2.9-second overlap. If the
required number of samples have not been collected yet, the loudnessMeter System object
returns the last computed values for short-term loudness and loudness range. If enough samples
have been collected, then the power (mean square) of each K-weighted channel is calculated:

sPi = 1
w ∑

k = 1

w
yi

2[k]

• sPi is the short-term power of the ith segment of a channel.
• w is the segment length in samples.

2 The short-term loudness, sL, is computed in LUFS for each segment:

sLi = − 0.691 + 10 log10 ∑
c = 1

n
Gc × sP i, c

• Gc is the weighting for channel c.

sL is the short-term loudness returned by your loudnessMeter System object. It is also used
internally to calculate the loudness range (steps 3–5).

3 The short-term loudness is gated using an absolute threshold:

sLi sL j

j = i sLi ≥ − 70

sLj is cached until your loudnessMeter is reset.
4 The short-term loudness subset, sLj passes through a relative threshold gate.

a The gated short-term loudness is converted back to linear and then the mean is taken:

sP j = 1
j ∑j 10

sL j 10

The relative threshold, K, is computed:

K = − 20 + 10log10 sP j

b The short-term loudness subset, sLj, is gated using the relative threshold:

sL j sLk

 loudnessMeter

3-215

k = j sL j ≥ K

The relative threshold, K, is recomputed during each call to your loudnessMeter object. The
cached values of sLj are gated again depending on the updated value of K.

5 The short-term loudness subset, sLk, is sorted. The loudness range is calculated as between the
10th and 95th percentiles of the distribution and is returned in loudness units (LU).

True-Peak

The true-peak measurement considers only the current input frame of a call to your loudness meter.

1 The signal is oversampled to at least 192 kHz. To optimize processing, the input sample rate
determines the exact oversampling. An input sample rate below 750 Hz is not considered.

Input Sample Rate (kHz) Upsample Factor
[0.75, 1.5) 256
[1.5, 3) 128
[3, 6) 64
[6,12) 32
[12, 24) 16
[24, 48) 8
[48, 96) 4
[96,192) 2
[192, ∞) Not required

2 The oversampled signal, a, passes through a lowpass filter with a half-polyphase length of 12 and
stopband attenuation of 80 dB. The filter design uses designMultirateFIR.

3 The filtered signal, b, is rectified and converted to the dB TP scale:

c = 20 × log10 b
4 The true-peak is determined as the maximum of the converted signal, c.

References
[1] International Telecommunication Union; Radiocommunication Sector. Algorithms to Measure

Audio Programme Loudness and True-Peak Audio Level. ITU-R BS.1770-4. 2015.

[2] European Broadcasting Union. Loudness Normalisation and Permitted Maximum Level of Audio
Signals. EBU R 128. 2014.

[3] European Broadcasting Union. Loudness Metering: 'EBU Mode' Metering to Supplement EBU R
128 Loudness Normalization. EBU R 128 Tech 3341. 2014.

3 System Objects

3-216

[4] European Broadcasting Union. Loudness Range: A Measure to Supplement EBU R 128 Loudness
Normalization. EBU R 128 Tech 3342. 2016.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

Supports MATLAB Function block: No

Dynamic Memory Allocation must not be turned off.

See Also
Blocks
Loudness Meter

Functions
integratedLoudness | octaveFilter | weightingFilter

Introduced in R2016b

 loudnessMeter

3-217

visualize
Open 'EBU Mode' meter display

Syntax
visualize(loudMtr)

Description
visualize(loudMtr) opens an 'EBU Mode' loudness meter display. The values of momentary
loudness, short-term loudness, integrated loudness, loudness range, and true-peak are updated as the
simulation progresses. The display also shows the maximum value of momentary and short-term
loudness, and the time since the last call to reset.

Examples

Open an 'EBU Mode' Loudness Meter Display

Create an object of the loudnessMeter System object™, and then call visualize to open an 'EBU
Mode' loudness meter display.

loudMtr = loudnessMeter;
visualize(loudMtr)

Create an audio file reader System object and specify the audio file to analyze. Create an audio device
writer System object to play the audio to your output device.

fileReader = dsp.AudioFileReader('RockDrums-48-stereo-11secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

In an audio stream loop, read the audio from the file and play it to your device. The loudness meter
visualization updates at each call.

while ~isDone(fileReader)
 audioIn = fileReader();

3 System Objects

3-218

 loudMtr(audioIn);
 deviceWriter(audioIn);
end

Input Arguments
loudMtr — Object of loudnessMeter
object

Object of the loudnessMeter System object.

See Also
Blocks
Loudness Meter

Functions
integratedLoudness

Introduced in R2016b

 visualize

3-219

multibandParametricEQ
Multiband parametric equalizer

Description
The multibandParametricEQ System object performs multiband parametric equalization
independently across each channel of input using specified center frequencies, gains, and quality
factors. You can configure the System object with up to 10 bands. You can add low-shelf and high-
shelf filters, as well as highpass (low-cut) and lowpass (high-cut) filters.

To implement a multiband parametric equalizer:

1 Create the multibandParametricEQ object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation
Syntax
mPEQ = multibandParametricEQ
mPEQ = multibandParametricEQ(Name,Value)

Description

mPEQ = multibandParametricEQ creates a System object, mPEQ, that performs multiband
parametric equalization.

mPEQ = multibandParametricEQ(Name,Value) sets each construction argument or property
Name to the specified Value. Unspecified properties and creation arguments have default values.

3 System Objects

3-220

Example: mPEQ = multibandParametricEQ('NumEQBands',3,'Frequencies',
[300,1200,5000]) creates a multiband parametric equalizer System object, mPEQ, with
NumEQBands set to 3 and the Frequencies property set to [300,1200,5000].

Note The value specified by NumEQBands must be the length of the row vectors specified by
Frequencies, QualityFactors, and PeakGains. During creation of the System object, the first property
you specify locks the value.

Creation Arguments

Creation arguments are properties which are set during creation of the System object and cannot be
modified later. If you do not explicitly set a creation argument value, the property takes a default
value.

NumEQBands — Number of equalizer bands
3 (default) | integer in the range [1, 10]

Number of equalizer bands, specified as an integer in the range [1, 10]. The number of equalizer
bands does not include shelving filters, highpass filters, or lowpass filters.

NumEQBands is set during creation of the System object and cannot be modified later. If you do not
explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('NumEQBands',5) creates a multiband parametric
equalizer with 5 bands.
Data Types: single | double

EQOrder — Order of individual equalizer bands
2 (default) | even integer

Order of individual equalizer bands, specified as an even integer. All equalizer bands have the same
order.

EQOrder is set during creation of the System object and cannot be modified later. If you do not
explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('EQOrder',6) creates a multiband parametric
equalizer with the default 3 bands, all of order 6.
Data Types: single | double

HasLowShelfFilter — Low-shelf filter toggle
false (default) | true

Low-shelf filter toggle, specified as false or true.

• false –– Do not enable low-shelf filtering in multiband parametric equalizer implementation.
• true –– Enable low-shelf filtering in multiband parametric equalizer implementation.

HasLowShelfFilter is set during creation of the System object and cannot be modified later. If you
do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('HasLowShelfFilter',true) creates a default
multiband parametric equalizer with low-shelf filtering enabled.

 multibandParametricEQ

3-221

Data Types: logical

HasHighShelfFilter — High-shelf filter toggle
false (default) | true

High-shelf filter toggle, specified as false or true.

• false –– Do not enable high-shelf filtering in multiband parametric equalizer implementation.
• true –– Enable high-shelf filtering in multiband parametric equalizer implementation.

HasHighShelfFilter is set during creation of the System object and cannot be modified later. If
you do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('HasHighShelfFilter',true) creates a default
multiband parametric equalizer with high-shelf filtering enabled.
Data Types: logical

HasLowpassFilter — Lowpass filter toggle
false (default) | true

Lowpass filter toggle, specified as false or true.

• false –– Do not enable lowpass filtering in multiband parametric equalizer implementation.
• true –– Enable lowpass filtering in multiband parametric equalizer implementation.

HasLowpassFilter is set during creation of the System object and cannot be modified later. If you
do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('HasLowpassFilter',true) creates a default
multiband parametric equalizer with lowpass filtering enabled.
Data Types: logical

HasHighpassFilter — Highpass filter toggle
false (default) | true

Highpass filter toggle, specified as false or true.

• false –– Do not enable highpass filtering in multiband parametric equalizer implementation.
• true –– Enable highpass filtering in multiband parametric equalizer implementation.

HasHighpassFilter is set during creation of the System object and cannot be modified later. If you
do not explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('HasHighpassFilter',true) creates a default
multiband parametric equalizer with highpass filtering enabled.
Data Types: logical

Oversample — Oversample toggle
false (default) | true

Oversample toggle, specified as false or true.

• false –– Runs the multiband parametric equalizer at the input sample rate.

3 System Objects

3-222

• true –– Runs the multiband parametric equalizer at two times the input sample rate.
Oversampling minimizes the frequency-warping effects introduced by the bilinear transformation.

A halfband interpolator implements oversampling before equalization. A halfband decimator
reduces the sample rate back to the input sampling rate after equalization.

Oversample is set during creation of the System object and cannot be modified later. If you do not
explicitly set its value, the property takes the default value.
Example: mPEQ = multibandParametricEQ('Oversample',true) creates a default multiband
parametric equalizer with oversampling enabled.
Data Types: logical

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

Multiband Equalizer

Frequencies — Center frequencies of equalizer bands (Hz)
[100, 181, 325] (default) | row vector of length NumEQBands

Center frequencies of equalizer bands in Hz, specified as a row vector of length NumEQBands. The
vector consists of real scalars in the range 0 to SampleRate/2.

Tunable: Yes
Data Types: single | double

QualityFactors — Quality factors of equalizer bands
[1.6,1.6,1.6] (default) | row vector of length NumEQBands

Quality factors of equalizer bands, specified as a row vector of length NumEQBands. The vector
consists of real scalars in the range [0.2, 700]. Any values outside the range are saturated.

Tunable: Yes
Data Types: single | double

PeakGains — Peak or dip filter gains (dB)
[0,0,0] (default) | row vector of length NumEQBands

Peak or dip filter gains in dB, specified as a row vector of length NumEQBands. The vector consists of
real scalars in the range [–inf, 20]. Values above 20 are saturated.

Tunable: Yes
Data Types: single | double

 multibandParametricEQ

3-223

Low-Shelf Filter

LowShelfCutoff — Low-shelf filter cutoff (Hz)
200 (default) | scalar

Low-shelf filter cutoff in Hz, specified as a scalar greater than or equal to 0.

Tunable: Yes
Dependencies

To enable this property, set HasLowShelfFilter to true during creation.
Data Types: single | double

LowShelfSlope — Low-shelf filter slope coefficient
1.5 (default) | real scalar in the range [0.1, 5]

Low-shelf filter slope coefficient, specified as a real scalar in the range [0.1, 5]. Values outside the
range are saturated.

Tunable: Yes
Dependencies

To enable this property, set HasLowShelfFilter to true during creation.
Data Types: single | double

LowShelfGain — Low-shelf filter gain (dB)
0 (default) | real scalar in the range [–12, 12]

Low-shelf filter gain in dB, specified as a real scalar in the range [–12, 12]. Values outside the range
are saturated.

Tunable: Yes
Dependencies

To enable this property, set HasLowShelfFilter to true during creation.
Data Types: single | double

High-Shelf Filter

HighShelfCutoff — High-shelf filter cutoff (Hz)
15000 (default) | nonnegative real scalar

High-shelf filter cutoff in Hz, specified as a real scalar greater than or equal to 0.

Tunable: Yes
Dependencies

To enable this property, set HasHighShelfFilter to true during creation.
Data Types: single | double

HighShelfSlope — High-shelf slope coefficient
1.5 (default) | real scalar in the range [0.1, 5]

3 System Objects

3-224

High-shelf filter slope coefficient, specified as a real scalar in the range [0.1, 5]. Values outside the
range are saturated.

Tunable: Yes
Dependencies

To enable this property, set HasHighShelfFilter to true during creation.
Data Types: single | double

HighShelfGain — High-shelf filter gain (dB)
0 (default) | real scalar in the range [–12, 12]

High-shelf filter gain in dB, specified as a real scalar in the range [–12, 12]. Values outside the range
are saturated.

Tunable: Yes
Dependencies

To enable this property, set HasHighShelfFilter to true during creation.
Data Types: single | double

Lowpass Filter

LowpassCutoff — Lowpass filter cutoff frequency (Hz)
18000 (default) | nonnegative real scalar

Lowpass filter cutoff frequency in Hz, specified as a real scalar greater than or equal to 0.

Tunable: Yes
Dependencies

To enable this property, set HasLowpassFilter to true during creation.
Data Types: single | double

LowpassSlope — Lowpass filter slope (dB/octave)
12 (default) | real scalar in the range [0:6:48]

Lowpass filter slope in dB/octave, specified as a real scalar in the range [0:6:48]. Values that are
not multiples of 6 are rounded to the nearest multiple of 6.

Tunable: Yes
Dependencies

To enable this property, set HasLowpassFilter to true during creation.
Data Types: single | double

Highpass Filter

HighpassCutoff — Highpass filter cutoff frequency (Hz)
20 (default) | nonnegative real scalar

Highpass filter cutoff in Hz, specified as a real scalar greater than or equal to 0.

 multibandParametricEQ

3-225

Tunable: Yes

Dependencies

To enable this property, set HasHighpassFilter to true during creation.
Data Types: single | double

HighpassSlope — Highpass filter slope (dB/octave)
30 (default) | real scalar in the range [0:6:48]

Highpass filter slope in dB/octave, specified as a real scalar in the range [0:6:48]. Values that are
not multiples of 6 are rounded to the nearest multiple of 6.

Tunable: Yes

Dependencies

To enable this property, set HasHighpassFilter to true during creation.
Data Types: single | double

Sampling

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = mPEQ(audioIn)

Description

audioOut = mPEQ(audioIn) performs multiband parametric equalization on the input signal,
audioIn, and returns the filtered signal, audioOut. The type of equalization is specified by the
algorithm and properties of the multibandParametricEQ System object, mPEQ.

Input Arguments

audioIn — Audio input to equalizer
matrix

Audio input to the equalizer, specified as a matrix. The columns of the matrix are treated as
independent audio channels.
Data Types: single | double

3 System Objects

3-226

Output Arguments

audioOut — Audio output from equalizer
matrix

Audio output from the equalizer, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to multibandParametricEQ
createAudioPluginClass Create audio plugin class that implements functionality of System object
visualize Visualize magnitude response of multiband parametric equalizer
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties of the
multibandParametricEQ System object to user-facing parameters:

Property Range Mapping Unit
Frequencies [20, 20000] log Hz
QualityFactors [0.2, 700] linear none
PeakGains [–50, 20] linear dB
LowShelfCutoff [20, 20000] log Hz
LowShelfSlope [0.1, 5] linear none
LowShelfGain [–12, 12] linear dB
HighShelfCutoff [20, 20000] log Hz
HighShelfSlope [0.1, 5] linear none
HighShelfGain [–12, 12] linear dB

 multibandParametricEQ

3-227

Property Range Mapping Unit
LowpassCutoff [20, 20000] log Hz
LowpassSlope [0, 48] linear dB/octave
HighpassCutoff [20, 20000] log Hz
HighpassSlope [0, 48] linear dB/octave

Examples

Multiband Parametric Equalization

Create dsp.AudioFileReader and audioDeviceWriter objects. Use the sample rate of the
reader as the sample rate of the writer. Call setup to reduce the computational load of initialization
in an audio stream loop.

frameLength = 512;

fileReader = dsp.AudioFileReader(...
 'Filename','RockDrums-48-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

setup(deviceWriter,ones(frameLength,2))

Construct a three-band parametric equalizer with a high-shelf filter.

mPEQ = multibandParametricEQ(...
 'NumEQBands',3, ...
 'Frequencies',[300,1200,5000], ...
 'QualityFactors',[1,1,1], ...
 'PeakGains',[8,-10,7], ...
 'HasHighShelfFilter',true, ...
 'HighShelfCutoff',14000, ...
 'HighShelfSlope',0.3, ...
 'HighShelfGain',-5, ...
 'SampleRate',fileReader.SampleRate);

Visualize the magnitude frequency response of your multiband parametric equalizer.

visualize(mPEQ)

3 System Objects

3-228

Play the equalized audio signal. Update the peak gains of your equalizer band to hear the effect of the
equalizer and visualize the changing magnitude response.

count = 0;
while ~isDone(fileReader)
 originalSignal = fileReader();
 equalizedSignal = mPEQ(originalSignal);
 deviceWriter(equalizedSignal);
 if mod(count,100) == 0
 mPEQ.PeakGains(1) = mPEQ.PeakGains(1) - 1.5;
 mPEQ.PeakGains(2) = mPEQ.PeakGains(2) + 1.5;
 mPEQ.PeakGains(3) = mPEQ.PeakGains(3) - 1.5;
 end
 count = count + 1;
end

 multibandParametricEQ

3-229

release(fileReader)
release(mPEQ)
release(deviceWriter)

Oversample Audio Signal

Reduce warping by specifying your multibandParametricEQ object to perform oversampling
before equalization.

Create a one-band equalizer. Visualize the equalizer band as its center frequency approaches the
Nyquist rate.

mPEQ = multibandParametricEQ(...
 'NumEQBands',1, ...
 'Frequencies',9.5e3, ...
 'PeakGains',10);
visualize(mPEQ)

3 System Objects

3-230

for i = 1:1000
 mPEQ.Frequencies = mPEQ.Frequencies + 8;
end

 multibandParametricEQ

3-231

The equalizer band is warped.

Create a one-band equalizer with Oversample set to true. Visualize the equalizer band as its center
frequency approaches the Nyquist rate.

mPEQOversampled = multibandParametricEQ(...
 'NumEQBands',1, ...
 'Frequencies',9.5e3, ...
 'PeakGains',10, ...
 'Oversample',true);
visualize(mPEQOversampled)

3 System Objects

3-232

for i = 1:1000
 mPEQOversampled.Frequencies = mPEQOversampled.Frequencies + 8;
end

 multibandParametricEQ

3-233

Warping is reduced.

Tune Multiband Parametric EQ Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create a audioDeviceWriter to
write audio to your sound card. Create a multibandParametricEQ to process the audio data. Call
visualize to plot the frequency response of the equalizer.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3','SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

equalizer = multibandParametricEQ('SampleRate',fileReader.SampleRate, 'PeakGains',[-2,2,4]);
visualize(equalizer)

3 System Objects

3-234

Call parameterTuner to open a UI to tune parameters of the equalizer while streaming.

parameterTuner(equalizer)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply equalization.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the equalizer and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = equalizer(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(equalizer)

 multibandParametricEQ

3-235

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Parametric EQ | designParamEQ | designShelvingEQ | designVarSlopeFilter

Topics
“Parametric Equalizer Design”
“Equalization”

Introduced in R2016a

3 System Objects

3-236

visualize
Visualize magnitude response of multiband parametric equalizer

Syntax
visualize(mPEQ)
visualize(mPEQ,NFFT)

Description
visualize(mPEQ) plots the magnitude response of the multibandParametricEQ object, mPEQ.
The plot is updated automatically when properties of the object change.

visualize(mPEQ,NFFT) specifies an N-point FFT used to calculate the magnitude response.

Examples

Specify a Nondefault Number of FFT Points

Create an object of the multibandParametricEQ System object™, and then call visualize to plot
the magnitude response using a 5096-point FFT.

mPEQ = multibandParametricEQ('PeakGains',[-inf,5,5]);
visualize(mPEQ,5096)

 visualize

3-237

Input Arguments
mPEQ — Multiband parametric equalizer to visualize
object of multibandParametricEQ System object

Multiband parametric equalizer whose magnitude response you want to plot.

NFFT — N-point FFT
2048 (default) | positive scalar

Number of bins used to calculate the DFT, specified as a positive scalar.
Data Types: single | double

See Also
multibandParametricEQ

Introduced in R2016a

3 System Objects

3-238

compressor
Dynamic range compressor

Description
The compressor System object performs dynamic range compression independently across each
input channel. Dynamic range compression attenuates the volume of loud sounds that cross a given
threshold. It uses specified attack and release times to achieve a smooth applied gain curve.
Properties of the compressor System object specify the type of dynamic range compression.

To perform dynamic range compression:

1 Create the compressor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
dRC = compressor
dRC = compressor(thresholdValue)
dRC = compressor(thresholdValue,ratioValue)
dRC = compressor(___ ,Name,Value)

Description

dRC = compressor creates a System object, dRC, that performs dynamic range compression
independently across each input channel over time.

 compressor

3-239

dRC = compressor(thresholdValue) sets the Threshold property to thresholdValue.

dRC = compressor(thresholdValue,ratioValue) sets the Ratio property to ratioValue.

dRC = compressor(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: dRC = compressor('AttackTime',0.01,'SampleRate',16000) creates a System
object, dRC, with a 10 ms attack time operating at a 16 kHz sample rate.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level above which gain is applied to the input signal.

Tunable: Yes
Data Types: single | double

Ratio — Compression ratio
5 (default) | real scalar

Compression ratio, specified as a real scalar greater than or equal to 1.

Compression ratio is the input/output ratio for signals that overshoot the operation threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB > Threshold, the
compression ratio is defined as R = (x[n]− T)

(y[n]− T) .

• R is the compression ratio.
• x[n] is the input signal in dB.
• y[n] is the output signal in dB.
• T is the threshold in dB.

Tunable: Yes
Data Types: single | double

KneeWidth — Knee width (dB)
0 (default) | real scalar

Knee width in dB, specified as a real scalar greater than or equal to 0.

3 System Objects

3-240

Knee width is the transition area in the compression characteristic.

For soft knee characteristics, the transition area is defined by the relation

y = x +
1
R − 1 × x− T + W

2
2

2 × W

for the range 2 × x− T ≤ W.

• y is the output level in dB.
• x is the input level in dB.
• R is the compression ratio.
• T is the threshold in dB.
• W is the knee width in dB.

Tunable: Yes
Data Types: single | double

AttackTime — Attack time (s)
0.05 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the compressor gain to rise from 10% to 90% of its final value when
the input goes above the threshold.

Tunable: Yes
Data Types: single | double

ReleaseTime — Release time (s)
0.2 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the compressor gain to drop from 90% to 10% of its final value when
the input goes below the threshold.

Tunable: Yes
Data Types: single | double

MakeUpGainMode — Make-up gain mode
'Property' (default) | 'Auto'

Make-up gain mode, specified as 'Auto' or 'Property'.

• 'Auto' –– Make-up gain is applied at the output of the dynamic range compressor such that a
steady-state 0 dB input has a 0 dB output.

• 'Property' –– Make-up gain is set to the value specified in the MakeUpGain property.

Tunable: No
Data Types: char | string

 compressor

3-241

MakeUpGain — Make-up gain (dB)
0 (default) | real scalar

Make-up gain in dB, specified as a real scalar.

Make-up gain compensates for gain lost during compression. It is applied at the output of the
dynamic range compressor.

Tunable: Yes

Dependencies

To enable this property, set MakeUpGainMode to 'Property'.
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = dRC(audioIn)
[audioOut,gain] = dRC(audioIn)

Description

audioOut = dRC(audioIn) performs dynamic range compression on the input signal, audioIn,
and returns the compressed signal, audioOut. The type of dynamic range compression is specified
by the algorithm and properties of the compressor System object, dRC.

[audioOut,gain] = dRC(audioIn) also returns the applied gain, in dB, at each input sample.

Input Arguments

audioIn — Audio input to compressor
matrix

Audio input to the compressor, specified as a matrix. The columns of the matrix are treated as
independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from compressor
matrix

Audio output from the compressor, returned as a matrix the same size as audioIn.

3 System Objects

3-242

Data Types: single | double

gain — Gain applied by compressor (dB)
matrix

Gain applied by compressor, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to compressor
visualize Visualize static characteristic of dynamic range controller
createAudioPluginClass Create audio plugin class that implements functionality of System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties of the
compressor System object to user-facing parameters:

Property Range Mapping Unit
Threshold [–50, 0] linear dB
Ratio [1, 50] linear none
KneeWidth [0, 20] linear dB
AttackTime [0, 4] linear seconds
ReleaseTime [0, 4] linear seconds
MakeUpGain (available
when you set
MakeUpGainMode to
'Property')

[–10, 24] linear dB

 compressor

3-243

Examples

Compress Audio Signal

Use dynamic range compression to attenuate the volume of loud sounds.

Set up the dsp.AudioFileReader and audioDeviceWriter System objects™.

frameLength = 1024;
fileReader = dsp.AudioFileReader(...
 'Filename','RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Set up the compressor to have a threshold of -15 dB, a ratio of 7, and a knee width of 5 dB. Use the
sample rate of your audio file reader.

dRC = compressor(-15,7, ...
 'KneeWidth',5, ...
 'SampleRate',fileReader.SampleRate);

Set up the scope to visualize the original audio signal, the compressed audio signal, and the applied
compressor gain.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpan',1, ...
 'BufferLength',44100*4, ...
 'YLimits',[-1,1], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2,1], ...
 'NumInputPorts',2, ...
 'Title', ...
 ['Original vs. Compressed Audio (top)' ...
 ' and Compressor Gain in dB (bottom)']);
scope.ActiveDisplay = 2;
scope.YLimits = [-4,0];
scope.YLabel = 'Gain (dB)';

Play the processed audio and visualize it on the scope.

while ~isDone(fileReader)
 x = fileReader();
 [y,g] = dRC(x);
 deviceWriter(y);
 scope([x(:,1),y(:,1)],g(:,1))
end

release(dRC)
release(deviceWriter)
release(scope)

3 System Objects

3-244

Compare Dynamic Range Limiter and Compressor

A dynamic range limiter is a special type of dynamic range compressor. In limiters, the level above an
operational threshold is hard limited. In the simplest implementation of a limiter, the effect is
equivalent to audio clipping. In compressors, the level above an operational threshold is lowered
using a specified compression ratio. Using a compression ratio results in a smoother processed
signal.

Compare Limiter and Compressor Applied to Sinusoid

Create a limiter System object™ and a compressor System object. Set the AttackTime and
ReleaseTime properties of both objects to zero. Create an audioOscillator System object to
generate a sinusoid with Frequency set to 5 and Amplitude set to 0.1.

dRL = limiter('AttackTime',0,'ReleaseTime',0);
dRC = compressor('AttackTime',0,'ReleaseTime',0);

osc = audioOscillator('Frequency',5,'Amplitude',0.1);

 compressor

3-245

Create a time scope to visualize the generated sinusoid and the processed sinusoid.

scope = dsp.TimeScope(...
 'SampleRate',osc.SampleRate, ...
 'TimeSpan',2, ...
 'BufferLength',osc.SampleRate*4, ...
 'YLimits',[-1 1], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2 1], ...
 'NumInputPorts',2, ...
 'Title', ...
 'Original Signal vs. Limited Signal (top) and Compressed Signal (bottom)');

In an audio stream loop, visualize the original sinusoid and the sinusoid processed by a limiter and a
compressor. Increment the amplitude of the original sinusoid to illustrate the effect.

while osc.Amplitude < 0.75
 x = osc();

 xLimited = dRL(x);
 xCompressed = dRC(x);

 scope([x xLimited],[x xCompressed]);

 osc.Amplitude = osc.Amplitude + 0.0002;
end
release(scope)

3 System Objects

3-246

release(dRL)
release(dRC)
release(osc)

Compare Limiter and Compressor Applied to Audio Signal

Compare the effect of dynamic range limiters and compressors on a drum track. Create a
dsp.AudioFileReader System object and a audioDeviceWriter System object to read audio
from a file and write to your audio output device. To emphasize the effect of dynamic range control,
set the operational threshold of the limiter and compressor to -20 dB.

dRL.Threshold = -20;
dRC.Threshold = -20;

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Read successive frames from an audio file in a loop. Listen to and compare the effect of dynamic
range limiting and dynamic range compression on an audio signal.

 compressor

3-247

numFrames = 300;

fprintf('Now playing original signal...\n')

Now playing original signal...

for i = 1:numFrames
 x = fileReader();
 deviceWriter(x);
end
reset(fileReader);

fprintf('Now playing limited signal...\n')

Now playing limited signal...

for i = 1:numFrames
 x = fileReader();
 xLimited = dRL(x);
 deviceWriter(xLimited);
end
reset(fileReader);

fprintf('Now playing compressed signal...\n')

Now playing compressed signal...

for i = 1:numFrames
 x = fileReader();
 xCompressed = dRC(x);
 deviceWriter(xCompressed);
end

release(fileReader)
release(deviceWriter)
release(dRC)
release(dRL)

Diminish Plosives from Speech Signal

Plosives are consonant sounds resulting from a sudden release of airflow. They are most pronounced
in words beginning with p, d, and g sounds. Plosives can be emphasized by the recording process and
are often displeasurable to hear. In this example, you minimize the plosives of a speech signal by
applying highpass filtering and low-band compression.

Create a dsp.AudioFileReader object and a audioDeviceWriter object to read an audio signal
from a file and write an audio signal to a device. Play the unprocessed signal. Then release the file
reader and device writer.

fileReader = dsp.AudioFileReader('audioPlosives.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end

3 System Objects

3-248

release(deviceWriter)
release(fileReader)

Design a highpass filter with a steep rolloff of all frequencies below 120 Hz. Use a
dsp.BiquadFilter object to implement the highpass filter design. Create a crossover filter with
one crossover at 250 Hz. The crossover filter enables you to separate the band of interest for
processing. Create a dynamic range compressor to compress the dynamic range of plosive sounds. To
apply no make-up gain, set the MakeUpGainMode to "Property" and use the default 0 dB
MakeUpGain property value. Create a time scope to visualize the processed and unprocessed audio
signal.

[B,A] = designVarSlopeFilter(48,120/(fileReader.SampleRate/2),"hi");
biquadFilter = dsp.BiquadFilter(...
 "SOSMatrixSource","Input port", ...
 "ScaleValuesInputPort",false);

crossFilt = crossoverFilter(...
 "SampleRate",fileReader.SampleRate, ...
 "NumCrossovers",1, ...
 "CrossoverFrequencies",250, ...
 "CrossoverSlopes",48);

dRCompressor = compressor(...
 "Threshold",-35, ...
 "Ratio",10, ...
 "KneeWidth",20, ...
 "AttackTime",1e-4, ...
 "ReleaseTime",3e-1, ...
 "MakeUpGainMode","Property", ...
 "SampleRate",fileReader.SampleRate);

scope = dsp.TimeScope(...
 "SampleRate",fileReader.SampleRate, ...
 "TimeSpan",3, ...
 "BufferLength",fileReader.SampleRate*3*2, ...
 "YLimits",[-1 1], ...
 "ShowGrid",true, ...
 "ShowLegend",true, ...
 "ChannelNames",{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.
2 Apply highpass filtering using your biquad filter.
3 Split the audio signal into two bands.
4 Apply dynamic range compression to the lower band.
5 Remix the channels.
6 Write the processed audio signal to your audio device for listening.
7 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioIn = biquadFilter(audioIn,B,A);

 compressor

3-249

 [band1,band2] = crossFilt(audioIn);
 band1compressed = dRCompressor(band1);
 audioOut = band1compressed + band2;
 deviceWriter(audioOut);
 scope([audioIn audioOut])
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(crossFilt)
release(dRCompressor)
release(scope)

3 System Objects

3-250

Tune Compressor Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an audioDeviceWriter
to write audio to your sound card. Create a compressor to process the audio data. Call visualize
to plot the static characteristic of the compressor.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

dRC = compressor('SampleRate',fileReader.SampleRate);
visualize(dRC)

Create a dsp.TimeScope to visualize the original and processed audio.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpan',1, ...
 'BufferLength',fileReader.SampleRate*4, ...
 'YLimits',[-1,1], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2,1], ...
 'NumInputPorts',2, ...

 compressor

3-251

 'Title','Original vs. Compressed Audio (top) and Compressor Gain in dB (bottom)');
scope.ActiveDisplay = 2;
scope.YLimits = [-4,0];
scope.YLabel = 'Gain (dB)';

Call parameterTuner to open a UI to tune parameters of the compressor while streaming.

parameterTuner(dRC)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply dynamic range compression.
3 Write the frame of audio to your audio device for listening.
4 Visualize the original audio, the processed audio, and the gain applied.

While streaming, tune parameters of the dynamic range compressor and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 [audioOut,g] = dRC(audioIn);
 deviceWriter(audioOut);
 scope([audioIn(:,1),audioOut(:,1)],g(:,1));
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(dRC)
release(scope)

3 System Objects

3-252

Algorithms
The compressor System object processes a signal frame by frame and element by element.

 compressor

3-253

Convert Input Signal to dB

The N-point signal, x[n], is converted to decibels:

xdB[n] = 20 × log10 x[n]

Gain Computer

xdB[n] passes through the gain computer. The gain computer uses the static characteristic properties
of the dynamic range compressor to attenuate gain that is above the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

xsc(xdB) =

xdB xdB < T − W
2

xdB +
1
R − 1 xdB− T + W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

T +
xdB− T

R xdB > T + W
2

,

where T is the threshold, R is the ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static characteristic:

xsc(xdB) =
xdB xdB < T

T +
xdB− T

R xdB ≥ T

The computed gain, gc[n], is calculated as

gc[n] = xsc[n]− xdB[n] .

Gain Smoothing

gc[n] is smoothed using specified attack and release time properties:

gs[n] =
αAgs[n− 1] + (1− αA)gc[n], gc[n] ≤ gs[n− 1]
αRgs[n− 1] + (1− αR)gc[n], gc[n] > gs[n− 1]

3 System Objects

3-254

The attack time coefficient, αA , is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, αR , is calculated as

αR = exp −log(9)
Fs × TR

.

TA is the attack time period, specified by the AttackTime property. TR is the release time period,
specified by the ReleaseTime property. Fs is the input sampling rate, specified by the SampleRate
property.

Calculate and Apply Make-up Gain

If MakeUpGainMode is set to the default 'Auto', the make-up gain is calculated as the negative of
the computed gain for a 0 dB input,

M = −xsc xdB = 0 .

Given a steady-state input of 0 dB, this configuration achieves a steady-state output of 0 dB. The
make-up gain is determined by the Threshold, Ratio, and KneeWidth properties. It does not
depend on the input signal.

The make-up gain, M, is added to the smoothed gain, gs[n]:

gm[n] = gs[n] + M

Calculate and Apply Linear Gain

The calculated gain in dB, gm[n], is translated to a linear domain:

glin[n] = 10
gm[n]

20

The output of the dynamic range compressor is given as

y[n] = x[n] × glin[n] .

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial and Analysis." Journal of Audio Engineering Society. Vol. 60,
Issue 6, 2012, pp. 399–408.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

 compressor

3-255

See Also
Compressor | expander | limiter | noiseGate

Topics
“Dynamic Range Control”

Introduced in R2016a

3 System Objects

3-256

expander
Dynamic range expander

Description
The expander System object performs dynamic range expansion independently across each input
channel. Dynamic range expansion attenuates the volume of quiet sounds below a given threshold. It
uses specified attack, release, and hold times to achieve a smooth applied gain curve. Properties of
the expander System object specify the type of dynamic range expansion.

To perform dynamic range expansion:

1 Create the expander object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
dRE = expander
dRE = expander(thresholdValue)
dRE = expander(thresholdValue,ratioValue)
dRE = expander(___ ,Name,Value)

Description

dRE = expander creates a System object, dRE, that performs dynamic range expansion
independently across each input channel.

 expander

3-257

dRE = expander(thresholdValue) sets the Threshold property to thresholdValue.

dRE = expander(thresholdValue,ratioValue) sets the Ratio property to ratioValue.

dRE = expander(___ ,Name,Value) sets each property Name to the specified Value. Unspecified
properties have default values.
Example: dRE = expander('AttackTime',0.01,'SampleRate',16000) creates a System
object, dRE, with a 0.01 second attack time and a 16 kHz sample rate.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level below which gain is applied to the input signal.

Tunable: Yes
Data Types: single | double

Ratio — Expansion ratio
5 (default) | real scalar

Expansion ratio, specified as a real scalar greater than or equal to 1.

Expansion ratio is the input/output ratio for signals that undershoot the operation threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB < thresholdValue,
the expansion ratio is defined as R = (y[n]− T)

(x[n]− T) .

• R is the expansion ratio.
• y[n] is the output signal in dB.
• x[n] is the input signal in dB.
• T is the threshold in dB.

Tunable: Yes
Data Types: single | double

KneeWidth — Knee width (dB)
0 (default) | real scalar

Knee width in dB, specified as a real scalar greater than or equal to 0.

3 System Objects

3-258

Knee width is the transition area in the expansion characteristic.

For soft knee characteristics, the transition area is defined by the relation

y = x +
(1− R) × x− T − W

2
2

2 × W

for the range 2 × x− T ≤ W.

• y is the output level in dB.
• x is the input level in dB.
• R is the expansion ratio.
• T is the threshold in dB.
• W is the knee width in dB.

Tunable: Yes
Data Types: single | double

AttackTime — Attack time (s)
0.05 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the expander gain to rise from 10% to 90% of its final value when the
input goes below the threshold.

Tunable: Yes
Data Types: single | double

ReleaseTime — Release time (s)
0.2 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the expander gain to drop from 90% to 10% of its final value when
the input goes above the threshold.

Tunable: Yes
Data Types: single | double

HoldTime — Hold time (s)
0.05 (default) | real scalar

Hold time in seconds, specified as a real scalar greater than or equal to 0.

Hold time is the period in which the applied gain is held constant before it starts moving toward its
steady-state value. Hold time begins when the input level crosses the operation threshold.

Tunable: Yes
Data Types: single | double

 expander

3-259

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = dRE(audioIn)
[audioOut,gain] = dRE(audioIn)

Description

audioOut = dRE(audioIn) performs dynamic range expansion on the input signal, audioIn, and
returns the expanded signal, audioOut. The type of dynamic range expansion is specified by the
algorithm and properties of the expander System object, dRE.

[audioOut,gain] = dRE(audioIn) also returns the applied gain, in dB, at each input sample.

Input Arguments

audioIn — Audio input to expander
matrix

Audio input to the expander, specified as a matrix. The columns of the matrix are treated as
independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from expander
matrix

Audio output from the expander, returned as a matrix the same size as audioIn.
Data Types: single | double

gain — Gain applied by expander (dB)
matrix

Gain applied by expander, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

3 System Objects

3-260

Specific to expander
visualize Visualize static characteristic of dynamic range controller
createAudioPluginClass Create audio plugin class that implements functionality of System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties of the
expander System object to user-facing parameters:

Property Range Mapping Unit
Threshold [–140, 0] linear dB
Ratio [1, 50] linear none
KneeWidth [0, 20] linear dB
AttackTime [0, 4] linear seconds
ReleaseTime [0, 4] linear seconds
HoldTime [0, 4] linear seconds

Examples

Expand Audio Signal

Use dynamic range expansion to attenuate background noise from an audio signal.

Set up the dsp.AudioFileReader and audioDeviceWriter System objects.

frameLength = 1024;
fileReader = dsp.AudioFileReader(...
 'Filename','Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Corrupt the audio signal with Gaussian noise. Play the audio.

while ~isDone(fileReader)
 x = fileReader();
 xCorrupted = x + (1e-2/4)*randn(frameLength,1);

 expander

3-261

 deviceWriter(xCorrupted);
end

release(fileReader)

Set up the expander with a threshold of -40 dB, a ratio of 10, an attack time of 0.01 seconds, a release
time of 0.02 seconds, and a hold time of 0 seconds. Use the sample rate of your audio file reader.

dRE = expander(-40,10, ...
 'AttackTime',0.01, ...
 'ReleaseTime',0.02, ...
 'HoldTime',0, ...
 'SampleRate',fileReader.SampleRate);

Set up the scope to visualize the signal before and after dynamic range expansion.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',16, ...
 'BufferLength',1.5e6, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'Title','Corrupted vs. Expanded Audio');

Play the processed audio and visualize it on the scope.

while ~isDone(fileReader)
 x = fileReader();
 xCorrupted = x + (1e-2/4)*randn(frameLength,1);
 y = dRE(xCorrupted);
 deviceWriter(y);
 scope([xCorrupted,y])
end

release(fileReader)
release(dRE)
release(deviceWriter)
release(scope)

3 System Objects

3-262

Apply Split-Band De-Essing

De-essing is the process of diminishing sibilant sounds in an audio signal. Sibilance refers to the s, z,
and sh sounds in speech, which can be disproportionately emphasized during recording. es sounds
fall under the category of unvoiced speech with all consonants and have a higher frequency than
voiced speech. In this example, you apply split-band de-essing to a speech signal by separating the
signal into high and low frequencies, applying an expander to diminish the sibilant frequencies, and
then remixing the channels.

Create a dsp.AudioFileReader object and an audioDeviceWriter object to read from a sound
file and write to an audio device. Listen to the unprocessed signal. Then release the file reader and
device writer.

fileReader = dsp.AudioFileReader(...
 'Sibilance.wav');
deviceWriter = audioDeviceWriter;

 expander

3-263

while ~isDone(fileReader)
 audioIn = fileReader();
 deviceWriter(audioIn);
end

release(deviceWriter)
release(fileReader)

Create an expander System object to de-ess the audio signal. Set the sample rate of the expander to
the sample rate of the audio file. Create a two-band crossover filter with a crossover of 3000 Hz.
Sibilance is usually found in this range. Set the crossover slope to 12. Plot the frequency response of
the crossover filter to confirm your design visually.

dRExpander = expander(...
 'Threshold',-50, ...
 'AttackTime', 0.05, ...
 'ReleaseTime',0.05, ...
 'HoldTime',0.005, ...
 'SampleRate',fileReader.SampleRate);

crossFilt = crossoverFilter(...
 'NumCrossovers',1, ...
 'CrossoverFrequencies',3000, ...
 'CrossoverSlopes',12);
visualize(crossFilt)

3 System Objects

3-264

Create a dsp.TimeScope System object to visualize the original and processed audio signals.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',4, ...
 'BufferLength',fileReader.SampleRate*8, ...
 'YLimits',[-1,1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original','Processed'});

In an audio stream loop:

1 Read in a frame of the audio file.
2 Split the audio signal into two bands.
3 Apply dynamic range expansion to the upper band.
4 Remix the channels.
5 Write the processed audio signal to your audio device for listening.
6 Visualize the processed and unprocessed signals on a time scope.

As a best practice, release your objects once done.

while ~isDone(fileReader)
 audioIn = fileReader();

 [band1,band2] = crossFilt(audioIn);

 band2processed = dRExpander(band2);

 procAudio = band1 + band2processed;

 deviceWriter(procAudio);

 scope([audioIn procAudio]);
end

release(deviceWriter)
release(fileReader)
release(scope)

 expander

3-265

release(crossFilt)
release(dRExpander)

Tune Expander Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create a audioDeviceWriter to
write audio to your sound card. Create a expander to process the audio data. Call visualize to
plot the static characteristic of the expander.

frameLength = 1024;
fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

dRE = expander(-40,10, ...
 'AttackTime',0.01, ...
 'ReleaseTime',0.02, ...
 'HoldTime',0, ...

3 System Objects

3-266

 'SampleRate',fileReader.SampleRate);
visualize(dRE)

Create a dsp.TimeScope to visualize the original and processed audio.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpan',1, ...
 'BufferLength',fileReader.SampleRate*4, ...
 'YLimits',[-1,1], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2,1], ...
 'NumInputPorts',2, ...
 'Title','Original vs. Processed Audio (top) and Applied Gain in dB (bottom)');
scope.ActiveDisplay = 2;
scope.YLimits = [-300,0];
scope.YLabel = 'Gain (dB)';

Call parameterTuner to open a UI to tune parameters of the expander while streaming.

parameterTuner(dRE)

In an audio stream loop:

 expander

3-267

1 Read in a frame of audio from the file.
2 Apply dynamic range expansion.
3 Write the frame of audio to your audio device for listening.
4 Visualize the original and processed audio, and the gain applied.

While streaming, tune parameters of the dynamic range expander and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 [audioOut,g] = dRE(audioIn);
 deviceWriter(audioOut);
 scope([audioIn(:,1),audioOut(:,1)],g(:,1));
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(dRE)
release(scope)

3 System Objects

3-268

Algorithms
The expander System object processes a signal frame by frame and element by element.

 expander

3-269

Convert Input Signal to dB

The N-point signal, x[n], is converted to decibels:

xdB[n] = 20 × log10 x[n]

Gain Computer

xdB[n] passes through the gain computer. The gain computer uses the static characteristic properties
of the dynamic range expander to attenuate gain that is below the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

xsc(xdB) =

T + xdB− T × R xdB < T − W
2

xdB +
1− R xdB− T − W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

xdB xdB > T + W
2

,

where T is the threshold, R is the ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static characteristic:

xsc(xdB) =
T + xdB− T × R xdB < T

xdB xdB ≥ T

The computed gain, gc[n], is calculated as

gc[n] = xsc[n]− xdB[n] .

Gain Smoothing

gc[n] is smoothed using specified attack, release, and hold time properties:

gs[n] =

αAgs[n− 1] + (1− αA)gc[n]
gs[n− 1]

αRgs[n− 1] + (1− αR)gc[n]
gs[n− 1]

CA > TH & gc[n] ≤ gs[n− 1]
CA ≤ TH

CR > TH & gc[n] > gs[n− 1]
CR ≤ TH

The attack time coefficient, αA , is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, αR , is calculated as

αR = exp −log(9)
Fs × TR

.

TA is the attack time period, specified by the AttackTime property. TR is the release time period,
specified by the ReleaseTime property. Fs is the input sampling rate, specified by the SampleRate
property.

3 System Objects

3-270

CA and CR are hold counters for attack and release, respectively. The limit, TH , is determined by the
HoldTime property.

Calculate and Apply Linear Gain

The smoothed gain in dB, gs[n], is translated to a linear domain:

glin[n] = 10
gs[n]
20

The output of the dynamic range expander is given as

y[n] = x[n] × glin[n] .

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial and Analysis." Journal of Audio Engineering Society. Vol. 60,
Issue 6, 2012, pp. 399–408.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Expander | compressor | limiter | noiseGate

Topics
“Dynamic Range Control”

Introduced in R2016a

 expander

3-271

limiter
Dynamic range limiter

Description
The limiter System object performs brick-wall dynamic range limiting independently across each
input channel. Dynamic range limiting suppresses the volume of loud sounds that cross a given
threshold. It uses specified attack and release times to achieve a smooth applied gain curve.
Properties of the limiter System object specify the type of dynamic range limiting.

To perform dynamic range limiting:

1 Create the limiter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation
Syntax
dRL = limiter
dRL = limiter(thresholdValue)
dRL = limiter(___ ,Name,Value)

Description

dRL = limiter creates a System object, dRL, that performs brick-wall dynamic range limiting
independently across each input channel.

dRL = limiter(thresholdValue) sets the Threshold property to thresholdValue.

3 System Objects

3-272

dRL = limiter(___ ,Name,Value) sets each property Name to the specified Value. Unspecified
properties have default values.
Example: dRL = limiter('AttackTime',0.01,'SampleRate',16000) creates a System object,
dRL, with a 10 ms attack time and a sample rate of 16 kHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level above which gain is applied to the input signal.

Tunable: Yes
Data Types: single | double

KneeWidth — Knee width (dB)
0 (default) | real scalar

Knee width in dB, specified as a real scalar greater than or equal to 0.

Knee width is the transition area in the limiter characteristic.

For soft knee characteristics, the transition area is defined by the relation

y = x−
x− T + W

2
2

2 × W

for the range 2 × x− T ≤ W.

• y is the output level in dB.
• x is the input level in dB.
• T is the threshold in dB.
• W is the knee width in dB.

Tunable: Yes
Data Types: single | double

AttackTime — Attack time (s)
0 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

 limiter

3-273

Attack time is the time it takes the limiter gain to rise from 10% to 90% of its final value when the
input goes above the threshold.

Tunable: Yes
Data Types: single | double

ReleaseTime — Release time (s)
0.2 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the limiter gain to drop from 90% to 10% of its final value when the
input goes below the threshold.

Tunable: Yes
Data Types: single | double

MakeUpGainMode — Make-up gain mode
'Property' (default) | 'Auto'

Make-up gain mode, specified as 'Auto' or 'Property'.

• 'Auto' –– Make-up gain is applied at the output of the dynamic range limiter such that a steady-
state 0 dB input has a 0 dB output.

• 'Property' –– Make-up gain is set to the value specified in the MakeUpGain property.

Tunable: No
Data Types: char | string

MakeUpGain — Make-up gain (dB)
0 (default) | real scalar

Make-up gain in dB, specified as a real scalar.

Make-up gain compensates for gain lost during limiting. It is applied at the output of the dynamic
range limiter.

Tunable: Yes

Dependencies

To enable this property, set MakeUpGainMode to 'Property'.
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

3 System Objects

3-274

Usage

Syntax
audioOut = dRL(audioIn)
[audioOut,gain] = dRL(audioIn)

Description

audioOut = dRL(audioIn)performs dynamic range limiting on the input signal, audioIn, and
returns the limited signal, audioOut. The type of dynamic range limiting is specified by the
algorithm and properties of the limiter System object, dRL.

[audioOut,gain] = dRL(audioIn)also returns the applied gain, in dB, at each input sample.

Input Arguments

audioIn — Audio input to limiter
matrix

Audio input to the limiter, specified as a matrix. The columns of the matrix are treated as independent
audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from limiter
matrix

Audio output from the limiter, returned as a matrix the same size as audioIn.
Data Types: single | double

gain — Gain applied by limiter (dB)
matrix

Gain applied by the limiter, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to limiter
visualize Visualize static characteristic of dynamic range controller
createAudioPluginClass Create audio plugin class that implements functionality of System object
parameterTuner Tune object parameters while streaming

 limiter

3-275

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties of the
limiter System object to user-facing parameters:

Property Range Mapping Unit
Threshold [–50, 0] linear dB
KneeWidth [0, 20] linear dB
AttackTime [0, 4] linear seconds
ReleaseTime [0, 4] linear seconds
MakeUpGain (available
when you set
MakeUpGainMode to
'Property')

[–10, 24] linear dB

Examples

Limit Audio Signal

Use dynamic range limiting to suppress the volume of loud sounds.

Set up the dsp.AudioFileReader and audioDeviceWriter System objects™.

frameLength = 1024;
fileReader = dsp.AudioFileReader(...
 'Filename','RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Set up the limiter to have a threshold of -15 dB, an attack time of 0.005 seconds, and a release
time of 0.1 seconds. Set make-up gain to 0 dB (default). To specify this value, set the make-up gain
mode to 'Property' but do not specify the MakeUpGain property. Use the sample rate of your audio
file reader.

dRL = limiter(-15, ...
 'AttackTime',0.005, ...
 'ReleaseTime',0.1, ...
 'MakeUpGainMode','Property', ...
 'SampleRate',fileReader.SampleRate);

3 System Objects

3-276

Set up a time scope to visualize the original signal and the limited signal.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',1, ...
 'BufferLength',44100*4, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2,1], ...
 'NumInputPorts',2, ...
 'ShowLegend',true, ...
 'Title',['Original vs. Limited Audio (top)' ...
 ' and Limiter Gain in dB (bottom)']);

Play the processed audio and visualize it on the scope.

while ~isDone(fileReader)
 x = fileReader();
 [y,g] = dRL(x);
 deviceWriter(y);
 x1 = x(:,1);
 y1 = y(:,1);
 g1 = g(:,1);
 scope([x1,y1],g1);
end

release(fileReader)
release(dRL)
release(deviceWriter)
release(scope)

 limiter

3-277

Compare Dynamic Range Limiter and Compressor

A dynamic range limiter is a special type of dynamic range compressor. In limiters, the level above an
operational threshold is hard limited. In the simplest implementation of a limiter, the effect is
equivalent to audio clipping. In compressors, the level above an operational threshold is lowered
using a specified compression ratio. Using a compression ratio results in a smoother processed
signal.

Compare Limiter and Compressor Applied to Sinusoid

Create a limiter System object™ and a compressor System object. Set the AttackTime and
ReleaseTime properties of both objects to zero. Create an audioOscillator System object to
generate a sinusoid with Frequency set to 5 and Amplitude set to 0.1.

dRL = limiter('AttackTime',0,'ReleaseTime',0);
dRC = compressor('AttackTime',0,'ReleaseTime',0);

osc = audioOscillator('Frequency',5,'Amplitude',0.1);

3 System Objects

3-278

Create a time scope to visualize the generated sinusoid and the processed sinusoid.

scope = dsp.TimeScope(...
 'SampleRate',osc.SampleRate, ...
 'TimeSpan',2, ...
 'BufferLength',osc.SampleRate*4, ...
 'YLimits',[-1 1], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'LayoutDimensions',[2 1], ...
 'NumInputPorts',2, ...
 'Title', ...
 'Original Signal vs. Limited Signal (top) and Compressed Signal (bottom)');

In an audio stream loop, visualize the original sinusoid and the sinusoid processed by a limiter and a
compressor. Increment the amplitude of the original sinusoid to illustrate the effect.

while osc.Amplitude < 0.75
 x = osc();

 xLimited = dRL(x);
 xCompressed = dRC(x);

 scope([x xLimited],[x xCompressed]);

 osc.Amplitude = osc.Amplitude + 0.0002;
end
release(scope)

 limiter

3-279

release(dRL)
release(dRC)
release(osc)

Compare Limiter and Compressor Applied to Audio Signal

Compare the effect of dynamic range limiters and compressors on a drum track. Create a
dsp.AudioFileReader System object and a audioDeviceWriter System object to read audio
from a file and write to your audio output device. To emphasize the effect of dynamic range control,
set the operational threshold of the limiter and compressor to -20 dB.

dRL.Threshold = -20;
dRC.Threshold = -20;

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Read successive frames from an audio file in a loop. Listen to and compare the effect of dynamic
range limiting and dynamic range compression on an audio signal.

3 System Objects

3-280

numFrames = 300;

fprintf('Now playing original signal...\n')

Now playing original signal...

for i = 1:numFrames
 x = fileReader();
 deviceWriter(x);
end
reset(fileReader);

fprintf('Now playing limited signal...\n')

Now playing limited signal...

for i = 1:numFrames
 x = fileReader();
 xLimited = dRL(x);
 deviceWriter(xLimited);
end
reset(fileReader);

fprintf('Now playing compressed signal...\n')

Now playing compressed signal...

for i = 1:numFrames
 x = fileReader();
 xCompressed = dRC(x);
 deviceWriter(xCompressed);
end

release(fileReader)
release(deviceWriter)
release(dRC)
release(dRL)

Tune Limiter Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create a audioDeviceWriter to
write audio to your sound card. Create a limiter to process the audio data.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

dRL = limiter('SampleRate',fileReader.SampleRate);

Call parameterTuner to open a UI to tune parameters of the limiter while streaming.

parameterTuner(dRL)

In an audio stream loop:

1 Read in a frame of audio from the file.

 limiter

3-281

2 Apply dynamic range limiting.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the dynamic range limiter and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = dRL(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(dRL)

Algorithms
The limiter System object processes a signal frame by frame and element by element.

Convert Input Signal to dB

The N-point signal, x[n], is converted to decibels:

xdB[n] = 20 × log10 x[n]

Gain Computer

xdB[n] passes through the gain computer. The gain computer uses the static characteristic properties
of the dynamic range limiter to brick-wall gain that is above the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

3 System Objects

3-282

xsc(xdB) =

xdB xdB < T − W
2

xdB−
xdB− T + W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

T xdB > T + W
2

,

where T is the threshold and W is the knee width.

If you specified a hard knee, the gain computer has the following static characteristic:

xsc(xdB) =
xdB xdB < T
T xdB ≥ T

The computed gain, gc[n], is calculated as

gc[n] = xsc[n]− xdB[n] .

Gain Smoothing

gc[n] is smoothed using specified attack and release time:

gs[n] =
αAgs[n− 1] + (1− αA)gc[n], gc[n] ≤ gs[n− 1]
αRgs[n− 1] + (1− αR)gc[n], gc[n] > gs[n− 1]

The attack time coefficient, αA , is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, αR , is calculated as

αR = exp −log(9)
Fs × TR

.

TA is the attack time period, specified by the AttackTime property. TR is the release time period,
specified by the ReleaseTime property. Fs is the input sampling rate, specified by the SampleRate
property.

Calculate and Apply Make-up Gain

If MakeUpGainMode is set to the default 'Auto', the make-up gain is calculated as the negative of
the computed gain for a 0 dB input:

M = −xsc xdB = 0

Given a steady-state input of 0 dB, this configuration achieves a steady-state output of 0 dB. The
make-up gain is determined by the Threshold and KneeWidth properties. It does not depend on the
input signal.

The make-up gain, M, is added to the smoothed gain, gs[n]:

gm[n] = gs[n] + M

 limiter

3-283

Calculate and Apply Linear Gain

The calculated gain in dB, gm[n], is translated to a linear domain:

glin[n] = 10
gm[n]

20 .

The output of the dynamic range limiter is given as

y[n] = x[n] × glin[n] .

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial and Analysis." Journal of Audio Engineering Society. Vol. 60,
Issue 6, 2012, pp. 399–408.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Limiter | compressor | expander | noiseGate

Topics
“Dynamic Range Control”

Introduced in R2016a

3 System Objects

3-284

noiseGate
Dynamic range gate

Description
The noiseGate System object performs dynamic range gating independently across each input
channel. Dynamic range gating suppresses signals below a given threshold. It uses specified attack,
release, and hold times to achieve a smooth applied gain curve. Properties of the noiseGate System
object specify the type of dynamic range gating.

To perform dynamic range gating:

1 Create the noiseGate object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation
Syntax
dRG = noiseGate
dRG = noiseGate(thresholdValue)
dRG = noiseGate(___ ,Name,Value)

Description

dRG = noiseGate creates a System object, dRG, that performs dynamic range gating independently
across each input channel.

dRG = noiseGate(thresholdValue) sets the Threshold property to thresholdValue.

 noiseGate

3-285

dRG = noiseGate(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: dRG = noiseGate('AttackTime',0.01,'SampleRate',16000) creates a System
object, dRG, with a 10 ms attack time and a 16 kHz sample rate.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

Threshold — Operation threshold (dB)
–10 (default) | real scalar

Operation threshold in dB, specified as a real scalar.

Operation threshold is the level below which gain is applied to the input signal.

Tunable: Yes
Data Types: single | double

AttackTime — Attack time (s)
0.05 (default) | real scalar

Attack time in seconds, specified as a real scalar greater than or equal to 0.

Attack time is the time it takes the applied gain to rise from 10% to 90% of its final value when the
input goes below the threshold.

Tunable: Yes
Data Types: single | double

ReleaseTime — Release time (s)
0.02 (default) | real scalar

Release time in seconds, specified as a real scalar greater than or equal to 0.

Release time is the time it takes the applied gain to drop from 90% to 10% of its final value when the
input goes above the threshold.

Tunable: Yes
Data Types: single | double

HoldTime — Hold time (s)
0.05 (default) | real finite scalar

Hold time in seconds, specified as a real scalar greater than or equal to 0.

3 System Objects

3-286

Hold time is the period in which the applied gain is held constant before it starts moving toward its
steady-state value. Hold time begins when the input level crosses the operation threshold.

Tunable: Yes
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = dRG(audioIn)
[audioOut,gain] = dRG(audioIn)

Description

audioOut = dRG(audioIn) performs dynamic range gating on the input signal, audioIn, and
returns the gated signal, audioOut. The type of dynamic range gating is specified by the algorithm
and properties of the noiseGate System object, dRG.

[audioOut,gain] = dRG(audioIn) also returns the applied gain, in dB, at each input sample.

Input Arguments

audioIn — Audio input to noise gate
matrix

Audio input to the noise gate, specified as a matrix. The columns of the matrix are treated as
independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from noise gate
matrix

Audio output from the noise gate, returned as a matrix the same size as audioIn.
Data Types: single | double

gain — Gain applied by noise gate (dB)
matrix

Gain applied by noise gate, returned as a matrix the same size as audioIn.
Data Types: single | double

 noiseGate

3-287

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to noiseGate
visualize Visualize static characteristic of dynamic range controller
createAudioPluginClass Create audio plugin class that implements functionality of System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties of the
noiseGate System object to user-facing parameters:

Property Range Mapping Unit
Threshold [–140, 0] linear dB
AttackTime [0, 4] linear seconds
ReleaseTime [0, 4] linear seconds
HoldTime [0, 4] linear seconds

Examples

Gate Audio Signal

Use dynamic range gating to attenuate background noise from an audio signal.

Set up the dsp.AudioFileReader and audioDeviceWriter System objects™.

frameLength = 1024;
fileReader = dsp.AudioFileReader(...
 'Filename','Counting-16-44p1-mono-15secs.wav', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter(...
 'SampleRate',fileReader.SampleRate);

Corrupt the audio signal with Gaussian noise. Play the audio.

3 System Objects

3-288

while ~isDone(fileReader)
 x = fileReader();
 xCorrupted = x + (1e-2/4)*randn(frameLength,1);
 deviceWriter(xCorrupted);
end

release(fileReader)

Set up a dynamic range gate with a threshold of -25 dB, an attack time of 0.01 seconds, a release
time of 0.02 seconds, and a hold time of 0 seconds. Use the sample rate of your audio file reader.

gate = noiseGate(-25, ...
 'AttackTime',0.01, ...
 'ReleaseTime',0.02, ...
 'HoldTime',0, ...
 'SampleRate',fileReader.SampleRate);

Set up a time scope to visualize the signal before and after dynamic range gating.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',16, ...
 'BufferLength',1.5e6, ...
 'YLimits',[-1 1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'Title','Corrupted vs. Gated Audio');

Play the processed audio and visualize it on scope.

while ~isDone(fileReader)
 x = fileReader();
 xCorrupted = x + (1e-2/4)*randn(frameLength,1);
 y = gate(xCorrupted);
 deviceWriter(y);
 scope([xCorrupted,y]);
end

release(fileReader)
release(gate)
release(deviceWriter)
release(scope)

 noiseGate

3-289

Tune Noise Gate Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an audioDeviceWriter
to write audio to your sound card. Create a noiseGate to process the audio data.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

dRG = noiseGate('SampleRate',fileReader.SampleRate);

Call parameterTuner to open a UI to tune parameters of the noiseGate while streaming.

parameterTuner(dRG)

In an audio stream loop:

3 System Objects

3-290

1 Read in a frame of audio from the file.
2 Apply dynamic range gating.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the dynamic range gate and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = dRG(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(dRG)

Algorithms
The noiseGate System object processes a signal frame by frame and element by element.

Convert Input Signal to Magnitude

The N-point signal, x[n], is converted to magnitude:

xa[n] = x[n] .

Gain Computer

xa[n] passes through the gain computer. The gain computer uses the static characteristic properties
of the dynamic range gate to determine a brick-wall gain for signal below the threshold:

gc(xa) =
0 xa < Tlin
1 xa ≥ Tlin

.

Tlin is the threshold property converted to a linear domain:

 noiseGate

3-291

Tlin = 10
TdB 20 .

Gain Smoothing

The computed gain, gc[n], is smoothed using specified attack, release, and hold time properties:

gs[n] =

αAgs[n− 1] + (1− αA)gc[n]
gs[n− 1]

αRgs[n− 1] + (1− αR)gc[n]
gs[n− 1]

CA > TH & gc[n] ≤ gs[n− 1]
CA ≤ TH

CR > TH & gc[n] > gs[n− 1]
CR ≤ TH

The attack time coefficient, αA , is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, αR , is calculated as

αR = exp −log(9)
Fs × TR

.

TA is the attack time period, specified by the AttackTime property. TR is the release time period,
specified by the ReleaseTime property. Fs is the input sampling rate, specified by the SampleRate
property.

CA and CR are hold counters for attack and release, respectively. The limit, TH , is determined by the
HoldTime property.

Apply Gain

The output of the dynamic range gate is given as

y[n] = x[n] × gs[n] .

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial and Analysis." Journal of Audio Engineering Society. Vol. 60,
Issue 6, 2012, pp. 399–408.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Noise Gate | compressor | expander | limiter

3 System Objects

3-292

Topics
“Dynamic Range Control”

Introduced in R2016a

 noiseGate

3-293

octaveFilter
Octave-band and fractional octave-band filter

Description
The octaveFilter System object performs octave-band or fractional octave-band filtering
independently across each input channel. An octave-band is a frequency band where the highest
frequency is twice the lowest frequency. Octave-band and fractional octave-band filters are commonly
used to mimic how humans perceive loudness. Octave filters are best understood when viewed on a
logarithmic scale, which models how the human ear weights the spectrum.

To perform octave-band or fractional octave-band filtering on your input:

1 Create the octaveFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation
Syntax
octFilt = octaveFilter
octFilt = octaveFilter(centerFreq)
octFilt = octaveFilter(centerFreq,bw)
octFilt = octaveFilter(___ ,Name,Value)

Description

octFilt = octaveFilter creates a System object, octFilt, that performs octave-band filtering
independently across each input channel.

3 System Objects

3-294

octFilt = octaveFilter(centerFreq) sets the CenterFrequency property to centerFreq.

octFilt = octaveFilter(centerFreq,bw) sets the Bandwidth property to bw.

octFilt = octaveFilter(___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: octFilt = octaveFilter(1000,'1/3 octave','SampleRate',96000) creates a
System object, octFilt, with a center frequency of 1000 Hz, a 1/3 octave filter bandwidth, and a
sample rate of 96,000 Hz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

FilterOrder — Order of octave filter
6 (default) | even integer

Order of the octave filter, specified as an even integer.

Tunable: No
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CenterFrequency — Center frequency of octave filter (Hz)
1000 (default) | positive scalar

Center frequency of the octave filter in Hz, specified as a positive scalar.

• The maximum center frequency is the value that causes the upper band edge to be equal to the
Nyquist frequency, Fs/2. Frequencies above this value are saturated.

• The minimum center frequency is the value that causes the lower band edge to be equal to 1 Hz.
Frequencies below this value are quantized to the value that corresponds to lower band edge
equal to 1 Hz.

Tunable: Yes
Data Types: single | double

Bandwidth — Filter bandwidth (octaves)
'1 octave' (default) | '2/3 octave' | '1/2 octave' | '1/3 octave' | '1/6 octave' | '1/12
octave' | '1/24 octave' | '1/48 octave'

Filter bandwidth in octaves, specified as '1 octave', '2/3 octave', '1/2 octave', '1/3
octave', '1/6 octave', '1/12 octave', '1/24 octave', or '1/48 octave'.

Tunable: Yes
Data Types: char | string

 octaveFilter

3-295

Oversample — Oversample toggle
false (default) | true

Oversample toggle, specified as false or true.

• false –– The octave filter runs at the input sample rate.
• true –– The octave filter runs at two times the input sample rate. Oversampling minimizes the

frequency warping effects introduced by the bilinear transformation. An FIR halfband interpolator
implements oversampling before octave filtering. A halfband decimator reduces the sample rate
back to the input sampling rate after octave filtering.

Tunable: No
Data Types: logical

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = octFilt(audioIn)

Description

audioOut = octFilt(audioIn) applies octave-band filtering to the input signal, audioIn, and
returns the filtered signal, audioOut. The type of filtering is specified by the algorithm and
properties of the octaveFilter System object, octFilt.

Input Arguments

audioIn — Audio input to octave filter
matrix

Audio input to the octave filter, specified as a matrix. The columns of the matrix are treated as
independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from octave filter
matrix

Audio output from the octave filter, returned as a matrix the same size as audioIn.
Data Types: single | double

3 System Objects

3-296

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to octaveFilter
createAudioPluginClass Create audio plugin class that implements functionality of System

object
visualize Visualize and validate filter response
isStandardCompliant Verify octave filter design is ANSI S1.11-2004 compliant
getFilter Return biquad filter object with design parameters set
getANSICenterFrequencies Get the list of valid ANSI S1.11-2004 center frequencies
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

Note octaveFilter supports additional filter analysis functions. See Analyze Octave Filter Design
on page 3-299 for details.

Examples

Perform Fractional Octave-Band Filtering

Use octaveFilter to design a 1/3 octave-band filter centered at 1000 Hz. Process an audio signal
using your octave filter design.

Create a dsp.AudioFileReader object.

samplesPerFrame = 1024;
reader = dsp.AudioFileReader('RockGuitar-16-44p1-stereo-72secs.wav','SamplesPerFrame',samplesPerFrame);

Create an octaveFilter object. Use the sample rate of the reader as the sample rate of the octave
filter.

centerFreq = 1000;
bw = '1/3 octave';
Fs = reader.SampleRate;

 octaveFilter

3-297

octFilt = octaveFilter(centerFreq,bw,'SampleRate',Fs);

Visualize the filter response and verify that it fits within the class 0 mask of the ANSI S1.11-2004
standard.

visualize(octFilt,'class 0')

Create a spectrum analyzer to visualize the original audio signal and the audio signal after octave-
band filtering.

scope = dsp.SpectrumAnalyzer(...
 'SampleRate',Fs, ...
 'PlotAsTwoSidedSpectrum',false, ...
 'FrequencyScale','Log', ...
 'FrequencyResolutionMethod','WindowLength', ...
 'WindowLength',samplesPerFrame, ...
 'Title','Octave-Band Filtering', ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original signal','Filtered signal'});

Process the audio signal in an audio stream loop. Visualize the filtered audio and the original audio.
As a best practice, release the System objects when complete.

while ~isDone(reader)
 x = reader();
 y = octFilt(x);
 scope([x(:,1),y(:,1)])
end

release(octFilt)
release(reader)
release(scope)

3 System Objects

3-298

Analyze Octave Filter Design

Create an octave filter. Visualize the filter response and validate that it is class 2 compliant.

octFilt = octaveFilter('CenterFrequency',1000);
visualize(octFilt,'class 2')

 octaveFilter

3-299

Analyze the filter using fvtool.

fvtool(octFilt,'Fs',octFilt.SampleRate)

3 System Objects

3-300

The octaveFilter object supports several filter analysis methods. For more information, use help
at the command line:

help octaveFilter.helpFilterAnalysis

 The following analysis methods are available for discrete-time filter System objects:

 fvtool - Filter visualization tool
 info - Filter information
 freqz - Frequency response
 phasez - Phase response
 zerophase - Zero-phase response
 grpdelay - Group delay response
 phasedelay - Phase delay response
 impz - Impulse response
 impzlength - Length of impulse response
 stepz - Step response
 zplane - Pole/zero plot
 cost - Cost estimate for implementation of the filter System object
 measure - Measure characteristics of the frequency response

 order - Filter order
 coeffs - Filter coefficients in a structure
 firtype - Determine the type (1-4) of a linear phase FIR filter System object
 tf - Convert to transfer function
 zpk - Convert to zero-pole-gain
 ss - Convert to state space representation

 octaveFilter

3-301

 isallpass - Verify if filter System object is allpass
 isfir - Verify if filter System object is FIR
 islinphase - Verify if filter System object is linear phase
 ismaxphase - Verify if filter System object is maximum phase
 isminphase - Verify if filter System object is minimum phase
 isreal - Verify if filter System object is minimum real
 issos - Verify if filter System object is in second-order sections form
 isstable - Verify if filter System object is stable

 realizemdl - Filter realization (Simulink diagram)

 specifyall - Fully specify fixed-point filter System object settings

 cascade - Create a FilterCascade System object

 Second-order sections:

 scale - Scale second-order sections of BiquadFilter System object
 scalecheck - Check scaling of BiquadFilter System object
 reorder - Reorder second-order sections of BiquadFilter System object
 cumsec - Cumulative second-order section of BiquadFilter System object
 scaleopts - Create an options object for second-order section scaling
 sos - Convert to second-order-sections (for IIRFilter System objects only)

 Fixed-Point (Fixed-Point Designer Required):

 freqrespest - Frequency response estimate via filtering
 freqrespopts - Create an options object for frequency response estimate
 noisepsd - Power spectral density of filter output due to roundoff noise
 noisepsdopts - Create an options object for output noise PSD computation

 Multirate Analysis:

 polyphase - Polyphase decomposition of multirate filter System object
 gain (CIC decimator) - Gain of CIC decimator filter System object
 gain (CIC interpolator) - Gain of CIC interpolator filter System object

 For decimator, interpolator, or rate change filter System objects
 the analysis tools perform computations relative to the rate at
 which the filter is running. If a sampling frequency is specified,
 it is assumed that the filter is running at that rate.

Help for octaveFilter.helpFilterAnalysis is inherited from superclass DSP.PRIVATE.FILTERANALYSIS

Effect of Center Frequency on Octave-Band Filtering

Process a speech signal using different octave bands from an octave-band filter bank.

Design a 1/2 octave filter with an estimated center frequency of 800 Hz. Use isStandardCompliant
to find the nearest compliant center frequency.

octFilt = octaveFilter(800,'1/2 octave');
[complianceStatus,suggestedCenterFrequency] = isStandardCompliant(octFilt,'class 0')

complianceStatus =

3 System Objects

3-302

 logical

 0

suggestedCenterFrequency =

 841.3951

Change the center frequency of the octFilt object to the suggested center frequency returned by
isStandardCompliant. Get a list of valid ANSI S1.11-2004 center frequencies, given your specified
octFilt center frequency.

octFilt.CenterFrequency = suggestedCenterFrequency;
Fo = getANSICenterFrequencies(octFilt);

Create an audio file reader and audio device writer.

fileReader = dsp.AudioFileReader('Counting-16-44p1-mono-15secs.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Create a scope to visualize the filtered and unfiltered signals.

scope = dsp.SpectrumAnalyzer(...
 'PlotAsTwoSidedSpectrum',false,...
 'FrequencyScale','Log',...
 'Title','Octave-Band Filtering',...
 'ShowLegend',true,...
 'ChannelNames',{'Original signal','Filtered signal'});

In an audio stream loop, process the audio signal using your octave-band filter. Vary the center
frequency to hear the effect. As a best practice, release your objects after processing.

index = 12;
octFilt.CenterFrequency = Fo(index);
count = 1;
while ~isDone(fileReader)
 x = fileReader();
 y = octFilt(x);
 scope([x,y])
 deviceWriter(y);

 if mod(count,100)==0
 octFilt.CenterFrequency = Fo(index);
 index = index+1;
 end
 count = count+1;
end

release(scope)
release(deviceWriter)
release(fileReader)

 octaveFilter

3-303

Remove Noise from Tone Scale

Remove additive noise from an audio tone scale using an octaveFilter.

Create audioOscillator and audioDeviceWriter objects with default properties. Create an
octaveFilter object with the center frequency set to 100 Hz.

osc = audioOscillator;
deviceWriter = audioDeviceWriter;
octFilt = octaveFilter(100);

In an audio stream loop, listen to a tone created by your audio oscillator. The tone contains additive
Gaussian noise.

for i = 1:400
 x = osc();
 x1 = x + 0.1*randn(512,1);
 deviceWriter(x1);
 if rem(i,100)==0
 osc.Frequency = osc.Frequency*2;
 end
end

3 System Objects

3-304

Create a spectrum analyzer to view your filtered and unfiltered signals.

scope = dsp.SpectrumAnalyzer(...
 'PlotAsTwoSidedSpectrum',false, ...
 'FrequencyScale','Log', ...
 'FrequencyResolutionMethod','WindowLength', ...
 'Title','Octave-Band Filtering', ...
 'ShowLegend',true, ...
 'SpectralAverages',10, ...
 'ChannelNames',{'Original signal','Filtered signal'});

Reset the frequency of your audio oscillator to its default, 100 Hz.

osc.Frequency = 100;

In an audio stream loop, filter the corrupted tone using your octave-band filter. When the tone
changes frequency in the loop, change the center frequency of your octave filter to match. As a best
practice, release your audio device once done.

for i = 1:400
 x = osc();
 x1 = x + 0.1*randn(512,1);
 x2 = octFilt(x1);
 deviceWriter(x2);
 if rem(i,100)==0
 osc.Frequency = osc.Frequency*2;
 octFilt.CenterFrequency = octFilt.CenterFrequency*2;
 end
 scope([x1,x2])
end

release(deviceWriter)
release(scope)

 octaveFilter

3-305

Design Compliant High-Frequency Filters

Design a sixth-order 1/3 octave filter with a sample rate of 96 kHz.

octFilt = octaveFilter('FilterOrder',6, ...
 'Bandwidth','1/3 octave', ...
 'SampleRate',96e3);

Get the center frequencies defined by the ANSI S1.11-2004 standard. The center frequencies defined
by the standard depend on the Bandwidth and SampleRate properties.

centerFrequencies = getANSICenterFrequencies(octFilt)

centerFrequencies = 1×41
104 ×

 0.0004 0.0005 0.0006 0.0008 0.0010 0.0013 0.0016 0.0020 0.0025 0.0032 0.0040 0.0050 0.0063 0.0079 0.0100 0.0126 0.0158 0.0200 0.0251 0.0316 0.0398 0.0501 0.0631 0.0794 0.1000 0.1259 0.1585 0.1995 0.2512 0.3162 0.3981 0.5012 0.6310 0.7943 1.0000 1.2589 1.5849 1.9953 2.5119 3.1623 3.9811

Set the center frequency of the octave filter to 19.953 kHz and visualize the response with a 'class 0'
compliance mask.

3 System Objects

3-306

octFilt.CenterFrequency = centerFrequencies(38);
visualize(octFilt,'class 0')

The red mask on the plot defines the bounds for the magnitude response of the filter. The magnitude
response of this filter goes above the upper bound of the compliance mask around 6.6 kHz. One way
to counter this is to increase the filter order so that the filter's rolloff is steeper.

To bring the octave filter design into compliance, set the octave filter order to 8.

octFilt.FilterOrder = 8;

 octaveFilter

3-307

Another option to bring the octave filter design into compliance is to set the Oversample property to
true. This designs and runs the filter at twice the specified SampleRate to reduce the effects of the
bilinear transformation during the design stage.

octFilt.FilterOrder = 6;
octFilt.Oversample = true;

3 System Objects

3-308

Design Compliant Low-Frequency Filters

Design a sixth-order 2/3 octave filter with a 96 kHz sample rate.

octFilt = octaveFilter('FilterOrder',6, ...
 'Bandwidth','2/3 octave', ...
 'SampleRate',96e3);

Get the center frequencies defined by the ANSI S1.11-2004 standard. The center frequencies defined
by the standard depend on the Bandwidth and SampleRate properties.

centerFrequencies = getANSICenterFrequencies(octFilt)

centerFrequencies = 1×20
104 ×

 0.0004 0.0006 0.0010 0.0016 0.0025 0.0040 0.0063 0.0100 0.0158 0.0251 0.0398 0.0631 0.1000 0.1585 0.2512 0.3981 0.6310 1.0000 1.5849 2.5119

Set the center frequency of the octave filter to ~6 Hz and visualize the response with a 'class 0'
compliance mask.

 octaveFilter

3-309

octFilt.CenterFrequency = centerFrequencies(2);
visualize(octFilt,'class 0')

The red mask on the plot defines the bounds for the magnitude response of the filter. The magnitude
response of this filter goes below the lower bound of the compliance mask between 5.5 and 7.5 Hz.

Low-frequency filters in an octave filter bank have very low normalized center frequencies, and the
filters designed for them have poles that are almost on the unit circle. To make this filter ANSI
compliant, it has to be designed and operated at a lower sample rate.

To bring the octave filter design into compliance, set the sample rate to 48 kHz.

octFilt.SampleRate = 48e3;

3 System Objects

3-310

Tune Octave Filter Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create a audioDeviceWriter to
write audio to your sound card. Create an octaveFilter to process the audio data. Call visualize
to plot the frequency response of the octave filter.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

octFilt = octaveFilter('SampleRate',fileReader.SampleRate);
visualize(octFilt)

 octaveFilter

3-311

Call parameterTuner to open a UI to tune parameters of the octaveFilter while streaming.

parameterTuner(octFilt)

In an audio stream loop:

1 Read in a frame of audio from the file.
2 Apply octave filtering.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the octave filter and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = octFilt(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(octFilt)

3 System Objects

3-312

More About
Band Edge

A band edge frequency refers to the lower or upper edge of the passband of a bandpass filter.

Center Frequency of Octave Filter

The center frequency of an octave filter is the geometric mean of the lower and upper band edge
frequencies.

Tips
The createAudioPluginClass and configureMIDI functions map tunable properties of the
octaveFilter to user-facing parameters:

Property Range Mapping Units
CenterFrequency [3, 22000] log Hz
Bandwidth '1 octave', '2/3

octave', '1/2
octave', '1/3
octave', '1/6
octave', '1/12
octave', '1/24
octave', or '1/48
octave'

Your MIDI controller
range is discretized into
seven levels,
corresponding to the
seven Bandwidth
choices.

––

Algorithms
Octave Bandwidth to Band Edge Conversion

The octaveFilter System object uses the specified center frequency and filter bandwidth in
octaves to determine the normalized band edges [2].

The object computes the upper and lower band edge frequencies:

fpa = fc × G−1 2b

fpb = fc × G1 2b

• fc is the normalized center frequency specified by the CenterFrequency property.
• b is the octave bandwidth specified by the Bandwidth property. For example, if Bandwidth is
specified as '1/3 octave', the value of b is 3.

• G is a conversion constant:

G = 103 10 .

 octaveFilter

3-313

Digital Filter Design

The octaveFilter System object implements a higher-order digital bandpass filter design method
specified in [1].

In this design method, a desired digital bandpass filter maps to a Butterworth lowpass analog
prototype, which is then mapped back to a digital bandpass filter:

1 The analog Butterworth filter is expressed as a cascade of second-order sections:

H(s) = H1(s)H2(s)⋯H2N(s) ,

where:

Hi(s) = 1

1− 2 s
Ω0

cosθi + s2

Ω0
2

, i = 1, 2, ..., 2N

θi = π
2N N − 1 + 2i , i = 1, 2, .., 2N

N is the filter order specified by the FilterOrder property.
2 The analog Butterworth filter is mapped to a digital filter using a bandpass version of the bilinear

transformation:

s = 1− cz−1 + z−2

1− z−2 ,

where

c =
sin ωpa + ωpb

sinωpa + sinωpb
.

This mapping results in the following substitution:

Ω0 =
c− cosωpb

sinωpb
.

3 The analog prototype is evaluated:

Hi(z) = 1

1− 2 s
Ω0

cosθi + s2

Ω0
2 s = 1− 2cz−1 + z−2

1− z−2

3 System Objects

3-314

Because s is second-order in z, the bandpass version of the bilinear transformation is fourth-
order in z.

References
[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice Hall,

2010.

[2] Acoustical Society of America. American National Standard Specification for Octave-Band and
Fractional-Octave-Band Analog and Digital Filters. ANSI S1.11-2004. Melville, NY: Acoustical
Society of America, 2009.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Octave Filter | dsp.BiquadFilter | multibandParametricEQ | octaveFilterBank |
weightingFilter

Topics
“Octave-Band and Fractional Octave-Band Filters”

Introduced in R2016b

 octaveFilter

3-315

getANSICenterFrequencies
Get the list of valid ANSI S1.11-2004 center frequencies

Syntax
centerFrequencies = getANSICenterFrequencies(octFilt)

Description
centerFrequencies = getANSICenterFrequencies(octFilt) returns a vector of valid center
frequencies as specified by the ANSI S1.11-2004 standard.

Examples

Get ANSI Center Frequencies

Create an object of the octaveFilter System object™. Call getANSICenterFrequencies to get a
list of valid center frequencies.

octFilt = octaveFilter;
centerFrequencies = getANSICenterFrequencies(octFilt)

centerFrequencies = 1×11
103 ×

 0.0079 0.0158 0.0316 0.0631 0.1259 0.2512 0.5012 1.0000 1.9953 3.9811 7.9433

Input Arguments
octFilt — Object of octaveFilter
object

Object of the octaveFilter System object.

Output Arguments
centerFrequencies — Center frequencies
vector

Center frequencies specified by the ANSI S1.11-2004 standard, returned as a vector.

The range for computing valid center frequencies is 3 Hz to (Fs/2) Hz, where the SampleRate
property of your octave filter defines Fs.
Data Types: single | double

3 System Objects

3-316

See Also
Blocks
Octave Filter

Topics
“Octave-Band and Fractional Octave-Band Filters”

Introduced in R2016b

 getANSICenterFrequencies

3-317

isStandardCompliant
Verify octave filter design is ANSI S1.11-2004 compliant

Syntax
complianceStatus = isStandardCompliant(octFilt,classType)
[complianceStatus,centerFreq] = isStandardCompliant(octFilt,classType)

Description
complianceStatus = isStandardCompliant(octFilt,classType) returns a logical scalar,
complianceStatus, indicating whether the complianceStatus filter design is compliant with the
ANSI S1.11-2004 standard for classType.

The mask used to determine compliance is centered on the nearest ANSI-compliant center frequency
that ensures the center frequency of the object falls between the upper and lower band edges of the
mask.

[complianceStatus,centerFreq] = isStandardCompliant(octFilt,classType) also
returns the ANSI-compliant center frequency used to create the mask.

Examples

Verify Standard Compliance

Create an object of the octaveFilter System object™. Call isStandardCompliant, specifying the
compliance class type to check as the second argument.

octFilt = octaveFilter;
complianceStatus = isStandardCompliant(octFilt,'class 2')

complianceStatus = logical
 1

Get ANSI-Compliant Center Frequency

Create an object of the octaveFilter System object. Check the compliance to class 0 status of your
object, and get the center frequency used to create the compliance mask.

octFilt = octaveFilter('CenterFrequency',1266);
[compliant, centerFreq] = isStandardCompliant(octFilt,'class 0')

compliant = logical
 0

centerFreq = 1000

3 System Objects

3-318

Input Arguments
octFilt — Object of octaveFilter
object

Object of the octaveFilter System object.

classType — Compliance class type
'class 0' | 'class 1' | 'class 2'

Compliance class type to verify, specified as 'class 0', 'class 1 or 'class 2'.
Data Types: char

Output Arguments
complianceStatus — Compliance status of filter design
scalar

Compliance status of filter design, returned as a logical scalar. The compliance status indicates
whether the octFilt filter design is compliant with the ANSI S1.11-2004 standard for classType.

If your octave filter is noncompliant, try any of the following:

• Set the center frequency to one of the values returned by getANSICenterFrequencies
• Increase filter order
• Increase sample rate

Data Types: logical

centerFreq — Center frequency of mask
scalar

Center frequency used to create the compliance mask, returned as a scalar.
Data Types: single | double

See Also
Octave Filter | dsp.BiquadFilter | multibandParametricEQ | weightingFilter

Topics
“Octave-Band and Fractional Octave-Band Filters”

Introduced in R2016b

 isStandardCompliant

3-319

visualize
Visualize and validate filter response

Syntax
visualize(octFilt)
visualize(octFilt,N)
visualize(___ ,mType)

Description
visualize(octFilt) plots the magnitude response of the octave-band filter, octFilt. The plot is
updated automatically when properties of the object change.

visualize(octFilt,N) uses an N-point FFT to calculate the magnitude response.

visualize(___ ,mType) creates a mask based on the class of filter specified by mType, using
either of the previous syntaxes. Specify mType as 'class 0', 'class 1', or 'class 2'. The mask
attenuation limits are defined in the ANSI S1.11-2004 standard. The mask center frequency is the
ANSI standard center frequency, with band edge frequencies on either side of the CenterFrequency
set in octFilt.

• If the mask is green, the design is compliant with the ANSI S1.11-2004 standard.
• If the mask is red, the design breaks compliance.

Examples

Plot Octave Filter Magnitude Response

Create an object of the octaveFilter System object™ and then plot the magnitude response of the
filter.

octFilt = octaveFilter;
visualize(octFilt)

3 System Objects

3-320

Specify Number of Frequency Bins

Create an object of the octaveFilter System object™. Plot a 5096-point frequency representation.

octFilt = octaveFilter;
visualize(octFilt,5096)

 visualize

3-321

Visualize Standard-Compliance Mask

Create an object of the octaveFilter System object™. Visualize the class 1 compliance of the filter
design.

octFilt = octaveFilter;
visualize(octFilt,'class 1')

3 System Objects

3-322

Input Arguments
octFilt — Object of octaveFilter
object

Object of the octaveFilter System object.

N — Number of DFT bins
2048 | positive scalar

Number of DFT bins in frequency-domain representation, specified as a positive scalar. The default is
2048.
Data Types: single | double

mType — Type of mask
'class 0' | 'class 1' | 'class 2'

Type of mask, specified as 'class 0', 'class 1, or 'class 2'.

The mask attenuation limits are defined in the ANSI S1.11-2004 standard. The mask center frequency
is the ANSI standard center frequency, with band edge frequencies on either side of the
CenterFrequency set in octFilt.

 visualize

3-323

• If the mask is green, the design is compliant with the ANSI S1.11-2004 standard.
• If the mask is red, the design breaks compliance.

Data Types: char

See Also
Topics
“Octave-Band and Fractional Octave-Band Filters”

Introduced in R2016b

3 System Objects

3-324

reverberator

Add reverberation to audio signal

Description
The reverberator System object adds reverberation to mono or stereo audio signals.

To add reverberation to your input:

1 Create the reverberator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
reverb = reverberator
reverb = reverberator(Name,Value)

Description

reverb = reverberator creates a System object, reverb, that adds artificial reverberation to an
audio signal.

reverb = reverberator(Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.
Example: reverb = reverberator('PreDelay',0.5,'WetDryMix',1) creates a System object,
reverb, with a 0.5 second pre-delay and a wet-to-dry mix ratio of one.

 reverberator

3-325

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

PreDelay — Pre-delay for reverberation (s)
0 (default) | real positive scalar

Pre-delay for reverberation in seconds, specified as a real scalar in the range [0, 1].

Pre-delay for reverberation is the time between hearing direct sound and the first early reflection.
The value of PreDelay is proportional to the size of the room being modeled.

Tunable: Yes
Data Types: single | double

HighCutFrequency — Lowpass filter cutoff (Hz)
20000 (default) | real positive scalar

Lowpass filter cutoff in Hz, specified as a real positive scalar in the range 0 to SampleRate
2 .

Lowpass filter cutoff is the –3 dB cutoff frequency for the single-pole lowpass filter at the front of the
reverberator structure. It prevents the application of reverberation to high-frequency components of
the input.

Tunable: Yes
Data Types: single | double

Diffusion — Density of reverb tail
0.5 (default) | real scalar

Density of reverb tail, specified as a real positive scalar in the range [0, 1].

Diffusion is proportional to the rate at which the reverb tail builds in density. Increasing
Diffusion pushes the reflections closer together, thickening the sound. Reducing Diffusion
creates more discrete echoes.

Tunable: Yes
Data Types: single | double

DecayFactor — Decay factor of reverb tail
0.5 (default) | real scalar

Decay factor of reverb tail, specified as a real positive scalar in the range [0, 1].

DecayFactor is proportional to the time it takes for reflections to run out of energy. To model a large
room, use a long reverb tail (low decay factor). To model a small room, use a short reverb tail (high
decay factor).

3 System Objects

3-326

Tunable: Yes
Data Types: single | double

HighFrequencyDamping — High-frequency damping
0.0005 (default) | real scalar

High-frequency damping, specified as a real positive scalar in the range [0, 1].

HighFrequencyDamping is proportional to the attenuation of high frequencies in the reverberation
output. Setting HighFrequencyDamping to a large value makes high-frequency reflections decay
faster than low-frequency reflections.

Tunable: Yes
Data Types: single | double

WetDryMix — Wet-dry mix
0.3 (default) | real scalar

Wet-dry mix, specified as a real positive scalar in the range [0, 1].

Wet-dry mix is the ratio of wet (reverberated) to dry (original) signal that your reverberator
System object outputs.

Tunable: Yes
Data Types: single | double

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = reverb(audioIn)

Description

audioOut = reverb(audioIn) adds reverberation to the input signal, audioIn, and returns the
mixed signal, audioOut. The type of reverberation is specified by the algorithm and properties of the
reverberator System object, reverb.

Input Arguments

audioIn — Audio input to reverberator
column vector | N-by-2 matrix

 reverberator

3-327

Audio input to the reverberator, specified as a column vector or two-column matrix. The columns of
the matrix are treated as independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from reverberator
N-by-2 matrix

Audio output from the reverberator, returned as a two-column matrix.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to reverberator
createAudioPluginClass Create audio plugin class that implements functionality of System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

Examples

Add Reverberation to Audio Signal

Use the reverberator System object™ to add artificial reverberation to an audio signal read from a
file.

Create the dsp.AudioFileReader and audioDeviceWriter System objects. Use the sample rate
of the reader as the sample rate of the writer.

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3','SamplesPerFrame',1024);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

Play 10 seconds of the audio signal through your device.

3 System Objects

3-328

tic
while toc < 10
 audio = fileReader();
 deviceWriter(audio);
end
release(fileReader)

Construct a reverberator System object with default settings.

reverb = reverberator

reverb =
 reverberator with properties:

 PreDelay: 0
 HighCutFrequency: 20000
 Diffusion: 0.5000
 DecayFactor: 0.5000
 HighFrequencyDamping: 5.0000e-04
 WetDryMix: 0.3000
 SampleRate: 44100

Construct a time scope to visualize the original audio signal and the audio signal with added artificial
reverberation.

scope = dsp.TimeScope(...
 'SampleRate',fileReader.SampleRate, ...
 'TimeSpanOverrunAction','Scroll', ...
 'TimeSpan',3, ...
 'BufferLength',3*fileReader.SampleRate*2, ...
 'YLimits',[-1,1], ...
 'ShowGrid',true, ...
 'ShowLegend',true, ...
 'Title','Audio with Reverberation vs. Original');

Play the audio signal with artificial reverberation. Visualize the audio with reverberation and the
original audio.

while ~isDone(fileReader)
 audio = fileReader();
 audioWithReverb = reverb(audio);
 deviceWriter(audioWithReverb);
 scope([audioWithReverb(:,1),audio(:,1)])
end
release(fileReader)
release(deviceWriter)
release(scope)

 reverberator

3-329

Tune Reverberator Parameters

Create a dsp.AudioFileReader to read in audio frame-by-frame. Create an audioDeviceWriter
to write audio to your sound card. Create a reverberator to process the audio data.

frameLength = 1024;
fileReader = dsp.AudioFileReader('RockDrums-44p1-stereo-11secs.mp3', ...
 'SamplesPerFrame',frameLength,'PlayCount',2);
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
reverb = reverberator('SampleRate',fileReader.SampleRate);

Call parameterTuner to open a UI to tune parameters of the octaveFilter while streaming.

parameterTuner(reverb)

In an audio stream loop:

1 Read in a frame of audio from the file.

3 System Objects

3-330

2 Apply reverberation.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the reverberator and listen to the effect.

while ~isDone(fileReader)
 audioIn = fileReader();
 audioOut = reverb(audioIn);
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)
release(reverb)

Tips
The createAudioPluginClass and configureMIDI functions map tunable properties of the
compressor to user-facing parameters:

Property Range Mapping Unit
PreDelay [0, 1] linear s
HighCutFrequency [20, 20000] log Hz
Diffusion [0, 1] linear none
DecayFactor [0, 1] linear none
HighFrequencyDampi
ng

[0, 1] linear none

WetDryMix [0, 1] linear none

Algorithms
The algorithm to add reverberation follows the plate-class reverberation topology described in [1]
and is based on a 29,761 Hz sample rate.

The algorithm has five stages.

 reverberator

3-331

The description for the algorithm that follows is for a stereo input. A mono input is a simplified case.

Stereo-to-Mono

A stereo signal is converted to a mono signal: x[n] = 0.5 × xR[n] + xL[n] .

Preconditioning

A delay followed by a lowpass filter preconditions the mono signal.

• The pre-delay output is determined as xp[n] = x[n− k], where the PreDelay property determines
the value of k.

• The signal is fed through a single-pole lowpass filter with transfer function

LP(z) = 1− α
1− αz−1 ,

where

α = exp −2π ×
fc
fs

.

• fc is the cutoff frequency specified by the HighCutFrequency property.
• fs is the sampling frequency specified by the SampleRate property.

Decorrelation

The signal is decorrelated by passing through a series of four allpass filters.

The allpass filters are of the form

AP(z) = β + z−k

1 + βz−k ,

where β is the coefficient specified by the Diffusion property and k is the delay as follows:

• For AP1, k = 142.
• For AP2, k = 107.
• For AP3, k = 379.
• For AP4, k = 277.

Tank

The signal is fed into the tank, where it circulates to simulate the decay of a reverberation tail.

3 System Objects

3-332

The following description tracks the signal as it progresses through the top of the tank. The signal
progression through the bottom of the tank follows the same pattern, with different delay
specifications.

1 The new signal enters the top of the tank and is added to the circulated signal from the bottom of
the tank.

2 The signal passes through a modulated allpass filter:

Modulated AP1(z) = −β + z−k

1− βz−k

• β is the coefficient specified by the Diffusion property.
• k is the variable delay specified by a 1 Hz sinusoid with amplitude = (8/29761) *

SampleRate. To account for fractional delay resulting from the modulating k, allpass
interpolation is used [2].

3 The signal is delayed again, and then passes through a lowpass filter:

LP2(z) = 1− φ
1− φz−1

• φ is the coefficient specified by the HighFrequencyDamping property.
4 The signal is multiplied by a gain specified by the DecayFactor property. The signal then passes

through an allpass filter:

 reverberator

3-333

AP5(z) = β + z−k

1 + βz−k .

• β is the coefficient specified by the Diffusion property.
• k is set to 1800 for the top of the tank and 2656 for the bottom of the tank.

5 The signal is delayed again and then circulated to the bottom half of the tank for the next
iteration.

A similar pattern is executed in parallel for the bottom half of the tank. The output of the tank is
calculated as the signed sum of delay lines picked off at various points from the tank. The summed
output is multiplied by 0.6.

Wet/Dry Mix

The wet (processed) signal is then added to the dry (original) signal:

yR[n] = 1− κ xR[n] + κx3R[n] ,

yL[n] = 1− κ xL[n] + κx3L[n] ,

where the WetDryMix property determines κ.

References
[1] Dattorro, Jon. "Effect Design, Part 1: Reverberator and Other Filters." Journal of the Audio

Engineering Society. Vol. 45, Issue 9, 1997, pp. 660–684.

[2] Dattorro, Jon. "Effect Design, Part 2: Delay-Line Modulation and Chorus." Journal of the Audio
Engineering Society. Vol. 45, Issue 10, 1997, pp. 764–788.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Reverberator

Introduced in R2016a

3 System Objects

3-334

wavetableSynthesizer
Generate periodic signal from single-cycle waveforms

Description
The wavetableSynthesizer System object generates a periodic signal with tunable properties. The
periodic signal is defined by a single-cycle waveform cached as the Wavetable property of your
wavetableSynthesizer object.

To generate a periodic signal:

1 Create the wavetableSynthesizer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
waveSynth = wavetableSynthesizer
waveSynth = wavetableSynthesizer(wavetableValue)
waveSynth = wavetableSynthesizer(wavetableValue,frequencyValue)
waveSynth = wavetableSynthesizer(___ ,Name,Value)

Description

waveSynth = wavetableSynthesizer creates a wavetable synthesizer System object,
waveSynth, with default property values.

waveSynth = wavetableSynthesizer(wavetableValue) sets the Wavetable property to
wavetableValue.

waveSynth = wavetableSynthesizer(wavetableValue,frequencyValue) sets the
Frequency property to frequencyValue.

 wavetableSynthesizer

3-335

waveSynth = wavetableSynthesizer(___ ,Name,Value) sets each property Name to the
specified Value. Unspecified properties have default values.
Example: waveSynth = wavetableSynthesizer('Amplitude',2,'DCOffset',2.5) creates a
System object, waveSynth, that generates the default sine waveform with an amplitude of 2 and a
DC offset of 2.5.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

Wavetable — Single-cycle waveform
sin(2*pi*(0:511)/512) (default) | vector of real values

Single-cycle waveform, specified as a vector of real values. The algorithm of the
wavetableSynthesizer indexes into the single-cycle waveform to synthesize a periodic wave.

Tunable: Yes
Data Types: single | double

Frequency — Frequency of generated signal (Hz)
100 (default) | real scalar

Frequency of generated signal in Hz, specified as a real scalar greater than or equal to 0.

Tunable: Yes
Data Types: single | double

Amplitude — Amplitude of generated signal
1 (default) | real scalar

Amplitude of generated signal, specified as a real scalar greater than or equal to 0.

The generated signal is multiplied by the value specified by Amplitude at the output, before
DCOffset is applied.

Tunable: Yes
Data Types: single | double

PhaseOffset — Normalized phase offset of generated signal
0 (default) | real scalar

Normalized phase offset of generated signal, specified as a real scalar with values in the range [0, 1].
The range is a normalized 2π radians interval.

Tunable: No
Data Types: single | double

3 System Objects

3-336

DCOffset — Value added to each element of generated signal
0 (default) | real scalar

Value added to each element of the generated signal, specified as a real scalar.

Tunable: Yes
Data Types: single | double

SamplesPerFrame — Number of samples per frame
512 (default) | positive integer

Number of samples per frame, specified as a positive integer in the range [1, 192000].

This property determines the vector length that your wavetableSynthesizer object outputs.

Tunable: Yes
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SampleRate — Sample rate of generated signal (Hz)
44100 (default) | real positive scalar

Sample rate of generated signal in Hz, specified as a real positive scalar.

Tunable: Yes

OutputDataType — Data type of generated signal
'double' (default) | 'single'

Data type of generated signal, specified as 'double' or 'single'.

Tunable: No
Data Types: char | string

Usage

Syntax
waveform = waveSynth()

Description

waveform = waveSynth() generates a periodic signal, waveform. The type of signal is specified by
the algorithm and properties of the wavetableSynthesizer System object, waveSynth.

Output Arguments

waveform — Waveform output from wavetable synthesizer
column vector (default)

Waveform output from the wavetable synthesizer, returned as a column vector with length specified
by the SamplesPerFrame property and data type specified by the OutputDataType property.
Data Types: single | double

 wavetableSynthesizer

3-337

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to wavetableSynthesizer
createAudioPluginClass Create audio plugin class that implements functionality of System object
parameterTuner Tune object parameters while streaming

MIDI
configureMIDI Configure MIDI connections between audio object and MIDI controller
disconnectMIDI Disconnect MIDI controls from audio object
getMIDIConnections Get MIDI connections of audio object

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

The createAudioPluginClass and configureMIDI functions map tunable properties of the
wavetableSynthesizer System object to user-facing parameters:

Property Range Mapping Unit
Frequency [0.1, 20000] log Hz
Amplitude [0, 10] linear none
DCOffset [–10, 10] linear none

Examples

Generate Variable-Frequency Staircase Wave

Define and plot a single-cycle waveform.

values = -1:0.1:1;
singleCycleWave = ones(100,1) * values;
singleCycleWave = reshape(singleCycleWave,numel(singleCycleWave),1);

plot(singleCycleWave)
xlabel('Index')
ylabel('Amplitude')

Create a wavetable synthesizer, waveSynth, to generate a staircase wave using the single-cycle
waveform. Specify a frequency of 10 Hz.

waveSynth = wavetableSynthesizer(singleCycleWave,10);

3 System Objects

3-338

Create a time scope to visualize the staircase wave generated by waveSynth.

scope = dsp.TimeScope(...
 'SampleRate',waveSynth.SampleRate, ...
 'TimeSpan',0.1, ...
 'YLimits',[-1.5,1.5], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true, ...
 'Title','Variable-Frequency Staircase Wave');

Place the wavetable synthesizer in an audio stream loop. Increase the frequency of your staircase
wave in 10 Hz increments.

counter = 0;
while (counter < 1e4)
 counter = counter + 1;
 staircaseWave = waveSynth();
 scope(staircaseWave)
 if mod(counter,1000)==0
 waveSynth.Frequency = waveSynth.Frequency + 10;
 end
end

Manipulate Audio Samples Using Wavetable Synthesizer

Sample an audio file and save it to the Wavetable property of a wavetableSynthesizer System
object™. Use the wavetable synthesizer to manipulate your audio sample.

Read in an entire audio file. Clip out an interesting sound from the audio and then play it.

[audio,fs] = audioread('MainStreetOne-24-96-stereo-63secs.wav');

engine = audio(5.35e6:5.45e6);
sound(engine,fs)

Create a wavetable synthesizer using your audio clip. The duration of the engine audio clip is
numel(engine)/fs seconds. In the wavetableSynthesizer, set the Frequency property to 1/
(clip duration). The generated signal now plays back at the same rate it was recorded at.

duration = numel(engine)/fs;
waveSynth = wavetableSynthesizer('Wavetable',engine,'SampleRate',fs, ...
 'Frequency',1/duration);

Create an audioDeviceWriter to write to your audio device.

deviceWriter = audioDeviceWriter('SampleRate',fs);

In a loop, play the wavetable synthesizer to your device. After three seconds, begin increasing the
frequency of the wavetable synthesizer. After six seconds, begin decreasing the frequency of the
wavetable synthesizer.

timeElapsed = 0;
while timeElapsed < 9
 audioWave = waveSynth();
 deviceWriter(audioWave);

 wavetableSynthesizer

3-339

 if (timeElapsed > 3) && (timeElapsed < 6)
 waveSynth.Frequency = waveSynth.Frequency + 0.001;
 elseif timeElapsed > 6
 waveSynth.Frequency = waveSynth.Frequency - 0.002;
 end

 timeElapsed = timeElapsed + waveSynth.SamplesPerFrame*(1/fs);
end

Modify Wavetable While Stream Processing

Modify the Wavetable property of a wavetableSynthesizer object while stream processing.
Visualize the wavetable and play the resulting audio.

Create a single-cycle waveform for the wavetableSynthesizer to index into. Create a wavetable
synthesizer object.

t = 0:0.001:1;
exponent = 5;
waveTable = [t.^exponent,fliplr(t.^exponent)] - 0.5;

waveSynth = wavetableSynthesizer('Wavetable',waveTable);

Create a dsp.ArrayPlot object to plot the wavetable as it is modified over time. Create an
audioDeviceWriter object to listen to the signal output by your wavetable synthesizer.

arrayPlotter = dsp.ArrayPlot('YLimits',[-1,1],'PlotType','Line');
deviceWriter = audioDeviceWriter;

In an audio stream loop, incrementally modify the Wavetable property of the wavetable synthesizer
and plot it. Call the synthesizer to output a waveform and play the waveform to your audio device.

tic
while toc < 10
 exponent = exponent - 0.01;
 waveSynth.Wavetable = [t.^abs(exponent),fliplr(t.^abs(exponent))] - 0.5;

 arrayPlotter(waveSynth.Wavetable')

 deviceWriter(waveSynth());
end
release(deviceWriter)

3 System Objects

3-340

Tune Wavetable Synthesizer Parameters

Create a wavetableSynthesizer to generate a waveform. Create a dsp.TimeScope to visualize
the waveform. Create an audioDeviceWriter to write audio to your sound card.

fs = 44.1e3;
wvSynth = wavetableSynthesizer('SampleRate',fs);

scope = dsp.TimeScope(...
 'SampleRate',wvSynth.SampleRate, ...
 'TimeSpan',1, ...
 'YLimits',[-2,2], ...
 'TimeSpanOverrunAction','Scroll', ...
 'ShowGrid',true);

deviceWriter = audioDeviceWriter('SampleRate',wvSynth.SampleRate);

Call parameterTuner to open a UI to tune parameters of the wavetable synthesizer while streaming.

parameterTuner(wvSynth)

In an audio stream loop:

 wavetableSynthesizer

3-341

1 Call the wavetable synthesizer without arguments to output one frame of data.
2 Visualize the data using the time scope.
3 Write the frame of audio to your audio device for listening.

While streaming, tune parameters of the wavetable synthesizer and listen to the effect.

duration = 15;
numIterations = round(wvSynth.SampleRate*duration/wvSynth.SamplesPerFrame);
for i = 1:numIterations
 audioOut = wvSynth();
 scope(audioOut)
 deviceWriter(audioOut);
 drawnow limitrate % required to update parameter
end

As a best practice, release your objects once done.

release(deviceWriter)
release(wvSynth)
release(scope)

3 System Objects

3-342

Algorithms
The wavetableSynthesizer System object synthesizes periodic signals using a cached single-cycle
waveform, specified waveform properties, and phase memory.

Compute Increment

Compute the increment step size:

Δ = Frequency
SampleRate × N ,

where N is the number of elements in your wavetable.

Compute Wavetable Index

Compute Wavetable index,

i[n] =
i[n− 1] + Δ

i[n− 1] + Δ− N
i[n− 1] < N
i[n− 1] ≥ N

,

for 2 ≤ n ≤ SamplesPerFrame. The PhaseOffset property determines i[n=1].

Linear Interpolation

Index into the Wavetable and perform linear interpolation:

w =
Wavetable[1] −Wavetable[iL] × ε + Wavetable[iL]
Wavetable[iH]−Wavetable[iL] × ε + Wavetable[iL]

iH > N
iH ≤ N

.

• iL = floor(i[n] + 1)

• iH = iL + 1

• ε = i− floor(i)

 wavetableSynthesizer

3-343

Apply Amplitude and DC Offset

Multiply by Amplitude and add DCOffset.

waveform = w × Amplitude + DCOffset

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Wavetable Synthesizer | audioOscillator

Introduced in R2016a

3 System Objects

3-344

weightingFilter
Frequency-weighted filter

Description
The weightingFilter System object performs frequency-weighted filtering independently across
each input channel.

To perform frequency-weighted filtering:

1 Create the weightingFilter object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation
Syntax
weightFilt = weightingFilter
weightFilt = weightingFilter(weightType)
weightFilt = weightingFilter(weightType,Fs)
weightFilt = weightingFilter(___ ,Name,Value)

Description

weightFilt = weightingFilter creates a System object, weightFilt, that performs frequency-
weighted filtering independently across each input channel.

weightFilt = weightingFilter(weightType) sets the Method property to weightType.

 weightingFilter

3-345

weightFilt = weightingFilter(weightType,Fs) sets the SampleRate property to Fs.

weightFilt = weightingFilter(___ ,Name,Value) sets each property Name to the specified
Value. Unspecified properties have default values.
Example: weightFilt = weightingFilter('C-weighting','SampleRate',96000) creates a
C-weighting filter with a sample rate of 96,000 Hz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects (MATLAB).

Method — Type of weighting
'A-weighting' (default) | 'C-weighting' | 'K-weighting'

Type of weighting, specified as 'A-weighting', 'C-weighting', or 'K-weighting'. See
“Algorithms” on page 3-355 for more information.

Tunable: No
Data Types: char | string

SampleRate — Input sample rate (Hz)
44100 (default) | positive scalar

Input sample rate in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: single | double

Usage

Syntax
audioOut = weightFilt(audioIn)

Description

audioOut = weightFilt(audioIn) applies frequency-weighted filtering to the input signal,
audioIn, and returns the filtered signal, audioOut. The type of filtering is specified by the
algorithm and properties of the weightingFilter System object, weightFilt.

Input Arguments

audioIn — Audio input to weighting filter
matrix

3 System Objects

3-346

Audio input to the weighting filter, specified as a matrix. The columns of the matrix are treated as
independent audio channels.
Data Types: single | double

Output Arguments

audioOut — Audio output from weighting filter
matrix

Audio output from the weighting filter, returned as a matrix the same size as audioIn.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to weightingFilter
visualize Visualize and validate filter response
getFilter Return biquad filter object with design parameters set
createAudioPluginClass Create audio plugin class that implements functionality of System object
isStandardCompliant Verify filter design is IEC 61672-1:2002 compliant

Common to All System Objects
clone Create duplicate System object
isLocked Determine if System object is in use
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
step Run System object algorithm

Note weightingFilter supports additional filter analysis functions. See “Compare and Analyze
Weighting Types” on page 3-351 for details.

Examples

Validate Filter Compliance

Check the compliance status of filter designs and visualize them.

Create an A-weighting filter with a 22.5 kHz sample rate. Verify that the filter is standard compliant
and visualize the filter design.

aWeight = weightingFilter('A-weighting','SampleRate',22500);
complianceStatus = isStandardCompliant(aWeight,'class 1')

 weightingFilter

3-347

complianceStatus = logical
 0

visualize(aWeight,'class 1')

Change your A-weighting filter sample rate to 44.1 kHz. Verify that the filter is standard compliant
and visualize the filter design.

aWeight.SampleRate = 44100;
complianceStatus = isStandardCompliant(aWeight,'class 1')

complianceStatus = logical
 1

3 System Objects

3-348

Perform A-Weighted Filtering

Use the weightingFilter System object™ to design an A-weighted filter, and then process an audio
signal using your frequency-weighted filter design.

Create a dsp.AudioFileReader System object.

samplesPerFrame = 1024;
reader = dsp.AudioFileReader('Filename', ...
 'RockGuitar-16-44p1-stereo-72secs.wav', ...
 'SamplesPerFrame',samplesPerFrame, ...
 'PlayCount',Inf);

Create a weightingFilter System object. Use the sample rate of the reader as the sample rate of
the weighting filter.

Fs = reader.SampleRate;
weightFilt = weightingFilter('A-weighting',Fs);

Create a spectrum analyzer to visualize the original audio signal and the audio signal after frequency-
weighted filtering.

 weightingFilter

3-349

scope = dsp.SpectrumAnalyzer(...
 'SampleRate',Fs, ...
 'PlotAsTwoSidedSpectrum',false, ...
 'FrequencyScale','Log', ...
 'FrequencyResolutionMethod','WindowLength', ...
 'WindowLength',samplesPerFrame, ...
 'Title','A-Weighted Filtering', ...
 'ShowLegend',true, ...
 'ChannelNames',{'Original signal','Filtered signal'});

Process the audio signal in an audio stream loop. Visualize the filtered audio and the original audio.
As a best practice, release the System objects when complete.

tic
while toc < 20
 x = reader();
 y = weightFilt(x);
 scope([x(:,1),y(:,1)])
end

release(weightFilt)
release(reader)
release(scope)

3 System Objects

3-350

Compare and Analyze Weighting Types

Compare the A-weighted, C-weighted, and K-weighted filtering of an engine sound.

Create an A-weighting filter, a C-weighting filter, and a K-weighting filter. Compare and analyze the
filters using FVTool.

wF{1} = weightingFilter;
wF{2} = weightingFilter('C-weighting');
wF{3} = weightingFilter('K-weighting');

fvtool(wF{1},wF{2},wF{3},'FrequencyScale','Log','Fs',wF{1}.SampleRate)
legend('A-weighting','C-weighting','K-weighting','location','best')

The weightingFilter object supports several filter analysis methods. For more information, use
help at the command line:

help weightingFilter.helpFilterAnalysis

 The following analysis methods are available for discrete-time filter System objects:

 fvtool - Filter visualization tool
 info - Filter information
 freqz - Frequency response
 phasez - Phase response
 zerophase - Zero-phase response

 weightingFilter

3-351

 grpdelay - Group delay response
 phasedelay - Phase delay response
 impz - Impulse response
 impzlength - Length of impulse response
 stepz - Step response
 zplane - Pole/zero plot
 cost - Cost estimate for implementation of the filter System object
 measure - Measure characteristics of the frequency response

 order - Filter order
 coeffs - Filter coefficients in a structure
 firtype - Determine the type (1-4) of a linear phase FIR filter System object
 tf - Convert to transfer function
 zpk - Convert to zero-pole-gain
 ss - Convert to state space representation

 isallpass - Verify if filter System object is allpass
 isfir - Verify if filter System object is FIR
 islinphase - Verify if filter System object is linear phase
 ismaxphase - Verify if filter System object is maximum phase
 isminphase - Verify if filter System object is minimum phase
 isreal - Verify if filter System object is minimum real
 issos - Verify if filter System object is in second-order sections form
 isstable - Verify if filter System object is stable

 realizemdl - Filter realization (Simulink diagram)

 specifyall - Fully specify fixed-point filter System object settings

 cascade - Create a FilterCascade System object

 Second-order sections:

 scale - Scale second-order sections of BiquadFilter System object
 scalecheck - Check scaling of BiquadFilter System object
 reorder - Reorder second-order sections of BiquadFilter System object
 cumsec - Cumulative second-order section of BiquadFilter System object
 scaleopts - Create an options object for second-order section scaling
 sos - Convert to second-order-sections (for IIRFilter System objects only)

 Fixed-Point (Fixed-Point Designer Required):

 freqrespest - Frequency response estimate via filtering
 freqrespopts - Create an options object for frequency response estimate
 noisepsd - Power spectral density of filter output due to roundoff noise
 noisepsdopts - Create an options object for output noise PSD computation

 Multirate Analysis:

 polyphase - Polyphase decomposition of multirate filter System object
 gain (CIC decimator) - Gain of CIC decimator filter System object
 gain (CIC interpolator) - Gain of CIC interpolator filter System object

 For decimator, interpolator, or rate change filter System objects
 the analysis tools perform computations relative to the rate at
 which the filter is running. If a sampling frequency is specified,
 it is assumed that the filter is running at that rate.

3 System Objects

3-352

Help for weightingFilter.helpFilterAnalysis is inherited from superclass DSP.PRIVATE.FILTERANALYSIS

Create a dsp.AudioFileReader and specify a sound file. Create an audioDeviceWriter with
default properties. In an audio stream loop, play the white noise, and then listen to it filtered through
the A-weighted, C-weighted, and K-weighted filters, successively.

fileReader = dsp.AudioFileReader('Engine-16-44p1-stereo-20sec.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

fprintf('No filtering...')

No filtering...

for i = 1:400
 x = fileReader();
 if i==100
 index = 1;
 fprintf('A-weighted filtering...')
 elseif i==200
 index = 2;
 fprintf('C-weighted filtering...')
 elseif i==300
 index = 3;
 fprintf('K-weighted filtering...\n')
 end
 if i>99
 y = wF{index}(x);
 else
 y = x;
 end
 deviceWriter(y);
end

A-weighted filtering...C-weighted filtering...K-weighted filtering...

As a best practice, release your objects once done.

release(deviceWriter)
release(fileReader)

Use Weighting Filter Design with Biquad Filter

The weightingFilter object uses second-order sections (SOS) for filtering. To extract the
weighting filter design, use getFilter to return a dsp.BiquadFilter object with the SOSMatrix
and ScaleValues properties set.

Use weightingFilter to create C-weighted and A-weighted filter objects. Use getFilter to
return corresponding dsp.BiquadFilter objects.

cFilt = weightingFilter('C-weighting');
aFilt = weightingFilter('A-weighting');
cSOSFilter = getFilter(cFilt);
aSOSFilter = getFilter(aFilt);

 weightingFilter

3-353

Create an audio file reader and audio device writer for audio input/output. Use the sample rate of
your reader as the sample rate of your writer.

fileReader = dsp.AudioFileReader('JetAirplane-16-11p025-mono-16secs.wav');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);

In an audio stream loop, play the unfiltered signal. Release your file reader so that the next time you
call it, it reads from the beginning of the file.

tic
while toc<8
 x = fileReader();
 deviceWriter(x);
end
release(fileReader)

Play the signal processed by the A-weighted filter. Then play the signal processed by the C-weighted
filter. Cache the power in each frame of the original and filtered signals for analysis. As a best
practice, release your file reader and device writer once complete.

y = [];
count = 1;
tic
while ~isDone(fileReader)
 x = fileReader();
 aFiltered = aSOSFilter(x);
 cFiltered = cSOSFilter(x);
 if toc>8
 deviceWriter(cFiltered);
 else
 deviceWriter(aFiltered);
 end
 xPower(count) = var(x);
 aPower(count) = var(aFiltered);
 cPower(count) = var(cFiltered);
 y = [y;x];
 count = count+1;
end

release(fileReader)
release(deviceWriter)

Plot the power of the original signal, the A-weighted signal, and the C-weighted signal over time.

subplot(2,1,1)
spectrogram(y,512,256,4096,fileReader.SampleRate,'yaxis')
title('Original Signal')

subplot(2,1,2)
t = linspace(0,16.3468,count-1);
plot(t,xPower,'r',t,aPower,'b',t,cPower,'g')
legend('Original Signal','A-Weighted','C-Weighted')
xlabel('Time (s)')
ylabel('Power')

3 System Objects

3-354

Algorithms
A-Weighting

The A-curve is a wide bandpass filter centered at 2.5 kHz, with approximately 20 dB attenuation at
100 Hz. A-weighted SPL measurements of noise level are increasingly found in sales literature for
domestic appliances. In most countries, the use of A-weighting is mandated for the protection of
workers against noise-induced deafness. The ISO and ICOA standards mandate A-weighting for all
civil aircraft noise measurements.

The ANSI S1.42.2001 [1] defines this weighting curve. The IEC 61672-1:2002 [2] standard defines the
minimum and maximum attenuation limits for an A-weighting filter.

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio Toolbox
converts the specified poles and zeros to the digital domain using a bilinear transform:

 weightingFilter

3-355

C-Weighting

The C-curve is "flat," but with limited bandwidth: It has –3 dB corners at 31.5 Hz and 8 kHz. C-curves
are used in sound level meters for sounds that are louder than those intended for A-weighting filters.

The ANSI S1.42-2001 [1] defines the C-weighting curve. The IEC 61672-1:2002 [2] standard defines
the minimum and maximum attenuation limits for C-weighting filters.

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio Toolbox
converts the specified poles and zeros to the digital domain using a bilinear transform:

K-Weighting

The K-weighting filter is used for loudness normalization in broadcast. It is composed of two stages of
filtering: a first stage shelving filter and a second stage highpass filter.

The ITU-R BS.1770-4 [3] standard defines this curve.

Assume a second-order filter.

3 System Objects

3-356

The table shows the coefficients for the filters.

First Stage Shelving Coefficients Second Stage Highpass Coefficients
a1 = − 1.69065929318241 a1 = − 1.99004745483398
a2 = 0.73248077421585 a2 = 0.99007225036621
b0 = 1.53512485958697 b0 = 1.0
b1 = − 2.6916918940638 b1 = − 2.0
b2 = 1.19839281085285 b2 = 1.0

The coefficients presented by ITU-R BS.1770-4 are defined for 48 kHz. These coefficients are
recomputed for nonstandard sample rates using the algorithm described in [4].

References
[1] Acoustical Society of America. Design Response of Weighting Networks for Acoustical

Measurements. ANSI S1.42-2001. New York, NY: American National Standards Institute,
2001.

[2] International Electrotechnical Commission. Electroacoustics Sound Level Meters Part 1:
Specifications. First Edition. IEC 61672-1. 2002–2005.

[3] International Telecommunication Union. Algorithms to measure audio programme loudness and
true-peak audio level. ITU-R BS.1770-4. 2015.

[4] Mansbridge, Stuart, Saoirse Finn, and Joshua D. Reiss. "Implementation and Evaluation of
Autonomous Multi-track Fader Control." Paper presented at the 132nd Audio Engineering
Society Convention, Budapest, Hungary, 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 weightingFilter

3-357

Usage notes and limitations:

“System Objects in MATLAB Code Generation” (MATLAB Coder)

See Also
Weighting Filter | dsp.BiquadFilter | multibandParametricEQ | octaveFilter

Topics
“Audio Weighting Filters”
“Sound Pressure Measurement of Octave Frequency Bands”

Introduced in R2016b

3 System Objects

3-358

isStandardCompliant
Verify filter design is IEC 61672-1:2002 compliant

Syntax
complianceStatus = isStandardCompliant(weightFilt,classType)
complianceStatus = isStandardCompliant(___ ,freqRange)

Description
complianceStatus = isStandardCompliant(weightFilt,classType) returns a logical
scalar, complianceStatus, indicating whether the weightFilt filter design is compliant with the
minimum and maximum attenuation specifications for the classType design specified in IEC
61672-1:2002. You can check compliance for A-weighting and C-weighting filters only.

complianceStatus = isStandardCompliant(___ ,freqRange) specifies the range of
frequencies checked for compliance.

Examples

Verify Class 1 Standard Compliance

Create an object of the weightingFilter System object™. Call isStandardCompliant, specifying
the compliance class type to check as the second argument.

weightFilt = weightingFilter;
complianceStatus = isStandardCompliant(weightFilt,'class 1')

complianceStatus = logical
 1

Specify Frequency Range Checked for Compliance

Create an object of the weightingFilter System object™. Check the 'class 2' compliance status of
the filter design over a specified frequency range.

weightFilt = weightingFilter;
isStandardCompliant(weightFilt,'class 2',[120,2000])

ans = logical
 1

 isStandardCompliant

3-359

Input Arguments
weightFilt — Object of weightingFilter
object

Object of the weightingFilter System object.

classType — Compliance class type
'class 1' | 'class 2'

Compliance class type to verify, specified as 'class 1 or 'class 2'.
Data Types: char

freqRange — Frequency range checked for compliance (Hz)
[minFreq,maxFreq] | two-element vector of increasing values

Specify the frequency range, in Hz, checked for compliance as a two-element vector of increasing
values: [minFreq,maxFreq].
Data Types: single | double

Output Arguments
complianceStatus — Compliance status of filter design
scalar

Compliance status of filter design, returned as a logical scalar. The compliance status indicates
whether the weightFilt filter design is compliant with the minimum and maximum attenuation
specifications for the class type design specified by IEC 61672-1:2002 standard. Compliance can only
be checked for A-weighting and C-weighting filters.
Data Types: logical

Note The pole-zero values defined in the ANSI S1.42-2001 standard are used for designing the A-
weighted and C-weighted filters. The pole-zero values are based on analog filters, so the design can
break compliance for lower sample rates.

See Also
Topics
“Audio Weighting Filters”
“Sound Pressure Measurement of Octave Frequency Bands”

Introduced in R2016b

3 System Objects

3-360

visualize
Visualize and validate filter response

Syntax
visualize(weightFilt)
visualize(weightFilt,N)
visualize(___ ,mType)

Description
visualize(weightFilt) plots the magnitude response of the frequency-weighted filter,
weightFilt. The plot is updated automatically when properties of the object change.

visualize(weightFilt,N) uses an N-point FFT to calculate the magnitude response.

visualize(___ ,mType) creates a mask based on the class of filter specified by mType, using
either of the previous syntaxes.

Examples

Plot Weighting Filter Magnitude Response

Create an object of the weightingFilter System object™ and then plot the magnitude response of
the filter.

weightFilt = weightingFilter;
visualize(weightFilt)

 visualize

3-361

Specify Number of Frequency Bins in FFT Calculation

Create an object of the weightingFilter System object™. Plot a 1024-point frequency
representation.

weightFilt = weightingFilter;
visualize(weightFilt,1024)

3 System Objects

3-362

Visualize Class 2 Standard-Compliance Mask

Create an object of the weightingFilter System object™. Visualize the class 2 compliance of the
filter design.

weightFilt = weightingFilter;
visualize(weightFilt,'class 2')

 visualize

3-363

Input Arguments
weightFilt — Object of weightingFilter
object

Object of the weightingFilter System object.

N — Number of DFT bins
2048 | positive scalar

Number of DFT bins in frequency-domain representation, specified as a positive scalar. The default is
2048.
Data Types: single | double

mType — Type of mask
'class 1' (default) | 'class 2'

Type of mask, specified as 'class 1' or 'class 2'.

The mask attenuation limits are defined in the IEC 61672-1:2002 standard. The mask is defined for A-
weighting and C-weighting filters only.

3 System Objects

3-364

• If the mask is green, the design is compliant with the IEC 61672-1:2002 standard.
• If the mask is red, the design breaks compliance.

Note The pole-zero values defined in the ANSI S1.42-2001 standard are used for designing the A-
weighted and C-weighted filters. The pole-zero values are based on analog filters, so the design can
break compliance for lower sample rates.

Data Types: char

See Also
Topics
“Audio Weighting Filters”
“Sound Pressure Measurement of Octave Frequency Bands”

Introduced in R2016b

 visualize

3-365

Classes

4

setExtractorParams
Set nondefault parameter values for individual feature extractors

Syntax
setExtractorParams(aFE,featureName,params)
setExtractorParams(aFE,featureName)

Description
setExtractorParams(aFE,featureName,params) specifies parameters used to extract
featureName.

setExtractorParams(aFE,featureName) returns the parameters used to extract featureName
to default values.

Examples

Extract Pitch Using the LHS Method

Read in an audio signal.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Create an audioFeatureExtractor object to extract pitch. Set the method of pitch extraction to
"LHS".

aFE = audioFeatureExtractor("SampleRate",fs,"pitch",true);
setExtractorParams(aFE,"pitch","Method","LHS")

Call extract and plot the results.

f0 = extract(aFE,audioIn);
plot(f0)

4 Classes

4-2

Modify Spectral Rolloff Threshold and Mel Spectrum Parameters

Read in an audio signal.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Create an audioFeatureExtractor object to extract the melSpectrum and
spectralRolloffPoint. Specify ten bands for the mel spectrum and set the threshold for the
rolloff point to 50% of the total energy.

aFE = audioFeatureExtractor("SampleRate",fs,"melSpectrum",true,"spectralRolloffPoint",true);
setExtractorParams(aFE,"melSpectrum","NumBands",10)
setExtractorParams(aFE,"spectralRolloffPoint","Threshold",0.5)

Call extract and plot the results.

features = extract(aFE,audioIn);
idx = info(aFE);

surf(10*log10(features(:,idx.melSpectrum)))
title('Mel Spectrum')

 setExtractorParams

4-3

plot(features(:,idx.spectralRolloffPoint))
title('Spectral Rolloff Point')

4 Classes

4-4

To return individual audio feature extractors to their default values, call setExtractorParams
without specifying any parameters to set.

setExtractorParams(aFE,"melSpectrum")
setExtractorParams(aFE,"spectralRolloffPoint")

Call extract and plot the results.

features = extract(aFE,audioIn);
idx = info(aFE);

surf(10*log10(features(:,idx.melSpectrum)))
title('Mel Spectrum')

 setExtractorParams

4-5

plot(features(:,idx.spectralRolloffPoint))
title('Spectral Rolloff Point')

4 Classes

4-6

Input Arguments
aFE — Input object
audioFeatureExtractor object

audioFeatureExtractor object.

featureName — Name of feature extractor
character array | string

Name of feature extractor, specified as a character array or string.
Data Types: char | string

params — Parameters to set
comma-separated name-value pairs | struct

Parameters to set, specified as comma-separated name-value pairs or as a struct.

See Also
audioFeatureExtractor

Introduced in R2019b

 setExtractorParams

4-7

info
Output mapping and individual feature extractor parameters

Syntax
idx = info(aFE)
idx = info(aFE,"all")
[idx,params] = info(___)

Description
idx = info(aFE) returns a struct with field names corresponding to enabled feature extractors.
The field values correspond to the column indices that the extracted features occupy in the output
from extract.

idx = info(aFE,"all") returns a struct with field names corresponding to all available feature
extractors. If the feature extractor is disabled, the field value is empty.

[idx,params] = info(___) returns a second struct, params. The field names of params
correspond to the feature extractors with settable parameters. If the "all" flag is specified, params
contains all feature extractors with settable parameters. If the "all" flag is not specified, params
contains only the enabled feature extractors with settable parameters. You can set parameters using
setExtractorParams.

Examples

Interpret Output from extract

Extract the mel spectrum, mel spectral centroid, and mel spectral skewness from concatenated white
and pink noise.

fs = 48e3;
aFE = audioFeatureExtractor("SampleRate",fs, ...
 "melSpectrum",true, ...
 "SpectralDescriptorInput","melSpectrum", ...
 "spectralCentroid",true, ...
 "spectralSkewness",true);

features = extract(aFE,[2*rand(fs,1)-1;pinknoise(fs,1)]);

Use info to determine which columns of the output correspond to which feature. Plot the features
separately.

idx = info(aFE);

surf(log10(features(:,idx.melSpectrum)),"EdgeColor","none");
view([90,-90])
axis tight
title("Mel Spectrum")
ylabel("Analysis Frame Number")

4 Classes

4-8

plot(features(:,idx.spectralCentroid))
axis tight
title("Mel Spectral Centroid")
xlabel("Analysis Frame Number")

 info

4-9

plot(features(:,idx.spectralSkewness))
axis tight
title("Mel Spectral Skewness")
xlabel("Analysis Frame Number")

4 Classes

4-10

Get List of All Features audioFeatureExtractor Provides

Create a default audioFeatureExtractor object. By default, all feature extractors are disabled.

aFE = audioFeatureExtractor

aFE =
 audioFeatureExtractor with properties:

 Properties
 Window: [1024x1 double]
 OverlapLength: 512
 SampleRate: 44100
 FFTLength: []
 SpectralDescriptorInput: 'linearSpectrum'

 Enabled Features
 none

 Disabled Features
 linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, mfcc, mfccDelta
 mfccDeltaDelta, gtcc, gtccDelta, gtccDeltaDelta, spectralCentroid, spectralCrest
 spectralDecrease, spectralEntropy, spectralFlatness, spectralFlux, spectralKurtosis, spectralRolloffPoint
 spectralSkewness, spectralSlope, spectralSpread, pitch, harmonicRatio

 info

4-11

 To extract a feature, set the corresponding property to true.
 For example, obj.mfcc = true, adds mfcc to the list of enabled features.

The info function returns information about enabled feature extractors. To view information about
all feature extractors, call info using the "all" flag.

[idx,params] = info(aFE,"all")

idx = struct with fields:
 linearSpectrum: [1x0 double]
 melSpectrum: [1x0 double]
 barkSpectrum: [1x0 double]
 erbSpectrum: [1x0 double]
 mfcc: [1x0 double]
 mfccDelta: [1x0 double]
 mfccDeltaDelta: [1x0 double]
 gtcc: [1x0 double]
 gtccDelta: [1x0 double]
 gtccDeltaDelta: [1x0 double]
 spectralCentroid: [1x0 double]
 spectralCrest: [1x0 double]
 spectralDecrease: [1x0 double]
 spectralEntropy: [1x0 double]
 spectralFlatness: [1x0 double]
 spectralFlux: [1x0 double]
 spectralKurtosis: [1x0 double]
 spectralRolloffPoint: [1x0 double]
 spectralSkewness: [1x0 double]
 spectralSlope: [1x0 double]
 spectralSpread: [1x0 double]
 pitch: [1x0 double]
 harmonicRatio: [1x0 double]

params = struct with fields:
 linearSpectrum: [1x1 struct]
 melSpectrum: [1x1 struct]
 barkSpectrum: [1x1 struct]
 erbSpectrum: [1x1 struct]
 mfcc: [1x1 struct]
 gtcc: [1x1 struct]
 spectralFlux: [1x1 struct]
 spectralRolloffPoint: [1x1 struct]
 pitch: [1x1 struct]

Use the idx struct to enable all feature extractors on the audioFeatureExtractor object.

features = fieldnames(idx);
for i = 1:numel(features)
 aFE.(features{i}) = true;
end
aFE

aFE =
 audioFeatureExtractor with properties:

4 Classes

4-12

 Properties
 Window: [1024x1 double]
 OverlapLength: 512
 SampleRate: 44100
 FFTLength: []
 SpectralDescriptorInput: 'linearSpectrum'

 Enabled Features
 linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, mfcc, mfccDelta
 mfccDeltaDelta, gtcc, gtccDelta, gtccDeltaDelta, spectralCentroid, spectralCrest
 spectralDecrease, spectralEntropy, spectralFlatness, spectralFlux, spectralKurtosis, spectralRolloffPoint
 spectralSkewness, spectralSlope, spectralSpread, pitch, harmonicRatio

 Disabled Features
 none

 To extract a feature, set the corresponding property to true.
 For example, obj.mfcc = true, adds mfcc to the list of enabled features.

Determine Settable Parameters of Individual Feature Extractors

Create an audioFeatureExtractor to extract the ERB spectrum.

aFE = audioFeatureExtractor("erbSpectrum",true)

aFE =
 audioFeatureExtractor with properties:

 Properties
 Window: [1024x1 double]
 OverlapLength: 512
 SampleRate: 44100
 FFTLength: []
 SpectralDescriptorInput: 'linearSpectrum'

 Enabled Features
 erbSpectrum

 Disabled Features
 linearSpectrum, melSpectrum, barkSpectrum, mfcc, mfccDelta, mfccDeltaDelta
 gtcc, gtccDelta, gtccDeltaDelta, spectralCentroid, spectralCrest, spectralDecrease
 spectralEntropy, spectralFlatness, spectralFlux, spectralKurtosis, spectralRolloffPoint, spectralSkewness
 spectralSlope, spectralSpread, pitch, harmonicRatio

 To extract a feature, set the corresponding property to true.
 For example, obj.mfcc = true, adds mfcc to the list of enabled features.

The second output argument from info is a struct that contains the settable parameters of the
individual feature extractors and their current value.

[~,params] = info(aFE)

 info

4-13

params = struct with fields:
 erbSpectrum: [1x1 struct]

params.erbSpectrum

ans = struct with fields:
 NumBands: 43
 FrequencyRange: [0 22050]
 Normalization: "bandwidth"
 SpectrumType: "power"

If you are using the default parameter values, then the parameters are dynamic and updated when
properties they depend on are updated. For example, the default frequency range of the ERB filter
bank and the default number of bandpass filters in the ERB filter bank depends on the sample rate.
Decrease the sample rate of the audioFeatureExtractor object and then call info again.

aFE.SampleRate = 16e3;
[~,params] = info(aFE);
params.erbSpectrum

ans = struct with fields:
 NumBands: 34
 FrequencyRange: [0 8000]
 Normalization: "bandwidth"
 SpectrumType: "power"

You can modify the individual feature extractor parameters using setExtractorParams. Set the
number of bands to 40 and the spectrum type to "magnitude". Call info to confirm that the
parameters are updated.

params.erbSpectrum.NumBands = 40;
params.erbSpectrum.SpectrumType = "magnitude";
setExtractorParams(aFE,"erbSpectrum",params.erbSpectrum)
[~,params] = info(aFE);
params.erbSpectrum

ans = struct with fields:
 NumBands: 40
 FrequencyRange: [0 8000]
 Normalization: "bandwidth"
 SpectrumType: "magnitude"

When you set individual feature extractor parameters, they remain at the set value until you set them
to another value or return them to defaults. Return the sample rate of the audioFeatureExtractor
object to its initial value and then call info. The parameters remain at their set value.

aFE.SampleRate = 44.1e3;

[~,params] = info(aFE);
params.erbSpectrum

ans = struct with fields:
 NumBands: 40
 FrequencyRange: [0 8000]

4 Classes

4-14

 Normalization: "bandwidth"
 SpectrumType: "magnitude"

To return parameters to their default values, call setExtractorParams and specify no parameters.

setExtractorParams(aFE,"erbSpectrum")
[~,params] = info(aFE);
params.erbSpectrum

ans = struct with fields:
 NumBands: 43
 FrequencyRange: [0 22050]
 Normalization: "bandwidth"
 SpectrumType: "power"

Input Arguments
aFE — Input object
audioFeatureExtractor object

audioFeatureExtractor object.

Output Arguments
idx — Mapping of requested features with output from extract
struct

Mapping of requested features with output from extract, returned as a struct with field names
corresponding to individual feature extractors and field values corresponding to column indices.

params — Settable parameters of individual feature extractors
struct

Settable parameters of individual feature extractors, returned as a struct with field names
corresponding to individual feature extractors and field values containing parameter specification
structs. The parameter specification structs have field names corresponding to settable parameter
names and field values corresponding to the current parameter setting.

See Also
audioFeatureExtractor

Introduced in R2019b

 info

4-15

extract
Extract audio features

Syntax
features = extract(aFE,audioIn)

Description
features = extract(aFE,audioIn) returns an array containing features of the audio input.

Examples

Extract and Normalize Audio Features

Read in an audio signal.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Create an audioFeatureExtractor to extract the centroid of the Bark spectrum, the kurtosis of
the Bark spectrum, and the pitch of an audio signal.

aFE = audioFeatureExtractor("SampleRate",fs, ...
 "SpectralDescriptorInput","barkSpectrum", ...
 "spectralCentroid",true, ...
 "spectralKurtosis",true, ...
 "pitch",true)

aFE =
 audioFeatureExtractor with properties:

 Properties
 Window: [1024x1 double]
 OverlapLength: 512
 SampleRate: 44100
 FFTLength: []
 SpectralDescriptorInput: 'barkSpectrum'

 Enabled Features
 spectralCentroid, spectralKurtosis, pitch

 Disabled Features
 linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, mfcc, mfccDelta
 mfccDeltaDelta, gtcc, gtccDelta, gtccDeltaDelta, spectralCrest, spectralDecrease
 spectralEntropy, spectralFlatness, spectralFlux, spectralRolloffPoint, spectralSkewness, spectralSlope
 spectralSpread, harmonicRatio

 To extract a feature, set the corresponding property to true.
 For example, obj.mfcc = true, adds mfcc to the list of enabled features.

4 Classes

4-16

Call extract to extract the features from the audio signal. Normalize the features by their mean and
standard deviation.

features = extract(aFE,audioIn);
features = (features - mean(features,1))./std(features,[],1);

Plot the normalized features over time.

idx = info(aFE);
duration = size(audioIn,1)/fs;

subplot(2,1,1)
t = linspace(0,duration,size(audioIn,1));
plot(t,audioIn)

subplot(2,1,2)
t = linspace(0,duration,size(features,1));
plot(t,features(:,idx.spectralCentroid), ...
 t,features(:,idx.spectralKurtosis), ...
 t,features(:,idx.pitch));
legend("Spectral Centroid","Spectral Kurtosis", "Pitch")
xlabel("Time (s)")

 extract

4-17

Input Arguments
aFE — Input object
audioFeatureExtractor object

audioFeatureExtractor object.

audioIn — Input audio
column vector | matrix

Input audio, specified as a column vector or matrix of independent channels (columns).
Data Types: single | double

Output Arguments
features — Extracted audio features
vector | matrix | 3-D array

Extracted audio features, returned as an L-by-M-by-N array, where:

• L –– Number of feature vectors (hops)
• M –– Number of features extracted per analysis window
• N –– Number of channels

Data Types: single | double

See Also
Extract Audio Features | audioFeatureExtractor

Introduced in R2019b

4 Classes

4-18

audioFeatureExtractor
Streamline audio feature extraction

Description
audioFeatureExtractor encapsulates multiple audio feature extractors into a streamlined and
modular implementation.

Creation

Syntax
aFE = audioFeatureExtractor()
aFE = audioFeatureExtractor(Name,Value)

Description

aFE = audioFeatureExtractor() creates an audio feature extractor with default property
values.

aFE = audioFeatureExtractor(Name,Value) specifies nondefault properties for aFE using one
or more name-value pair arguments.

Properties
Main Properties

Window — Analysis window
hamming(1024,"periodic") (default) | real vector

Analysis window, specified as a real vector.
Data Types: single | double

OverlapLength — Overlap length of adjacent analysis windows
512 (default) | integer in the range [0, numel(Window))

Overlap length of adjacent analysis windows, specified as an integer in the range [0,
numel(Window)).
Data Types: single | double

FFTLength — FFT length
[] (default) | positive integer

FFT length, specified as an integer. The default, [], means that the FFT length is equal to the window
length, (numel(Window)).
Data Types: single | double

 audioFeatureExtractor

4-19

SampleRate — Input sample rate (Hz)
44100 (default) | nonnegative scalar

Input sample rate in Hz, specified as a nonnegative scalar.
Data Types: single | double

SpectralDescriptorInput — Input to spectral descriptors
"linearSpectrum" (default) | "melSpectrum" | "barkSpectrum" | "erbSpectrum"

Input to spectral descriptors, specified as "linearSpectrum", "melSpectrum", "barkSpectrum",
or "erbSpectrum".

Spectral descriptors affected by this property are:

• spectralCentroid
• spectralCrest
• spectralDecrease
• spectralEntropy
• spectralFlatness
• spectralFlux
• spectralKurtosis
• spectralRolloffPoint
• spectralSkewness
• spectralSlope
• spectralSpread

The spectrum input to the spectral descriptors is the same as output from the corresponding feature:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

For example, if you set "SpectralDescriptorInput" to "barkSpectrum", and
"spectralCentroid" to true, then aFE returns the centroid of the default Bark spectrum.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
aFE = audioFeatureExtractor("SampleRate",fs, ...
 "SpectralDescriptorInput","barkSpectrum", ...
 "spectralCentroid",true);
barkSpectralCentroid = extract(aFE,audioIn);

If you specify a nondefault barkSpectrum using setExtractorParams, then the nondefault Bark
spectrum is the input to the spectral descriptors. For example, if you call
setExtractorParams(aFE,"barkSpectrum","NumBands",40), then aFE returns the centroid of
an 40-band Bark spectrum.

setExtractorParams(aFE,"barkSpectrum","NumBands",40)
bark40SpectralCentroid = extract(aFE,audioIn);

Data Types: char | string

4 Classes

4-20

Features to Extract

linearSpectrum — Extract linear spectrum
false (default) | true

Extract the one-sided linear spectrum, specified as true or false.

To set parameters of the linear spectrum extraction, use setExtractorParams:

setExtractorParams(aFE,"linearSpectrum","Name",Value)

Settable parameters for the linear spectrum extraction are:

• "FrequencyRange" –– Frequency range of the extracted spectrum in Hz, specified as the comma-
separated pair consisting of "FrequencyRange" and a two-element vector of increasing numbers
in the range [0, SampleRate/2]. If unspecified, FrequencyRange defaults to [0,
SampleRate/2].

• "SpectrumType" –– Spectrum type, specified as the comma-separated pair consisting of
"SpectrumType" and "power" or "magnitude". If unspecified, SpectrumType defaults to
"power".

Data Types: logical

melSpectrum — Extract mel spectrum
false (default) | true

Extract the one-sided mel spectrum, specified as true or false.

To set parameters of the mel spectrum extraction, use setExtractorParams:

setExtractorParams(aFE,"melSpectrum","Name",Value)

Settable parameters for the mel spectrum extraction are:

• "FrequencyRange" –– Frequency range of the extracted spectrum in Hz, specified as the comma-
separated pair consisting of "FrequencyRange" and a two-element vector of increasing numbers
in the range [0, SampleRate/2]. If unspecified, FrequencyRange defaults to [0,
SampleRate/2].

• "SpectrumType" –– Spectrum type, specified as the comma-separated pair consisting of
"SpectrumType" and "power" or "magnitude". If unspecified, SpectrumType defaults to
"power".

• "NumBands" –– Number of mel bands, specified as the comma-separated pair consisting of
"NumBands" and an integer. If unspecified, NumBands defaults to 32.

• "Normalization" –– Normalization applied to bandpass filters, specified as the comma-
separated pair consisting of "Normalization" and "bandwidth", "area", or "none". If
unspecified, Normalization defaults to "bandwidth".

Data Types: logical

barkSpectrum — Extract Bark spectrum
false (default) | true

Extract the one-sided Bark spectrum, specified as true or false.

To set parameters of the Bark spectrum extraction, use setExtractorParams:

 audioFeatureExtractor

4-21

setExtractorParams(aFE,"barkSpectrum","Name",Value)

Settable parameters for the Bark spectrum extraction are:

• "FrequencyRange" –– Frequency range of the extracted spectrum in Hz, specified as the comma-
separated pair consisting of "FrequencyRange" and a two-element vector of increasing numbers
in the range [0, SampleRate/2]. If unspecified, FrequencyRange defaults to [0,
SampleRate/2].

• "SpectrumType" –– Spectrum type, specified as the comma-separated pair consisting of
"SpectrumType" and "power" or "magnitude". If unspecified, SpectrumType defaults to
"power".

• "NumBands" –– Number of Bark bands, specified as the comma-separated pair consisting of
"NumBands" and an integer. If unspecified, NumBands defaults to 32.

• "Normalization" –– Normalization applied to bandpass filters, specified as the comma-
separated pair consisting of "Normalization" and "bandwidth", "area", or "none". If
unspecified, Normalization defaults to "bandwidth".

Data Types: logical

erbSpectrum — Extract ERB spectrum
false (default) | true

Extract the one-sided ERB spectrum, specified as true or false.

To set parameters of the ERB spectrum extraction, use setExtractorParams:

setExtractorParams(aFE,"erbSpectrum","Name",Value)

Settable parameters for the ERB spectrum extraction are:

• "FrequencyRange" –– Frequency range of the extracted spectrum in Hz, specified as the comma-
separated pair consisting of "FrequencyRange" and a two-element vector of increasing numbers
in the range [0, SampleRate/2]. If unspecified, FrequencyRange defaults to [0,
SampleRate/2].

• "SpectrumType" –– Spectrum type, specified as the comma-separated pair consisting of
"SpectrumType" and "power" or "magnitude". If unspecified, SpectrumType defaults to
"power".

• "NumBands" –– Number of ERB bands, specified as the comma-separated pair consisting of
"NumBands" and an integer. If unspecified, NumBands defaults to
ceil(hz2erb(FrequencyRange(2))-hz2erb(FrequencyRange(1))).

• "Normalization" –– Normalization applied to bandpass filters, specified as the comma-
separated pair consisting of "Normalization" and "bandwidth", "area", or "none". If
unspecified, Normalization defaults to "bandwidth".

Data Types: logical

mfcc — Extract mel-frequency cepstral coefficients (MFCC)
false (default) | true

Extract mel-frequency cepstral coefficients (MFCC), specified as true or false.

To set parameters of the MFCC extraction, use setExtractorParams:

setExtractorParams(aFE,"mfcc","Name",Value)

4 Classes

4-22

Settable parameters for the MFCC extraction are:

• "NumCoeffs" –– Number of coefficients returned for each window, specified as a the comma-
separated pair consisting of "NumCoeffs" and a positive integer. If unspecified, NumCoeffs
defaults to 13.

• "DeltaWindowLength" –– Delta window length, specified as the comma-separated pair
consisting of "DeltaWindowLength" and 2 or an odd integer. If unspecified,
DeltaWindowLength defaults to 2. This parameter affects the mfccDelta and
mfccDeltaDelta features.

• "Rectification" –– Type of nonlinear rectification, specified as the comma-separated pair
consisting of "Rectification" and "log" or "cubic-root".

The mel-frequency cepstral coefficients are calculated using the melSpectrum.
Data Types: logical

mfccDelta — Extract delta of MFCC
false (default) | true

Extract delta of MFCC, specified as true or false.

The delta MFCC is calculated based on the extracted MFCC. Parameters set on mfcc affect
mfccDelta.
Data Types: logical

mfccDeltaDelta — Extract delta-delta of MFCC
false (default) | true

Extract delta-delta of MFCC, specified as true or false.

The delta-delta MFCC is calculated based on the extracted MFCC. Parameters set on mfcc affect
mfccDeltaDelta.
Data Types: logical

gtcc — Extract gammatone cepstral coefficients (GTCC)
false (default) | true

Extract gammatone cepstral coefficients (GTCC), specified as true or false.

To set parameters of the GTCC extraction, use setExtractorParams:

setExtractorParams(aFE,"gtcc","Name",Value)

Settable parameters for the GTCC extraction are:

• "NumCoeffs" –– Number of coefficients returned for each window, specified as a the comma-
separated pair consisting of "NumCoeffs" and a positive integer. If unspecified, NumCoeffs
defaults to 13.

• "DeltaWindowLength" –– Delta window length, specified as the comma-separated pair
consisting of "DeltaWindowLength" and 2 or an odd integer. If unspecified,
DeltaWindowLength defaults to 2. This parameter affects the gtccDelta and
gtccDeltaDelta features.

 audioFeatureExtractor

4-23

• "Rectification" –– Type of nonlinear rectification, specified as the comma-separated pair
consisting of "Rectification" and "log" or "cubic-root".

The gammatone cepstral coefficients are calculated using the erbSpectrum.
Data Types: logical

gtccDelta — Extract delta of GTCC
false (default) | true

Extract delta of GTCC, specified as true or false.

The delta GTCC is calculated based on the extracted GTCC. Parameters set on gtcc affect
gtccDelta.
Data Types: logical

gtccDeltaDelta — Extract delta-delta of GTCC
false (default) | true

Extract delta-delta of GTCC, specified as true or false.

The delta-delta GTCC is calculated based on the extracted GTCC. Parameters set on gtcc affect
gtccDeltaDelta.
Data Types: logical

spectralCentroid — Extract spectral centroid
false (default) | true

Extract spectral centroid, specified as true or false.

The spectral centroid is calculated on one of the following spectral representations, as specified by
the SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

Data Types: logical

spectralCrest — Extract spectral crest
false (default) | true

Extract spectral crest, specified as true or false.

The spectral crest is calculated on one of the following spectral representations, as specified by the
SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

4 Classes

4-24

Data Types: logical

spectralDecrease — Extract spectral decrease
false (default) | true

Extract spectral decrease, specified as true or false.

The spectral decrease is calculated on one of the following spectral representations, as specified by
the SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

Data Types: logical

spectralEntropy — Extract spectral entropy
false (default) | true

Extract spectral entropy, specified as true or false.

The spectral entropy is calculated on one of the following spectral representations, as specified by the
SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

Data Types: logical

spectralFlatness — Extract spectral flatness
false (default) | true

Extract spectral flatness, specified as true or false.

The spectral flatness is calculated on one of the following spectral representations, as specified by the
SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

Data Types: logical

spectralFlux — Extract spectral flux
false (default) | true

Extract spectral flux, specified as true or false.

 audioFeatureExtractor

4-25

The spectral flux is calculated on one of the following spectral representations, as specified by the
SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

To set parameters of the spectral flux extraction, use setExtractorParams:

setExtractorParams(aFE,"spectralFlux","Name",Value)

Settable parameters for the spectral flux extraction are:

• "NormType" –– Norm type used to calculate the spectral flux, specified as the comma-separated
pair consisting of "NormType" and a 1 or 2. If unspecified, NormType defaults to 2.

Data Types: logical

spectralKurtosis — Extract spectral kurtosis
false (default) | true

Extract spectral kurtosis, specified as true or false.

The spectral kurtosis is calculated on one of the following spectral representations, as specified by
the SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

Data Types: logical

spectralRolloffPoint — Extract spectral rolloff point
false (default) | true

Extract spectral rolloff point, specified as true or false.

The spectral rolloff point is calculated on one of the following spectral representations, as specified
by the SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

To set parameters of the spectral rolloff point extraction, use setExtractorParams:

setExtractorParams(aFE,"spectralRolloffPoint","Name",Value)

Settable parameters for the spectral flux extraction are:

4 Classes

4-26

• "Threshold" –– Threshold of the rolloff point, specified as the comma-separated pair consisting
of "Threshold" and a scalar in the range (0, 1). If unspecified, Threshold defaults to 0.95.

Data Types: logical

spectralSkewness — Extract spectral skewness
false (default) | true

Extract spectral skewness, specified as true or false.

The spectral skewness is calculated on one of the following spectral representations, as specified by
the SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

Data Types: logical

spectralSlope — Extract spectral slope
false (default) | true

Extract spectral slope, specified as true or false.

The spectral slope is calculated on one of the following spectral representations, as specified by the
SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

Data Types: logical

spectralSpread — Extract spectral spread
false (default) | true

Extract spectral spread, specified as true or false.

The spectral spread is calculated on one of the following spectral representations, as specified by the
SpectralDescriptorInput property:

• linearSpectrum
• melSpectrum
• barkSpectrum
• erbSpectrum

Data Types: logical

pitch — Extract pitch
false (default) | true

 audioFeatureExtractor

4-27

Extract pitch, specified as true or false.

To set parameters of the pitch extraction, use setExtractorParams:

setExtractorParams(aFE,"pitch","Name",Value)

Settable parameters for the pitch extraction are:

• "Method" –– Method used to calculate the pitch, specified as the comma-separated pair
consisting of "Method" and "PEF", "NCF", "CEP", "LHS", or "SRH". If unspecified, Method
defaults to "NCF". For a description of available pitch extraction methods, see pitch.

• "Range" –– Range within to search for the pitch in Hz, specified as the comma-separated pair
consisting of "Range" and a two-element row vector of increasing values. If unspecified, Range
defaults to [50,400].

• "MedianFilterLength" –– Median filter length used to smooth pitch estimates over time,
specified as the comma-separated pair consisting of "MedianFilterLength" and a positive
integer. If unspecified, MedianFilterLength defaults to 1 (no median filtering).

Data Types: logical

harmonicRatio — Extract harmonic ratio
false (default) | true

Extract harmonic ratio, specified as true or false.
Data Types: logical

Object Functions
extract Extract audio features
setExtractorParams Set nondefault parameter values for individual feature extractors
info Output mapping and individual feature extractor parameters

Examples

Extract Multiple Audio Features

Read in an audio signal.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Create an audioFeatureExtractor object that extracts the MFCC, delta MFCC, delta-delta MFCC,
pitch, and spectral centroid of an audio signal. Use a 30 ms analysis window with 20 ms overlap.

aFE = audioFeatureExtractor(...
 "SampleRate",fs, ...
 "Window",hamming(round(0.03*fs),"periodic"), ...
 "OverlapLength",round(0.02*fs), ...
 "mfcc",true, ...
 "mfccDelta",true, ...
 "mfccDeltaDelta",true, ...
 "pitch",true, ...
 "spectralCentroid",true);

Call extract to extract the audio features from the audio signal.

4 Classes

4-28

features = extract(aFE,audioIn);

Use info to determine which column of the feature extraction matrix corresponds to the requested
pitch extraction.

idx = info(aFE)

idx = struct with fields:
 mfcc: [1 2 3 4 5 6 7 8 9 10 11 12 13]
 mfccDelta: [14 15 16 17 18 19 20 21 22 23 24 25 26]
 mfccDeltaDelta: [27 28 29 30 31 32 33 34 35 36 37 38 39]
 spectralCentroid: 40
 pitch: 41

Plot the detected pitch over time.

t = linspace(0,size(audioIn,1)/fs,size(features,1));
plot(t,features(:,idx.pitch))
title('Pitch')
xlabel('Time (s)')
ylabel('Frequency (Hz)')

Extract Features from Dataset

Create an audio datastore that points to audio samples included with Audio Toolbox®.

 audioFeatureExtractor

4-29

folder = fullfile(matlabroot,'toolbox','audio','samples');
ads = audioDatastore(folder);

Find all files that correspond to a sample rate of 44.1 kHz and then subset the datastore.

keepFile = cellfun(@(x)contains(x,'44p1'),ads.Files);
ads = subset(ads,keepFile);

Convert the data to a tall array. tall arrays are evaluated only when you request them explicitly
using gather. MATLAB® automatically optimizes the queued calculations by minimizing the number
of passes through the data. If you have Parallel Computing Toolbox™, you can spread the calculations
across multiple machines. The audio data is represented as an M-by-1 tall cell array, where M is the
number of files in the audio datastore.

adsTall = tall(ads)

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 12).

adsTall =

 Mx1 tall cell array

 { 539648x1 double}
 { 227497x1 double}
 { 8000x1 double}
 { 685056x1 double}
 { 882688x2 double}
 {1115760x2 double}
 { 505200x2 double}
 {3195904x2 double}
 : :
 : :

Create an audioFeatureExtractor object to extract the mel spectrum, Bark spectrum, ERB
spectrum, and linear spectrum from each audio file. Use the default analysis window and overlap
length for the spectrum extraction.

aFE = audioFeatureExtractor('SampleRate',44.1e3, ...
 'melSpectrum',true, ...
 'barkSpectrum',true, ...
 'erbSpectrum',true, ...
 'linearSpectrum',true);

Define a cellfun function so that audio features are extracted from each cell of the tall array. Call
gather to evaluate the tall array.

specsTall = cellfun(@(x)extract(aFE,x),adsTall,"UniformOutput",false);
specs = gather(specsTall);

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 31 sec
Evaluation completed in 31 sec

The specs variable returned from gather is an numFiles-by-1 cell array, where numFiles is the
number of files in the datastore. Each element of the cell array is a numHops-by-numFeatures-by-
numChannels array, where the number of hops and number of channels depends on the length and

4 Classes

4-30

number of channels of the audio file, and the number of features is the requested number of features
from the audio data.

numFiles = numel(specs)

numFiles = 12

[numHops1,numFeaturesFile1,numChanelsFile1] = size(specs{1})

numHops1 = 1053

numFeaturesFile1 = 620

numChanelsFile1 = 1

[numHops2,numFeaturesFile2,numChanelsFile2] = size(specs{2})

numHops2 = 443

numFeaturesFile2 = 620

numChanelsFile2 = 1

Algorithms
The audioFeatureExtractor creates a feature extraction pipeline based on your selected features.
To reduce computations, audioFeatureExtractor reuses intermediary representations. Some
intermediate representations can be output as features:

 audioFeatureExtractor

4-31

For example, to create an object that extracts the centroid of the Bark spectrum, the flux of the Bark
spectrum, the pitch, the harmonic ratio, and the delta-delta of the MFCC, specify the
audioFeatureExtractor as:

 aFE = audioFeatureExtractor(...
 "SpectralDescriptorInput","barkSpectrum", ...
 "spectralCentroid",true, ...
 "spectralFlux",true, ...
 "pitch",true, ...
 "harmonicRatio",true, ...
 "mfccDeltaDelta",true)

aFE =

 audioFeatureExtractor with properties:

 Properties
 Window: [1024×1 double]
 OverlapLength: 512
 SampleRate: 44100
 FFTLength: []
 SpectralDescriptorInput: 'barkSpectrum'

 Enabled Features
 mfccDeltaDelta, spectralCentroid, spectralFlux, pitch, harmonicRatio

 Disabled Features
 linearSpectrum, melSpectrum, barkSpectrum, erbSpectrum, mfcc, mfccDelta
 gtcc, gtccDelta, gtccDeltaDelta, spectralCrest, spectralDecrease, spectralEntropy
 spectralFlatness, spectralKurtosis, spectralRolloffPoint, spectralSkewness, spectralSlope, spectralSpread

 To extract a feature, set the corresponding property to true.
 For example, obj.mfcc = true, adds mfcc to the list of enabled features.

This configuration corresponds to the highlighted feature extraction pipeline:

4 Classes

4-32

Note Because audioFeatureExtractor reuses intermediary representations, the features output
from audioFeatureExtractor may not correspond with the default configuration of features
output by corresponding individual feature extractors.

See Also
Audio Labeler | Extract Audio Features | audioDataAugmenter | audioDatastore | cellfun |
gather | subset | tall

Introduced in R2019b

 audioFeatureExtractor

4-33

removeAugmentationMethod
Remove custom augmentation method

Syntax
removeAugmentationMethod(aug,algorithmName)

Description
removeAugmentationMethod(aug,algorithmName) removes the custom augmentation algorithm
from an audioDataAugmenter object.

Examples

Remove Augmentation Method

Create a default audioDataAugmenter object.

aug = audioDataAugmenter

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 1
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0.5000
 SNRRange: [0 10]
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]

Add a custom augmentation method that applies a random DC offset.

algorithmName = 'DCOffset';
algorithmHandle = @(x)x+rand(1,'like',x);
addAugmentationMethod(aug,algorithmName,algorithmHandle)
aug

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 1

4 Classes

4-34

 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0.5000
 SNRRange: [0 10]
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]
 DCOffsetProbability: 0.5000

Remove the custom augmentation method.

removeAugmentationMethod(aug,algorithmName)
aug

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 1
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0.5000
 SNRRange: [0 10]
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]

Input Arguments
aug — Audio data augmenter
audioDataAugmenter object

audioDataAugmenter object.

algorithmName — Algorithm name
character vector | string

Algorithm name, specified as a character vector or string. algorithmName must match the algorithm
name you used to add the algorithm using addAugmentationMethod.
Data Types: char | string

See Also
addAugmentationMethod | audioDataAugmenter

 removeAugmentationMethod

4-35

Introduced in R2019b

4 Classes

4-36

augment
Augment audio data

Syntax
data = augment(aug,audioIn)
data = augment(aug,audioIn,fs)

Description
data = augment(aug,audioIn) returns a table containing augmented audio data and information
about the augmentation applied.

data = augment(aug,audioIn,fs) specifies the sample rate of the audio input.

Examples

Apply Random Sequential Augmentations

Read in an audio signal and listen to it.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
sound(audioIn,fs)

Create an audioDataAugmenter object that applies time stretching, volume control, and time
shifting in cascade. Apply each of the augmentations with 80% probability. Set NumAugmentations
to 5 to output five independently augmented signals. To skip pitch shifting and noise addition for each
augmentation, set the respective probabilities to 0. Define parameter ranges for each relevant
augmentation algorithm.

augmenter = audioDataAugmenter(...
 "AugmentationMode","sequential", ...
 "NumAugmentations",5, ...
 ...
 "TimeStretchProbability",0.8, ...
 "SpeedupFactorRange", [1.3,1.4], ...
 ...
 "PitchShiftProbability",0, ...
 ...
 "VolumeControlProbability",0.8, ...
 "VolumeGainRange",[-5,5], ...
 ...
 "AddNoiseProbability",0, ...
 ...
 "TimeShiftProbability",0.8, ...
 "TimeShiftRange", [-500e-3,500e-3])

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: "sequential"

 augment

4-37

 AugmentationParameterSource: 'random'
 NumAugmentations: 5
 TimeStretchProbability: 0.8000
 SpeedupFactorRange: [1.3000 1.4000]
 PitchShiftProbability: 0
 VolumeControlProbability: 0.8000
 VolumeGainRange: [-5 5]
 AddNoiseProbability: 0
 TimeShiftProbability: 0.8000
 TimeShiftRange: [-0.5000 0.5000]

Call augment on the audio to create 5 augmentations. The augmented audio is returned in a table
with variables Audio and AugmentationInfo. The number of rows in the table is defined by
NumAugmentations.

data = augment(augmenter,audioIn,fs)

data=5×2 table
 Audio AugmentationInfo
 _________________ ________________

 {685056x1 double} [1x1 struct]
 {685056x1 double} [1x1 struct]
 {505183x1 double} [1x1 struct]
 {685056x1 double} [1x1 struct]
 {490728x1 double} [1x1 struct]

In the current augmentation pipeline, augmentation parameters are assigned randomly from within
the specified ranges. To determine the exact parameters used for an augmentation, inspect
AugmentationInfo.

augmentationToInspect = ;
data.AugmentationInfo(augmentationToInspect)

ans = struct with fields:
 SpeedupFactor: 1
 VolumeGain: 4.3399
 TimeShift: 0.4502

Listen to the augmentation you are inspecting. Plot time representation of the original and
augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)

t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

4 Classes

4-38

Apply Specified Sequential Augmentations

Read in an audio signal and listen to it.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
sound(audioIn,fs)

Create an audioDataAugmenter object that applies time stretching, pitch shifting, and noise
corruption in cascade. Specify the time stretch speedup factors as 0.9, 1.1, and 1.2. Specify the
pitch shifting in semitones as -2, -1, 1, and 2. Specify the noise corruption SNR as 10 dB and 15 dB.

augmenter = audioDataAugmenter(...
 "AugmentationMode","sequential", ...
 "AugmentationParameterSource","specify", ...
 "SpeedupFactor",[0.9,1.1,1.2], ...
 "ApplyTimeStretch",true, ...
 "ApplyPitchShift",true, ...
 "SemitoneShift",[-2,-1,1,2], ...
 "SNR",[10,15], ...
 "ApplyVolumeControl",false, ...
 "ApplyTimeShift",false)

augmenter =
 audioDataAugmenter with properties:

 augment

4-39

 AugmentationMode: "sequential"
 AugmentationParameterSource: "specify"
 ApplyTimeStretch: 1
 SpeedupFactor: [0.9000 1.1000 1.2000]
 ApplyPitchShift: 1
 SemitoneShift: [-2 -1 1 2]
 ApplyVolumeControl: 0
 ApplyAddNoise: 1
 SNR: [10 15]
 ApplyTimeShift: 0

Call augment on the audio to create 24 augmentations. The augmentations represent every
combination of the specified augmentation parameters (3 × 4 × 2 = 24).

data = augment(augmenter,audioIn,fs)

data=24×2 table
 Audio AugmentationInfo
 _________________ ________________

 {761243x1 double} [1x1 struct]
 {622888x1 double} [1x1 struct]
 {571263x1 double} [1x1 struct]
 {761243x1 double} [1x1 struct]
 {622888x1 double} [1x1 struct]
 {571263x1 double} [1x1 struct]
 {761243x1 double} [1x1 struct]
 {622888x1 double} [1x1 struct]
 {571263x1 double} [1x1 struct]
 {761243x1 double} [1x1 struct]
 {622888x1 double} [1x1 struct]
 {571263x1 double} [1x1 struct]
 {761243x1 double} [1x1 struct]
 {622888x1 double} [1x1 struct]
 {571263x1 double} [1x1 struct]
 {761243x1 double} [1x1 struct]
 ⋮

You can check the parameter configuration of each augmentation using the AugmentationInfo
table variable.

augmentationToInspect = ;
data.AugmentationInfo(augmentationToInspect)

ans = struct with fields:
 SpeedupFactor: 0.9000
 SemitoneShift: -2
 SNR: 10

Listen to the augmentation you are inspecting. Plot the time-domain representation of the original
and augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)

4 Classes

4-40

t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

Apply Random Independent Augmentations

Read in an audio signal and listen to it.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Create an audioDataAugmenter object that applies noise corruption, and time shifting in parallel
branches. For the noise corruption branch, randomly apply noise with an SNR in the range 0 dB to 20
dB. For the time shifting branch, randomly apply time shifting in the range -300 ms to 300 ms. Apply
augmentation 2 times for each branch, for 4 total augmentations.

augmenter = audioDataAugmenter(...
 "AugmentationMode","independent", ...
 "AugmentationParameterSource","random", ...
 "NumAugmentations",2, ...
 "ApplyTimeStretch",false, ...
 "ApplyPitchShift",false, ...
 "ApplyVolumeControl",false, ...

 augment

4-41

 "SNRRange",[0,20], ...
 "TimeShiftRange",[-300e-3,300e-3])

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: "independent"
 AugmentationParameterSource: "random"
 NumAugmentations: 2
 ApplyTimeStretch: 0
 ApplyPitchShift: 0
 ApplyVolumeControl: 0
 ApplyAddNoise: 1
 SNRRange: [0 20]
 ApplyTimeShift: 1
 TimeShiftRange: [-0.3000 0.3000]

Call augment on the audio to create 3 augmentations.

data = augment(augmenter,audioIn,fs);

You can check the parameter configuration of each augmentation using the AugmentatioInfo table
variable.

augmentationToInspect = ;
data.AugmentationInfo{augmentationToInspect}

ans = struct with fields:
 TimeShift: 0.0016

Listen to the audio you are inspecting. Plot the time-domain representation of the original and
augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)

t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

4 Classes

4-42

Apply Specified Independent Augmentations

Read in an audio signal and listen to it.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Create an audioDataAugmenter object that applies volume control, noise corruption, and time
shifting in parallel branches.

augmenter = audioDataAugmenter(...
 "AugmentationMode","independent", ...
 "AugmentationParameterSource","specify", ...
 "ApplyTimeStretch",false, ...
 "ApplyPitchShift",false, ...
 "VolumeGain",2, ...
 "SNR",0, ...
 "TimeShift",2)

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: "independent"
 AugmentationParameterSource: "specify"
 ApplyTimeStretch: 0
 ApplyPitchShift: 0

 augment

4-43

 ApplyVolumeControl: 1
 VolumeGain: 2
 ApplyAddNoise: 1
 SNR: 0
 ApplyTimeShift: 1
 TimeShift: 2

Call augment on the audio to create 3 augmentations.

data = augment(augmenter,audioIn,fs)

data=3×2 table
 Audio AugmentationInfo
 _________________ ________________

 {685056x1 double} {1x1 struct}
 {685056x1 double} {1x1 struct}
 {685056x1 double} {1x1 struct}

You can check the parameter configuration of each augmentation using the AugmentatioInfo table
variable.

augmentationToInspect = ;
data.AugmentationInfo{augmentationToInspect}

ans = struct with fields:
 TimeShift: 2

Listen to the audio you are inspecting. Plot the time-domain representations of the original and
augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)

t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

4 Classes

4-44

Augment Audio Dataset

The audioDataAugmenter supports multiple workflows for augmenting your datastore, including:

• Offline augmentation
• Augmentation using tall arrays
• Augmentation using transform datastores

In each workflow, begin by creating an audio datastore to point to your audio data. In this example,
you create an audio datastore that points to audio samples included with Audio Toolbox™. Count the
number of files in the dataset.

folder = fullfile(matlabroot,"toolbox","audio","samples");
ADS = audioDatastore(folder)

ADS =
 audioDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 ' ...\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }

 augment

4-45

 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

numFilesInDataset = numel(ADS.Files)

numFilesInDataset = 29

Create an audioDataAugmenter that applies random sequential augmentations. Set
NumAugmentations to 2.

aug = audioDataAugmenter('NumAugmentations',2)

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 2
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0.5000
 SNRRange: [0 10]
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]

Offline Augmentation

To augment the audio dataset, create two augmentations of each file and then write the
augmentations as WAV files.

while hasdata(ADS)
 [audioIn,info] = read(ADS);

 data = augment(aug,audioIn,info.SampleRate);

 [~,fn] = fileparts(info.FileName);
 for i = 1:size(data,1)
 augmentedAudio = data.Audio{i};

 % If augmentation caused an audio signal to have values outside of -1 and 1,
 % normalize the audio signal to avoid clipping when writing.
 if max(abs(augmentedAudio),[],'all')>1
 augmentedAudio = augmentedAudio/max(abs(augmentedAudio),[],'all');
 end

 audiowrite(sprintf('%s_aug%d.wav',fn,i),augmentedAudio,info.SampleRate)
 end
end

Create an audioDatastore that points to the augmented dataset and confirm that the number of
files in the dataset is double the original number of files.

4 Classes

4-46

augmentedADS = audioDatastore(pwd)

augmentedADS =
 audioDatastore with properties:

 Files: {
 ' ...\Examples\audio-ex28074079\Ambiance-16-44p1-mono-12secs_aug1.wav';
 ' ...\Examples\audio-ex28074079\Ambiance-16-44p1-mono-12secs_aug2.wav';
 ' ...\Examples\audio-ex28074079\AudioArray-16-16-4channels-20secs_aug1.wav'
 ... and 55 more
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

numFilesInAugmentedDataset = numel(augmentedADS.Files)

numFilesInAugmentedDataset = 58

Augment Using Tall Arrays

When augmenting a dataset using tall arrays, the input data to the augmenter should be sampled at a
consistent rate. Subset the original audio dataset to only include files with a sample rate of 44.1 kHz.
Most datasets are already cleaned to have a consistent sample rate.

keepFile = cellfun(@(x)contains(x,'44p1'),ADS.Files);
ads44p1 = subset(ADS,keepFile);
fs = 44.1e3;

Convert the audio datastore to a tall array. tall arrays are evaluated only when you request them
explicitly using gather. MATLAB® automatically optimizes the queued calculations by minimizing
the number of passes through the data. If you have the Parallel Computing Toolbox™, you can spread
the calculations across multiple machines. The audio data is represented as an M-by-1 tall cell array,
where M is the number of files in the audio datastore.

adsTall = tall(ads44p1)

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

adsTall =

 M×1 tall cell array

 { 539648×1 double}
 { 227497×1 double}
 { 8000×1 double}
 { 685056×1 double}
 { 882688×2 double}
 {1115760×2 double}
 { 505200×2 double}
 {3195904×2 double}
 : :
 : :

Define a cellfun function so that augmentation is applied to each cell of the tall array. Call gather
to evaluate the tall array.

 augment

4-47

augTall = cellfun(@(x)augment(aug,x,fs),adsTall,"UniformOutput",false);
augmentedDataset = gather(augTall)

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1 min 34 sec
Evaluation completed in 1 min 34 sec

augmentedDataset=12×1 cell array
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}

The augmented dataset is returned as a numFiles-by-1 cell array, where numFiles is the number of
files in the datastore. Each element of the cell array is a numAugmentationsPerFile-by-2 table, where
numAugmentationsPerFile is the number of augmentations returned per file.

numFiles = numel(augmentedDataset)

numFiles = 12

numAugmentationsPerFile = size(augmentedDataset{1},1)

numAugmentationsPerFile = 2

Augment Using Transform Datastore

You can perform online data augmentation while you train your machine learning application using a
transform datastore. Call transform to create a new datastore that applies data augmentation while
reading.

transformADS = transform(ADS,@(x,info)augment(aug,x,info),'IncludeInfo',true)

transformADS =
 TransformedDatastore with properties:

 UnderlyingDatastore: [1×1 audioDatastore]
 Transforms: {@(x,info)augment(aug,x,info)}
 IncludeInfo: 1

Call read to return the augmented first file from the transform datastore.

augmentedRead = read(transformADS)

augmentedRead=2×2 table
 Audio AugmentationInfo
 _________________ ________________

 {539648×1 double} [1×1 struct]

4 Classes

4-48

 {586683×1 double} [1×1 struct]

Input Arguments
aug — Audio data augmenter
audioDataAugmenter object

audioDataAugmenter object.

audioIn — Audio input
vector | matrix

Audio input, specified as a column vector or matrix of independent channels (columns).
Data Types: single | double

fs — Sample rate (Hz)
44100 (default) | positive scalar

Sample rate in Hz, specified as a positive scalar. The allowable range of fs depends on the properties
of the audioDataAugmenter object.
Data Types: single | double

Output Arguments
data — Augmented audio and augmentation information
table

Augmented audio and augmentation information, returned as a two-column table. The first column
holds the augmented audio signal. The second column holds information about the applied
augmentation methods. The number of rows in data corresponds to the number of output augmented
signals. The number of output augmented signals depends on the property values of the object.

See Also
addAugmentationMethod | audioDataAugmenter | removeAugmentationMethod | table

Introduced in R2019b

 augment

4-49

addAugmentationMethod
Add custom augmentation method

Syntax
addAugmentationMethod(aug,algorithmName,algorithmHandle)
addAugmentationMethod(aug,algorithmName,algorithmHandle,Name,Value)

Description
addAugmentationMethod(aug,algorithmName,algorithmHandle) adds a custom
augmentation algorithm to an audioDataAugmenter object.

addAugmentationMethod(aug,algorithmName,algorithmHandle,Name,Value) specifies
options using one or more Name,Value pair arguments.

Examples

Add Custom Augmentation Method

You can expand the capabilities of audioDataAugmenter by adding custom augmentation methods.

Read in an audio signal and listen to it.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
sound(audioIn,fs)

Create an audioDataAugmenter object. Set the probability of applying white noise to 0.

augmenter = audioDataAugmenter('AddNoiseProbability',0)

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 1
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]

Specify a custom augmentation algorithm that applies pink noise. The AddPinkNoise algorithm is
added to the augmenter properties.

4 Classes

4-50

algorithmName = 'AddPinkNoise';
algorithmHandle = @(x)x+pinknoise(size(x),'like',x);
addAugmentationMethod(augmenter,algorithmName,algorithmHandle)

augmenter

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 1
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]
 AddPinkNoiseProbability: 0.5000

Set the probability of adding pink noise to 1.

augmenter.AddPinkNoiseProbability = 1

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 1
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]
 AddPinkNoiseProbability: 1

Augment the original signal and listen to the result. Inspect parameters of the augmentation
algorithms applied.

data = augment(augmenter,audioIn,fs);
sound(data.Audio{1},fs)

data.AugmentationInfo(1)

ans = struct with fields:
 SpeedupFactor: 1
 SemitoneShift: 0
 VolumeGain: 2.4803
 TimeShift: -0.0022

 addAugmentationMethod

4-51

 AddPinkNoise: 'Applied'

Plot the mel spectrograms of the original and augmented signals.

melSpectrogram(audioIn,fs)
title('Original Signal')

melSpectrogram(data.Audio{1},fs)
title('Augmented Signal')

4 Classes

4-52

Specify Parameters of Custom Augmentation Method

In this example, you add a custom augmentation method that applies median filtering to your audio.

Read in an audio signal and listen to it.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
sound(audioIn,fs)

Create a random sequential augmenter that adds noise with an SNR range of 5 dB to 10 dB. Set the
probability of applying volume control, time stretching, pitch shifting, and time shifting to 0. Set
NumAugmentations to 4 to create 4 separate augmentations.

aug = audioDataAugmenter('NumAugmentations',4, ...
 "AddNoiseProbability",1, ...
 "SNRRange",[5,10], ...
 "VolumeControlProbability",0, ...
 "TimeStretchProbability",0, ...
 "TimeShiftProbability",0, ...
 "PitchShiftProbability",0)

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'

 addAugmentationMethod

4-53

 AugmentationParameterSource: 'random'
 NumAugmentations: 4
 TimeStretchProbability: 0
 PitchShiftProbability: 0
 VolumeControlProbability: 0
 AddNoiseProbability: 1
 SNRRange: [5 10]
 TimeShiftProbability: 0

Call addAugmentationMethod with an algorithm name and function handle. Specify the algorithm
name as MedianFilter and the function handle as movmedian with a 3-element window length. The
augmentation is added to the properties of your audioDataAugmenter object.

algorithmName = 'MedianFilter';
algorithmHandle = @(x)(movmedian(x,100));
addAugmentationMethod(aug,algorithmName,algorithmHandle)

aug

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 4
 TimeStretchProbability: 0
 PitchShiftProbability: 0
 VolumeControlProbability: 0
 AddNoiseProbability: 1
 SNRRange: [5 10]
 TimeShiftProbability: 0
 MedianFilterProbability: 0.5000

Set the probability of applying median filtering to 80%.

aug.MedianFilterProbability = 0.8

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 4
 TimeStretchProbability: 0
 PitchShiftProbability: 0
 VolumeControlProbability: 0
 AddNoiseProbability: 1
 SNRRange: [5 10]
 TimeShiftProbability: 0
 MedianFilterProbability: 0.8000

Call augment on the audio to create 4 augmentations.

data = augment(aug,audioIn,fs);

4 Classes

4-54

You can check the parameter configuration of each augmentation using the AugmentationInfo
table variable. If median filtering was applied for an augmentation, then AugmentationInfo lists
the parameter as 'Applied'. If median filtering was not applied for an augmentation, then
AugmentationInfo lists the parameter as 'Bypassed'.

augmentationToInspect = ;
data.AugmentationInfo(augmentationToInspect)

ans = struct with fields:
 SNR: 9.5787
 MedianFilter: 'Applied'

Listen to the audio you are inspecting. Plot the time-domain representation of the original and
augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)
t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

You can specify additional parameters and corresponding parameter ranges (for use when
AugmentationParamterSource is set to 'random') and parameter values (for use when

 addAugmentationMethod

4-55

AugmentationParamterSource is set to 'specify'). You must specify additional parameters,
parameter ranges, and parameter values during your call to addAugmentationMethod.

Call removeAugmentationMethod to remove the MedianFilter augmentation method. Call
addAugmentationMethod again, this time specifying an augmentation parameter, parameter range,
and parameter value. The augmentation and parameter range is added to the properties of your
audioDataAugmenter object.

removeAugmentationMethod(aug,'MedianFilter')

algorithmName = 'MedianFilter';
augmentationParameter = 'MedianFilterWindowLength';
parameterRange = [1,200];
parameterValue = 100;

algorithmHandle = @(x,k)(movmedian(x,k));
addAugmentationMethod(aug,algorithmName,algorithmHandle, ...
 'AugmentationParameter',augmentationParameter, ...
 'ParameterRange',parameterRange, ...
 'ParameterValue',parameterValue)

aug

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 4
 TimeStretchProbability: 0
 PitchShiftProbability: 0
 VolumeControlProbability: 0
 AddNoiseProbability: 1
 SNRRange: [5 10]
 TimeShiftProbability: 0
 MedianFilterProbability: 0.5000
 MedianFilterWindowLengthRange: [1 200]

In the current augmentation pipeline configuration, the parameter value is not applicable.
ParameterValue is applicable when AugmetnationParameterSource is set to 'specify'. Set
AugmentationParameterSource to 'specify' to enable the current parameter value.

aug.AugmentationParameterSource = 'specify'

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'specify'
 ApplyTimeStretch: 1
 SpeedupFactor: 0.8000
 ApplyPitchShift: 1
 SemitoneShift: -3
 ApplyVolumeControl: 1
 VolumeGain: -3
 ApplyAddNoise: 1
 SNR: 5

4 Classes

4-56

 ApplyTimeShift: 1
 TimeShift: 0.0050
 ApplyMedianFilter: 1
 MedianFilterWindowLength: 100

Set AugmentationParameterSource to random and then call augment.

aug.AugmentationParameterSource = "random";
data = augment(aug,audioIn,fs);

If median filtering was applied for an augmentation, then AugmentationInfo lists the value applied.

augmentationToInspect = ;
data.AugmentationInfo(augmentationToInspect)

ans = struct with fields:
 SNR: 8.7701
 MedianFilter: 117.9847

Listen to the audio you are inspecting. Plot the time-domain representation of the original and
augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)
t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

 addAugmentationMethod

4-57

Specify Multiple Parameters of Custom Augmentation Method

Read in an audio signal and listen to it.

[audioIn,fs] = audioread('RockDrums-44p1-stereo-11secs.mp3');
sound(audioIn,fs)

Create and audioDataAugmenter object that outputs 5 augmentations. Set the
AddNoiseProbability to 0.

aug = audioDataAugmenter('NumAugmentations',5,'AddNoiseProbability',0);

Add reverberation as a custom augmentation algorithm. The applyReverb function creates a
reverberator object, updates the sample rate, pre-delay, and wet/dry mix as indicated, and then
applies reverberation. To minimize computational overhead, the reverberator object is persistent. The
object is reset on every call to avoid mixing the reverberation tail between audio files.

type applyReverb.m

function audioOut = applyReverb(audio,preDelay,wetDryMix,sampleRate)
 persistent reverbObject
 if isempty(reverbObject)
 reverbObject = reverberator;
 end
 reverbObject.SampleRate = sampleRate;

4 Classes

4-58

 reverbObject.PreDelay = preDelay;
 reverbObject.WetDryMix = wetDryMix;

 audioOut = reverbObject(audio);
 reset(reverbObject)
end

Add applyReverb as a custom augmentation method. To specify multiple parameters for a custom
method, specify the parameters, parameter ranges, and parameter values as cell arrays with the
same number of cells. Set the probability of applying reverberation to 1.

algorithmName = 'Reverb';
algorithmHandle = @(x,preDelay,weDryMix)applyReverb(x,preDelay,weDryMix,fs);
parameters = {'PreDelay','WetDryMix'};
parameterRanges = {[0,1],[0,1]};
parameterValues = {0,0.3};

addAugmentationMethod(aug,algorithmName,algorithmHandle, ...
 'AugmentationParameter',parameters, ...
 'ParameterRange',parameterRanges, ...
 'ParameterValue',parameterValues)

aug.ReverbProbability = 1

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 5
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]
 ReverbProbability: 1
 PreDelayRange: [0 1]
 WetDryMixRange: [0 1]

Call augment to create 5 augmentations.

data = augment(aug,audioIn,fs);

Check the configuration of each augmentation using AugmentationInfo.

augmentationToInspect = ;
data.AugmentationInfo(augmentationToInspect)

ans = struct with fields:
 SpeedupFactor: 1
 SemitoneShift: -1.4325
 VolumeGain: 0
 TimeShift: 0

 addAugmentationMethod

4-59

 Reverb: [0.2760 0.4984]

Listen to the audio you are inspecting. Plot the time-domain representation of the original and
augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)
t = (0:(size(audioIn,1)-1))/fs;
taug = (0:(size(augmentation,1)-1))/fs;
plot(t,audioIn(:,1),taug,augmentation(:,1))
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

Input Arguments
aug — Audio data augmenter
audioDataAugmenter object

audioDataAugmenter object.

algorithmName — Algorithm name
character vector | string

4 Classes

4-60

Algorithm name, specified as a character vector or string. algorithmName must be a unique
property name on the audioDataAugmenter, aug.
Data Types: char | string

algorithmHandle — Handle to function that implements custom augmentation algorithm
function_handle

Handle to function that implements custom augmentation algorithm, specified as a
function_handle.
Data Types: function_handle

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'AugmentationParameter,'PreDelay'

AugmentationParameter — Augmentation parameter
character vector | string | cell array of character vectors | cell array of strings

Augmentation parameter, specified as a character vector, string, cell array of character vectors, or
cell array of strings.

Use cell arrays to create multiple augmentation parameters. If you create multiple augmentation
parameters, you must also specify ParameterRange and ParameterValue as cell arrays containing
information for each augmentation parameter.
Example: 'AugmentationParameter','PreDelay'
Example: 'AugmentationParameter',{'PreDelay','HighCutFrequency'}
Data Types: char | string

ParameterRange — Parameter range
[0,1] (default) | two-element vector of nondecreasing values | cell array of two-element vectors of
nondecreasing values

Parameter range, specified as a two-element vector of nondecreasing values (for a single parameter)
or a cell array of two-element vectors of nondecreasing values (for multiple parameters).
Example: 'ParameterRange',[0,1]
Example: 'ParameterRange',{[0,1],[20,20000]}

Dependencies

To enable this property, set the AugmentationParameterSource property of your
audioDataAugmenter object to 'random'.
Data Types: single | double | cell

ParameterValue — Parameter value
0 (default) | scalar | vector | cell array of scalars or vectors

Parameter value, specified as a scalar, vector, or cell array of scalars or vectors.

 addAugmentationMethod

4-61

Example: 'ParameterValue',0
Example: 'ParameterValue',[0,0.5,1]
Example: 'ParameterValue',{0,20000}
Example: 'ParameterValue',{[0,0.5,1],20000}

Dependencies

To enable this property, set the AugmentationParameterSource property of your
audioDataAugmenter to 'random'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64
Complex Number Support: Yes

See Also
audioDataAugmenter | removeAugmentationMethod | reverberator

Introduced in R2019b

4 Classes

4-62

audioDataAugmenter
Augment audio data

Description
Enlarge your audio dataset using audio-specific augmentation techniques like pitch shifting, time-
scale modification, time shifting, noise addition, and volume control. You can create cascaded or
parallel augmentation pipelines to apply multiple algorithms deterministically or probabilistically.

Creation

Syntax
aug = audioDataAugmenter()
aug = audioDataAugmenter(Name,Value)

Description

aug = audioDataAugmenter() creates an audio data augmenter object with default property
values.

aug = audioDataAugmenter(Name,Value) specifies nondefault properties for aug using one or
more name-value pair arguments.

Properties
Augmentation Pipeline

AugmentationMode — Augmentation mode
'sequential' (default) | 'independent'

Augmentation mode, specified as 'sequential' or 'independent'.

• 'sequential' –– Augmentation algorithms are applied sequentially (in series).
• 'independent' –– Augmentation algorithms are applied independently (in parallel).

Data Types: char | string

AugmentationParameterSource — Source of augmentation parameters
'random' (default) | 'specify'

Source of augmentation parameters, specified as 'random' or 'specify'.

• 'random' –– Augmentation algorithms are applied probabilistically using a probability parameter
and a range parameter.

For example, to create an audioDataAugmenter that applies time-stretching using a speedup
factor between 0.5 and 1.5 with a 60% probability, enter the following in the Command Window:

 audioDataAugmenter

4-63

aug = audioDataAugmenter('AugmentationParameterSource','random', ...
 'TimeStretchProbability',0.6, ...
 'SpeedupFactorRange',[0.5,1.5]);

When time-stretching is applied, the speedup factor is drawn from a uniform distribution centered
at 1 (the mean of the range) with a minimum of 0.5 and a maximum of 1.5.

• 'specify' –– Augmentation algorithms are applied deterministically using a logical parameter
and a specified parameter value. For example, to create an audioDataAugmenter that applies
time-stretching using a 1.5 speedup factor with a 100% probability, enter the following in the
Command Window:

aug = audioDataAugmenter('AugmentationParameterSource','specify', ...
 'ApplyTimeStretch',true, ...
 'SpeedupFactor',1.5);

Data Types: char | string

NumAugmentations — Number of augmented signals to output
1 (default) | positive integer

Number of augmented signals to output, specified as a positive integer.

Dependencies

To enable this property, set AugmentationParameterSource to 'random'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Stretch Time

TimeStretchProbability — Probability of applying time stretch
0.5 (default) | scalar in the range [0, 1]

Probability of applying time stretch, specified as a scalar in the range [0, 1]. Set the probability to 1
to apply time stretching every time you call augment. Set the probability to 0 to skip time stretching
every time you call augment.

Dependencies

To enable this property, set AugmentationParameterSource to 'random' and AugmentationMode to
'sequential'.
Data Types: single | double

SpeedupFactorRange — Range of time stretch speedup factor
[0.8 1.2] (default) | two-element row vector of positive nondecreasing values

Range of time stretch speedup factor, specified as a two-element row vector of positive nondecreasing
values.

Dependencies

To enable this property, set AugmentationParameterSource to 'random'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ApplyTimeStretch — Apply time stretch
true (default) | false

4 Classes

4-64

Apply time stretch, specified as true or false.

Dependencies

To enable this property, set AugmentationParameterSource to 'specify'.
Data Types: logical

SpeedupFactor — Time stretch speedup factor
0.8 (default) | real positive scalar | real positive vector

Time stretch speedup factor, specified as a scalar or vector of real positive values.

Dependencies

To enable this property, set AugmentationParameterSource to 'specify'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Shift Pitch

PitchShiftProbability — Probability of applying pitch shift
0.5 (default) | scalar in the range [0, 1]

Probability of applying pitch shift, specified as a scalar in the range [0, 1]. Set the probability to 1 to
apply pitch shifting every time you call augment. Set the probability to 0 to skip pitch shifting every
time you call augment.

Dependencies

To enable this property, set AugmentationParameterSource to 'random' and AugmentationMode to
'sequential'.
Data Types: single | double

SemitoneShiftRange — Range of pitch shift (semitones)
[-2,2] (default) | two-element row vector of nondecreasing values

Range of pitch shift in semitones, specified as a two-element row vector of nondecreasing values.

Dependencies

To enable this property, set AugmentationParameterSource to 'random'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ApplyPitchShift — Apply pitch shift
true (default) | false

Apply pitch shift, specified as true or false.

Dependencies

To enable this property, set AugmentationParameterSource to 'specify'.
Data Types: logical

SemitoneShift — Pitch shift (semitones)
-3 (default) | real scalar | real vector

 audioDataAugmenter

4-65

Pitch shift in semitones, specified as a real scalar or vector.

Dependencies

To enable this property, set AugmentationParameterSource to 'specify'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Control Volume

VolumeControlProbability — Probability of applying volume control
0.5 (default) | scalar in the range [0, 1]

Probability of applying volume control, specified as a scalar in the range [0, 1]. Set the probability to
1 to apply volume control every time you call augment. Set the probability to 0 to skip volume control
every time you call augment.

Dependencies

To enable this property, set AugmentationParameterSource to 'random' and AugmentationMode to
'sequential'.
Data Types: single | double

VolumeGainRange — Range of volume gain (dB)
[-3,3] (default) | two-element row vector of nondecreasing values

Range of volume gain in dB, specified as a two-element row vector of nondecreasing values.

Dependencies

To enable this property, set AugmentationParameterSource to 'random'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ApplyVolumeControl — Apply volume gain
true (default) | false

Apply volume gain, specified as true or false.

Dependencies

To enable this property, set AugmentationParameterSource to 'specify'.
Data Types: logical

VolumeGain — Volume gain (dB)
-3 (default) | scalar | vector

Volume gain in dB, specified as a scalar or vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Add Noise

AddNoiseProbability — Probability of applying noise addition
0.5 (default) | scalar in the range [0, 1]

4 Classes

4-66

Probability of applying Gaussian white noise addition, specified as a scalar in the range [0, 1]. Set the
probability to 1 to add noise every time you call augment. Set the probability to 0 to skip adding
noise every time you call augment.
Dependencies

To enable this property, set AugmentationParameterSource to 'random' and AugmentationMode to
'sequential'.
Data Types: single | double

SNRRange — Range of noise addition SNR (dB)
[0,10] (default) | two-element row vector of nondecreasing values

Range of noise addition SNR in dB, specified as a two-element row vector of nondecreasing values.
Dependencies

To enable this property, set AugmentationParameterSource to 'range'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ApplyAddNoise — Apply noise addition
true (default) | false

Apply Gaussian white noise addition, specified as true or false.
Dependencies

To enable this property, set AugmentationParameterSource to 'specify'.
Data Types: logical

SNR — Noise addition SNR (dB)
5 (default) | scalar | vector

Noise addition SNR in dB, specified as a scalar or vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Shift Time

TimeShiftProbability — Probability of applying time shift
0.5 (default) | scalar in the range [0, 1]

Probability of applying time shift, specified as a scalar in the range [0, 1]. Set the probability to 1 to
apply time shifting every time you call augment. Set the property to 0 to skip time shifting every time
you call augment.

Time-shifting applies a circular shift on the time-domain audio data.
Dependencies

To enable this property, set AugmentationParameterSource to 'random' and AugmentationMode to
'sequential'.
Data Types: single | double

TimeShiftRange — Range of time shift (s)
[-5e-3,5e3] (default) | two-element row vector of nondecreasing values.

 audioDataAugmenter

4-67

Range of time shift in seconds, specified as a two-element row vector of nondecreasing values.

Dependencies

To enable this property, set AugmentationParameterSource to 'random'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ApplyTimeShift — Apply time shift
true (default) | false

Apply time shift, specified as true or false.

Dependencies

To enable this property, set AugmentationParameterSource to 'specify'.

Time-shifting applies a circular shift on the time-domain audio data.
Data Types: logical

TimeShift — Time shift (s)
5e-3 (default) | scalar | vector

Time shift in seconds, specified as a scalar or vector.

Dependencies

To enable this property, set AugmentationParameterSource to 'specify'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Object Functions
addAugmentationMethod Add custom augmentation method
removeAugmentationMethod Remove custom augmentation method
augment Augment audio data

Examples

Apply Random Sequential Augmentations

Read in an audio signal and listen to it.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
sound(audioIn,fs)

Create an audioDataAugmenter object that applies time stretching, volume control, and time
shifting in cascade. Apply each of the augmentations with 80% probability. Set NumAugmentations
to 5 to output five independently augmented signals. To skip pitch shifting and noise addition for each
augmentation, set the respective probabilities to 0. Define parameter ranges for each relevant
augmentation algorithm.

augmenter = audioDataAugmenter(...
 "AugmentationMode","sequential", ...
 "NumAugmentations",5, ...
 ...

4 Classes

4-68

 "TimeStretchProbability",0.8, ...
 "SpeedupFactorRange", [1.3,1.4], ...
 ...
 "PitchShiftProbability",0, ...
 ...
 "VolumeControlProbability",0.8, ...
 "VolumeGainRange",[-5,5], ...
 ...
 "AddNoiseProbability",0, ...
 ...
 "TimeShiftProbability",0.8, ...
 "TimeShiftRange", [-500e-3,500e-3])

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: "sequential"
 AugmentationParameterSource: 'random'
 NumAugmentations: 5
 TimeStretchProbability: 0.8000
 SpeedupFactorRange: [1.3000 1.4000]
 PitchShiftProbability: 0
 VolumeControlProbability: 0.8000
 VolumeGainRange: [-5 5]
 AddNoiseProbability: 0
 TimeShiftProbability: 0.8000
 TimeShiftRange: [-0.5000 0.5000]

Call augment on the audio to create 5 augmentations. The augmented audio is returned in a table
with variables Audio and AugmentationInfo. The number of rows in the table is defined by
NumAugmentations.

data = augment(augmenter,audioIn,fs)

data=5×2 table
 Audio AugmentationInfo
 _________________ ________________

 {685056x1 double} [1x1 struct]
 {685056x1 double} [1x1 struct]
 {505183x1 double} [1x1 struct]
 {685056x1 double} [1x1 struct]
 {490728x1 double} [1x1 struct]

In the current augmentation pipeline, augmentation parameters are assigned randomly from within
the specified ranges. To determine the exact parameters used for an augmentation, inspect
AugmentationInfo.

augmentationToInspect = ;
data.AugmentationInfo(augmentationToInspect)

ans = struct with fields:
 SpeedupFactor: 1
 VolumeGain: 4.3399
 TimeShift: 0.4502

 audioDataAugmenter

4-69

Listen to the augmentation you are inspecting. Plot time representation of the original and
augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)

t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

Apply Specified Sequential Augmentations

Read in an audio signal and listen to it.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");
sound(audioIn,fs)

Create an audioDataAugmenter object that applies time stretching, pitch shifting, and noise
corruption in cascade. Specify the time stretch speedup factors as 0.9, 1.1, and 1.2. Specify the
pitch shifting in semitones as -2, -1, 1, and 2. Specify the noise corruption SNR as 10 dB and 15 dB.

augmenter = audioDataAugmenter(...
 "AugmentationMode","sequential", ...

4 Classes

4-70

 "AugmentationParameterSource","specify", ...
 "SpeedupFactor",[0.9,1.1,1.2], ...
 "ApplyTimeStretch",true, ...
 "ApplyPitchShift",true, ...
 "SemitoneShift",[-2,-1,1,2], ...
 "SNR",[10,15], ...
 "ApplyVolumeControl",false, ...
 "ApplyTimeShift",false)

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: "sequential"
 AugmentationParameterSource: "specify"
 ApplyTimeStretch: 1
 SpeedupFactor: [0.9000 1.1000 1.2000]
 ApplyPitchShift: 1
 SemitoneShift: [-2 -1 1 2]
 ApplyVolumeControl: 0
 ApplyAddNoise: 1
 SNR: [10 15]
 ApplyTimeShift: 0

Call augment on the audio to create 24 augmentations. The augmentations represent every
combination of the specified augmentation parameters (3 × 4 × 2 = 24).

data = augment(augmenter,audioIn,fs)

data=24×2 table
 Audio AugmentationInfo
 _________________ ________________

 {761243x1 double} [1x1 struct]
 {622888x1 double} [1x1 struct]
 {571263x1 double} [1x1 struct]
 {761243x1 double} [1x1 struct]
 {622888x1 double} [1x1 struct]
 {571263x1 double} [1x1 struct]
 {761243x1 double} [1x1 struct]
 {622888x1 double} [1x1 struct]
 {571263x1 double} [1x1 struct]
 {761243x1 double} [1x1 struct]
 {622888x1 double} [1x1 struct]
 {571263x1 double} [1x1 struct]
 {761243x1 double} [1x1 struct]
 {622888x1 double} [1x1 struct]
 {571263x1 double} [1x1 struct]
 {761243x1 double} [1x1 struct]
 ⋮

You can check the parameter configuration of each augmentation using the AugmentationInfo
table variable.

augmentationToInspect = ;
data.AugmentationInfo(augmentationToInspect)

 audioDataAugmenter

4-71

ans = struct with fields:
 SpeedupFactor: 0.9000
 SemitoneShift: -2
 SNR: 10

Listen to the augmentation you are inspecting. Plot the time-domain representation of the original
and augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)

t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

Apply Random Independent Augmentations

Read in an audio signal and listen to it.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

4 Classes

4-72

Create an audioDataAugmenter object that applies noise corruption, and time shifting in parallel
branches. For the noise corruption branch, randomly apply noise with an SNR in the range 0 dB to 20
dB. For the time shifting branch, randomly apply time shifting in the range -300 ms to 300 ms. Apply
augmentation 2 times for each branch, for 4 total augmentations.

augmenter = audioDataAugmenter(...
 "AugmentationMode","independent", ...
 "AugmentationParameterSource","random", ...
 "NumAugmentations",2, ...
 "ApplyTimeStretch",false, ...
 "ApplyPitchShift",false, ...
 "ApplyVolumeControl",false, ...
 "SNRRange",[0,20], ...
 "TimeShiftRange",[-300e-3,300e-3])

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: "independent"
 AugmentationParameterSource: "random"
 NumAugmentations: 2
 ApplyTimeStretch: 0
 ApplyPitchShift: 0
 ApplyVolumeControl: 0
 ApplyAddNoise: 1
 SNRRange: [0 20]
 ApplyTimeShift: 1
 TimeShiftRange: [-0.3000 0.3000]

Call augment on the audio to create 3 augmentations.

data = augment(augmenter,audioIn,fs);

You can check the parameter configuration of each augmentation using the AugmentatioInfo table
variable.

augmentationToInspect = ;
data.AugmentationInfo{augmentationToInspect}

ans = struct with fields:
 TimeShift: 0.0016

Listen to the audio you are inspecting. Plot the time-domain representation of the original and
augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)

t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

 audioDataAugmenter

4-73

Apply Specified Independent Augmentations

Read in an audio signal and listen to it.

[audioIn,fs] = audioread("Counting-16-44p1-mono-15secs.wav");

Create an audioDataAugmenter object that applies volume control, noise corruption, and time
shifting in parallel branches.

augmenter = audioDataAugmenter(...
 "AugmentationMode","independent", ...
 "AugmentationParameterSource","specify", ...
 "ApplyTimeStretch",false, ...
 "ApplyPitchShift",false, ...
 "VolumeGain",2, ...
 "SNR",0, ...
 "TimeShift",2)

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: "independent"
 AugmentationParameterSource: "specify"
 ApplyTimeStretch: 0
 ApplyPitchShift: 0

4 Classes

4-74

 ApplyVolumeControl: 1
 VolumeGain: 2
 ApplyAddNoise: 1
 SNR: 0
 ApplyTimeShift: 1
 TimeShift: 2

Call augment on the audio to create 3 augmentations.

data = augment(augmenter,audioIn,fs)

data=3×2 table
 Audio AugmentationInfo
 _________________ ________________

 {685056x1 double} {1x1 struct}
 {685056x1 double} {1x1 struct}
 {685056x1 double} {1x1 struct}

You can check the parameter configuration of each augmentation using the AugmentatioInfo table
variable.

augmentationToInspect = ;
data.AugmentationInfo{augmentationToInspect}

ans = struct with fields:
 TimeShift: 2

Listen to the audio you are inspecting. Plot the time-domain representations of the original and
augmented signals.

augmentation = data.Audio{augmentationToInspect};
sound(augmentation,fs)

t = (0:(numel(audioIn)-1))/fs;
taug = (0:(numel(augmentation)-1))/fs;
plot(t,audioIn,taug,augmentation)
legend("Original Audio","Augmented Audio")
ylabel("Amplitude")
xlabel("Time (s)")

 audioDataAugmenter

4-75

Augment Audio Dataset

The audioDataAugmenter supports multiple workflows for augmenting your datastore, including:

• Offline augmentation
• Augmentation using tall arrays
• Augmentation using transform datastores

In each workflow, begin by creating an audio datastore to point to your audio data. In this example,
you create an audio datastore that points to audio samples included with Audio Toolbox™. Count the
number of files in the dataset.

folder = fullfile(matlabroot,"toolbox","audio","samples");
ADS = audioDatastore(folder)

ADS =
 audioDatastore with properties:

 Files: {
 ' ...\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 ' ...\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }

4 Classes

4-76

 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

numFilesInDataset = numel(ADS.Files)

numFilesInDataset = 29

Create an audioDataAugmenter that applies random sequential augmentations. Set
NumAugmentations to 2.

aug = audioDataAugmenter('NumAugmentations',2)

aug =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 2
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0.5000
 SNRRange: [0 10]
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]

Offline Augmentation

To augment the audio dataset, create two augmentations of each file and then write the
augmentations as WAV files.

while hasdata(ADS)
 [audioIn,info] = read(ADS);

 data = augment(aug,audioIn,info.SampleRate);

 [~,fn] = fileparts(info.FileName);
 for i = 1:size(data,1)
 augmentedAudio = data.Audio{i};

 % If augmentation caused an audio signal to have values outside of -1 and 1,
 % normalize the audio signal to avoid clipping when writing.
 if max(abs(augmentedAudio),[],'all')>1
 augmentedAudio = augmentedAudio/max(abs(augmentedAudio),[],'all');
 end

 audiowrite(sprintf('%s_aug%d.wav',fn,i),augmentedAudio,info.SampleRate)
 end
end

Create an audioDatastore that points to the augmented dataset and confirm that the number of
files in the dataset is double the original number of files.

 audioDataAugmenter

4-77

augmentedADS = audioDatastore(pwd)

augmentedADS =
 audioDatastore with properties:

 Files: {
 ' ...\Examples\audio-ex28074079\Ambiance-16-44p1-mono-12secs_aug1.wav';
 ' ...\Examples\audio-ex28074079\Ambiance-16-44p1-mono-12secs_aug2.wav';
 ' ...\Examples\audio-ex28074079\AudioArray-16-16-4channels-20secs_aug1.wav'
 ... and 55 more
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

numFilesInAugmentedDataset = numel(augmentedADS.Files)

numFilesInAugmentedDataset = 58

Augment Using Tall Arrays

When augmenting a dataset using tall arrays, the input data to the augmenter should be sampled at a
consistent rate. Subset the original audio dataset to only include files with a sample rate of 44.1 kHz.
Most datasets are already cleaned to have a consistent sample rate.

keepFile = cellfun(@(x)contains(x,'44p1'),ADS.Files);
ads44p1 = subset(ADS,keepFile);
fs = 44.1e3;

Convert the audio datastore to a tall array. tall arrays are evaluated only when you request them
explicitly using gather. MATLAB® automatically optimizes the queued calculations by minimizing
the number of passes through the data. If you have the Parallel Computing Toolbox™, you can spread
the calculations across multiple machines. The audio data is represented as an M-by-1 tall cell array,
where M is the number of files in the audio datastore.

adsTall = tall(ads44p1)

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

adsTall =

 M×1 tall cell array

 { 539648×1 double}
 { 227497×1 double}
 { 8000×1 double}
 { 685056×1 double}
 { 882688×2 double}
 {1115760×2 double}
 { 505200×2 double}
 {3195904×2 double}
 : :
 : :

Define a cellfun function so that augmentation is applied to each cell of the tall array. Call gather
to evaluate the tall array.

4 Classes

4-78

augTall = cellfun(@(x)augment(aug,x,fs),adsTall,"UniformOutput",false);
augmentedDataset = gather(augTall)

Evaluating tall expression using the Parallel Pool 'local':
- Pass 1 of 1: Completed in 1 min 34 sec
Evaluation completed in 1 min 34 sec

augmentedDataset=12×1 cell array
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}
 {2×2 table}

The augmented dataset is returned as a numFiles-by-1 cell array, where numFiles is the number of
files in the datastore. Each element of the cell array is a numAugmentationsPerFile-by-2 table, where
numAugmentationsPerFile is the number of augmentations returned per file.

numFiles = numel(augmentedDataset)

numFiles = 12

numAugmentationsPerFile = size(augmentedDataset{1},1)

numAugmentationsPerFile = 2

Augment Using Transform Datastore

You can perform online data augmentation while you train your machine learning application using a
transform datastore. Call transform to create a new datastore that applies data augmentation while
reading.

transformADS = transform(ADS,@(x,info)augment(aug,x,info),'IncludeInfo',true)

transformADS =
 TransformedDatastore with properties:

 UnderlyingDatastore: [1×1 audioDatastore]
 Transforms: {@(x,info)augment(aug,x,info)}
 IncludeInfo: 1

Call read to return the augmented first file from the transform datastore.

augmentedRead = read(transformADS)

augmentedRead=2×2 table
 Audio AugmentationInfo
 _________________ ________________

 {539648×1 double} [1×1 struct]

 audioDataAugmenter

4-79

 {586683×1 double} [1×1 struct]

Add Custom Augmentation Method

You can expand the capabilities of audioDataAugmenter by adding custom augmentation methods.

Read in an audio signal and listen to it.

[audioIn,fs] = audioread('Counting-16-44p1-mono-15secs.wav');
sound(audioIn,fs)

Create an audioDataAugmenter object. Set the probability of applying white noise to 0.

augmenter = audioDataAugmenter('AddNoiseProbability',0)

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 1
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]

Specify a custom augmentation algorithm that applies pink noise. The AddPinkNoise algorithm is
added to the augmenter properties.

algorithmName = 'AddPinkNoise';
algorithmHandle = @(x)x+pinknoise(size(x),'like',x);
addAugmentationMethod(augmenter,algorithmName,algorithmHandle)

augmenter

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 1
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]

4 Classes

4-80

 AddPinkNoiseProbability: 0.5000

Set the probability of adding pink noise to 1.

augmenter.AddPinkNoiseProbability = 1

augmenter =
 audioDataAugmenter with properties:

 AugmentationMode: 'sequential'
 AugmentationParameterSource: 'random'
 NumAugmentations: 1
 TimeStretchProbability: 0.5000
 SpeedupFactorRange: [0.8000 1.2000]
 PitchShiftProbability: 0.5000
 SemitoneShiftRange: [-2 2]
 VolumeControlProbability: 0.5000
 VolumeGainRange: [-3 3]
 AddNoiseProbability: 0
 TimeShiftProbability: 0.5000
 TimeShiftRange: [-0.0050 0.0050]
 AddPinkNoiseProbability: 1

Augment the original signal and listen to the result. Inspect parameters of the augmentation
algorithms applied.

data = augment(augmenter,audioIn,fs);
sound(data.Audio{1},fs)

data.AugmentationInfo(1)

ans = struct with fields:
 SpeedupFactor: 1
 SemitoneShift: 0
 VolumeGain: 2.4803
 TimeShift: -0.0022
 AddPinkNoise: 'Applied'

Plot the mel spectrograms of the original and augmented signals.

melSpectrogram(audioIn,fs)
title('Original Signal')

 audioDataAugmenter

4-81

melSpectrogram(data.Audio{1},fs)
title('Augmented Signal')

4 Classes

4-82

Algorithms
The audioDataAugmenter object enables you to configure your augmentation pipeline as
deterministic or probabilistic using the AugmentationParameterSource property. You can also choose
to apply the augmentations in series or in parallel using the AugmentationMode property. The
following sections describe the pipelines you can create and the applicable properties for each
architecture.

Random Sequential Augmentations

To define your augmentation as a sequence of probabilistically applied augmentations, set
AugmentationParameterSource to 'random' and AugmentationMode to 'sequential'.

The order that augmentations are applied is always the same. If you specify custom algorithms, they
are applied at the end of the sequence, in the order you specified them.

 audioDataAugmenter

4-83

In this pipeline configuration, these parameters apply:

Augmentation Method Parameters
Stretch Time TimeStretchProbability

SpeedupFactorRange
Shift Pitch PitchShiftProbability

SemitoneShiftRange
Control Volume VolumeControlProbability

VolumeGainRange
Add Noise AddNoiseProbability

SNRRange
Shift Time TimeShiftProbability

TimeShiftRange

If you specify NumAugmentations as greater than 1, then the object applies NumAugmentations
parallel random sequential augmentations. The probability of applying an augmentation, and the
value of any parameters that are probabilistically determined, are independent.

Specified Sequential Augmentations

To define your augmentation as a sequence of deterministically applied augmentations, set
AugmentationParameterSource to 'specify' and AugmentationMode to 'sequential'.

The order that augmentations are applied is always the same. If you specify custom algorithms, they
are applied at the end of the sequence, in the order you specified them.

4 Classes

4-84

In this pipeline configuration, these parameters apply:

Augmentation Method Parameters
Stretch Time ApplyTimeStretch

SpeedupFactor
Shift Pitch ApplyPitchShift

SemitoneShift
Control Volume ApplyVolumeControl

VolumeGain
Add Noise ApplyAddNoise

SNR
Shift Time ApplyTimeShift

TimeShift

If you specify an augmentation method as a vector, then each element of the vector creates a
separate branch in the augmentation pipeline. For example, the following object creates an
augmentation pipeline that results in four separate augmentations:

aug = audioDataAugmenter("AugmentationMode","sequential", ...
 "AugmentationParameterSource","specify", ...
 "SpeedupFactor",[0.8,1.2], ...
 "VolumeGain",[-3,-1])

aug =

 audioDataAugmenter with properties:

 AugmentationMode: "sequential"
 AugmentationParameterSource: "specify"
 ApplyTimeStretch: 1
 SpeedupFactor: [0.8000 1.2000]
 ApplyPitchShift: 1
 SemitoneShift: -3
 ApplyVolumeControl: 1
 VolumeGain: [-3 -1]
 ApplyAddNoise: 1
 SNR: 5
 ApplyTimeShift: 1
 TimeShift: 0.0050

 audioDataAugmenter

4-85

Random Independent Augmentations

To define your augmentation as independently applied augmentations with randomly determined
parameters, set AugmentationParameterSource to 'random' and AugmentationMode to
'independent'.

4 Classes

4-86

In this pipeline configuration, these parameters apply:

Augmentation Method Parameters
Stretch Time ApplyTimeStretch

SpeedupFactorRange

 audioDataAugmenter

4-87

Augmentation Method Parameters
Shift Pitch ApplyPitchShift

SemitoneShiftRange
Control Volume ApplyVolumeControl

VolumeGainRange
Add Noise ApplyAddNoise

SNRRange
Shift Time ApplyTimeShift

TimeShiftRange

If you specify NumAugmentations as greater than 1, then the object applies NumAugmentations
parallel random independent augmentations. The value of any parameters that are probabilistically
determined are independent.

4 Classes

4-88

Specified Independent Augmentations

To define your augmentation as deterministically applied independent augmentations with
deterministic parameters, set AugmentationParameterSource to 'specify' and AugmentationMode
to 'independent'.

 audioDataAugmenter

4-89

In this pipeline configuration, these parameters apply:

Augmentation Method Parameters
Stretch Time ApplyTimeStretch

SpeedupFactor

4 Classes

4-90

Augmentation Method Parameters
Shift Pitch ApplyPitchShift

SemitoneShift
Control Volume ApplyVolumeControl

VolumeGain
Add Noise ApplyAddNoise

SNR
Shift Time ApplyTimeShift

TimeShift

If you specify an augmentation method as a vector, then each element of the vector creates a
separate branch in the augmentation pipeline. For example, the following object creates an
augmentation pipeline that results in seven separate augmentations:

aug = audioDataAugmenter("AugmentationMode","independent", ...
 "AugmentationParameterSource","specify", ...
 "SpeedupFactor",[0.8,1.2], ...
 "VolumeGain",[-3,-1])

aug =

 audioDataAugmenter with properties:

 AugmentationMode: "independent"
 AugmentationParameterSource: "specify"
 ApplyTimeStretch: 1
 SpeedupFactor: [0.8000 1.2000]
 ApplyPitchShift: 1
 SemitoneShift: -3
 ApplyVolumeControl: 1
 VolumeGain: [-3 -1]
 ApplyAddNoise: 1
 SNR: 5
 ApplyTimeShift: 1
 TimeShift: 0.0050

 audioDataAugmenter

4-91

References
[1] Salamon, Justin, and Juan Pablo Bello. "Deep Convolutional Neural Networks and Data

Augmentation for Environmental Sound Classification." IEEE Signal Processing Letters. Vol.
24, Issue 3, 2017.

See Also
audioFeatureExtractor | audioTimeScaler | shiftPitch | stretchAudio

Introduced in R2019b

4 Classes

4-92

writeall
Write datastore to files

Syntax
writeall(ADS,outputLocation)
writeall(ADS,outputLocation,Name,Value)

Description
writeall(ADS,outputLocation) writes the data from the audio datastore ADS to files located at
outputLocation.

writeall(ADS,outputLocation,Name,Value) writes the data with additional options specified
by one or more name-value pair arguments.
Example: writeall(ADS,outputLocation,'OutputFormat','flac') writes the data to FLAC
files.

Examples

Write Audio Data Set to New Location

Create an audioDatastore object that points to the WAV audio samples included with Audio
Toolbox™. The audioDatastore object includes read-only properties indicating the supported file
formats, and the default output format (WAV).

folder = fullfile(matlabroot,'toolbox','audio','samples');
ads = audioDatastore(folder,'FileExtensions','.wav')

ads =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 18 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Write the audio data set to your current folder. Save all files in the default (WAV) format.

 writeall

4-93

outputLocation = pwd;
writeall(ads,outputLocation)

The folder, samples, and the audio files that the folder contains have been written to your current
folder.

dir samples

.

..
Ambiance-16-44p1-mono-12secs.wav
AudioArray-16-16-4channels-20secs.wav
ChurchImpulseResponse-16-44p1-mono-5secs.wav
Click-16-44p1-mono-0.2secs.wav
Counting-16-44p1-mono-15secs.wav
Engine-16-44p1-stereo-20sec.wav
FemaleSpeech-16-8-mono-3secs.wav
Heli_16ch_ACN_SN3D.wav
JetAirplane-16-11p025-mono-16secs.wav
Laughter-16-8-mono-4secs.wav
MainStreetOne-24-96-stereo-63secs.wav
NoisySpeech-16-22p5-mono-5secs.wav
Rainbow-16-8-mono-114secs.wav
RainbowNoisy-16-8-mono-114secs.wav
RockGuitar-16-44p1-stereo-72secs.wav
SpeechDFT-16-8-mono-5secs.wav
TrainWhistle-16-44p1-mono-9secs.wav
Turbine-16-44p1-mono-22secs.wav
WashingMachine-16-44p1-stereo-10secs.wav
WashingMachine-16-8-mono-1000secs.wav
WashingMachine-16-8-mono-200secs.wav

Pre-Extract Features from Audio Data Set

You can use pre-extracted features to reduce iteration time when developing a machine learning or
deep learning system. It is also a common practice to use pre-extracted features for unsupervised
learning tasks such as similarity clustering, and for content-based indexing tasks such as music
information retrieval (MIR).

Create an audioDatastore object that points to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,"toolbox","audio","samples");
ads = audioDatastore(folder)

ads =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'

4 Classes

4-94

 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Create a custom write function that extracts mel frequency cepstral coefficients (mfcc) from the
audio and writes the them to a MAT file. The function definition is located at the end of this example.

function myWriter(audioIn,info,~)
 fs = info.ReadInfo.SampleRate;

 % Extract MFCC
 [coeffs,delta,deltaDelta] = mfcc(audioIn,fs);

 % Replace the file extension of the suggested output name with MAT.
 filename = strrep(info.SuggestedOutputName,".wav",".mat");

 % Save the MFCC coefficients to the MAT file.
 save(filename,"coeffs","delta","deltaDelta")
end

Define the output location for the extracted features.

outputLocation = pwd;

Call the writeall function with the audioDatastore object, output location, and custom write
function. Also specify the suffix _MFCC to the file names.

tic
writeall(ads,outputLocation,"WriteFcn",@myWriter,"FilenameSuffix","_MFCC")
fprintf("Data set creation completed (%0.0f seconds)\n",toc)

Data set creation completed (33 seconds)

You have now created a data set consisting of MFCCs for each audio file.

fds = fileDatastore(pwd,"ReadFcn",@load,"FileExtensions",".mat","IncludeSubfolders",true)

fds =
 FileDatastore with properties:

 Files: {
 ' ...\audio-ex80013303\samples\Ambiance-16-44p1-mono-12secs_MFCC.mat';
 ' ...\audio-ex80013303\samples\AudioArray-16-16-4channels-20secs_MFCC.mat';
 ' ...\samples\ChurchImpulseResponse-16-44p1-mono-5secs_MFCC.mat'
 ... and 26 more
 }
 Folders: {
 'C:\TEMP\Bdoc20a_1326390_8984\ib9D0363\2\tp356dfd1a\audio-ex80013303'
 }
 UniformRead: 0
 ReadMode: 'file'
 BlockSize: Inf
 PreviewFcn: @load
 SupportedOutputFormats: [1x16 string]
 ReadFcn: @load

 writeall

4-95

 AlternateFileSystemRoots: {}

Helper Function
function myWriter(audioIn,info,~)
 fs = info.ReadInfo.SampleRate;
 [coeffs,delta,deltaDelta] = mfcc(audioIn,fs);
 filename = strrep(info.SuggestedOutputName,".wav",".mat");
 save(filename,"coeffs","delta","deltaDelta")
end

Augment Audio Data Set

Create an audioDatastore object that points to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,"toolbox","audio","samples");
ads = audioDatastore(folder);

Create an audioDataAugmenter object that outputs two augmentations for every input signal.

augmenter = audioDataAugmenter("NumAugmentations",2);

Define a custom write function that applies the audioDataAugmenter object to an audio file and
writes the resulting new signals to separate files. The function definition is located at the end of this
example.

function myWriter(audioIn,info,fileExtension,varargin)
 % create convenient variables for the augmenter and sample rate
 augmenter = varargin{1};
 fs = info.ReadInfo.SampleRate;

 % perform augmentation
 augmentations = augment(augmenter,audioIn,fs);

 for ii = 1:augmenter.NumAugmentations
 x = augmentations.Audio{ii};

 % protect against clipping
 if any(x<-1|x>1)
 [S,L] = bounds(x);
 x = x/max(abs([S,L]));
 end

 % update the audio file name to include the augmentation number
 filename = insertBefore(info.SuggestedOutputName,("."+fileExtension),string(ii));

 % write the audio file
 audiowrite(filename,x,fs)
 end
end

Call the writeall function to create a new augmented data set. To speed up processing, set
UseParallel to true.

outputLocation = pwd;
writeall(ads,outputLocation,"FilenameSuffix","_Aug","UseParallel",true,"WriteFcn",@(x,y,z,a)myWriter(x,y,z,augmenter))

4 Classes

4-96

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

Create a new datastore that points to the augmented audio data set.

adsAug = audioDatastore(outputLocation,"IncludeSubfolders",true)

adsAug =
 audioDatastore with properties:

 Files: {
 ' ...\audio-ex06587246\samples\Ambiance-16-44p1-mono-12secs_Aug1.wav';
 ' ...\audio-ex06587246\samples\Ambiance-16-44p1-mono-12secs_Aug2.wav';
 ' ...\audio-ex06587246\samples\AudioArray-16-16-4channels-20secs_Aug1.wav'
 ... and 55 more
 }
 Folders: {
 ' ...\vmgr$\home07\bhemmat\Documents\MATLAB\Examples\audio-ex06587246'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Helper Function

function myWriter(audioIn,info,fileExtension,varargin)
 augmenter = varargin{1};
 fs = info.ReadInfo.SampleRate;
 augmentations = augment(augmenter,audioIn,fs);
 for ii = 1:augmenter.NumAugmentations
 x = augmentations.Audio{ii};
 if any(x<-1|x>1)
 x = x./max(abs(x));
 end
 filename = insertBefore(info.SuggestedOutputName,("."+fileExtension),string(ii));
 audiowrite(filename,x,fs)
 end
end

Segment Audio Data

Use the detectSpeech and writeall functions to create a new audio data set that contains
isolated speech segments.

Create an audioDatastore object that points to the audio samples included with this example.

ads = audioDatastore(pwd)

ads =
 audioDatastore with properties:

 Files: {
 ' ...\2\tp356dfd1a\audio-ex78151030\KeywordSpeech-16-16-mono-34secs.flac';
 ' ...\ib9D0363\2\tp356dfd1a\audio-ex78151030\Plosives.wav';

 writeall

4-97

 ' ...\ib9D0363\2\tp356dfd1a\audio-ex78151030\Sibilance.wav'
 }
 Folders: {
 'C:\TEMP\Bdoc20a_1326390_8984\ib9D0363\2\tp356dfd1a\audio-ex78151030'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Define a custom write function that first determines the regions of speech in the audio signals read
from the datastore, then writes the individual regions of speech to separate files. Append the region
number to the file names. The function definition is located at the end of this example.

function myWriter(audioIn,info,fileExtension)
 fs = info.ReadInfo.SampleRate;

 % Get indices corresponding to regions of speech
 idx = detectSpeech(audioIn,fs);

 % For each region of speech
 for ii = 1:size(idx,1)
 x = audioIn(idx(ii,1):idx(ii,2),:);

 % Create a unique file name
 filename = insertBefore(info.SuggestedOutputName,("."+fileExtension),string(ii));

 % Write the detected region of speech
 audiowrite(filename,x,fs)
 end
end

Call the writeall function using the custom write function to create a new data set that consists of
the isolated speech segments. Create a folder named segmented in your temporary directory and
then write the data to that folder.

outputLocation = fullfile(tempdir,"segmented");
writeall(ads,outputLocation,'WriteFcn',@myWriter)

Create a new audioDatastore object that points to the segmented data set.

adsSegmented = audioDatastore(outputLocation,"IncludeSubfolders",true)

adsSegmented =
 audioDatastore with properties:

 Files: {
 ' ...\2\segmented\audio-ex78151030\KeywordSpeech-16-16-mono-34secs1.wav';
 ' ...\2\segmented\audio-ex78151030\KeywordSpeech-16-16-mono-34secs10.wav';
 ' ...\2\segmented\audio-ex78151030\KeywordSpeech-16-16-mono-34secs11.wav'
 ... and 24 more
 }
 Folders: {
 'C:\TEMP\Bdoc20a_1326390_8984\ib9D0363\2\segmented'
 }
 AlternateFileSystemRoots: {}

4 Classes

4-98

 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Read a sample from the datastore and listen to it.

[audioIn,adsInfo] = read(adsSegmented);
sound(audioIn,adsInfo.SampleRate)

Supporting Function

function myWriter(audioIn,info,fileExtension)
 fs = info.ReadInfo.SampleRate;
 idx = detectSpeech(audioIn,fs);
 for ii = 1:size(idx,1)
 x = audioIn(idx(ii,1):idx(ii,2),:);
 filename = insertBefore(info.SuggestedOutputName,("."+fileExtension),string(ii));
 audiowrite(filename,x,fs)
 end
end

Clean Audio Data Set

Audio data sets, especially open-source audio data sets, might have inconsistent sampling rates,
numbers of channels, or durations. They might also contain garbage data, such as clips that are
labeled as containing speech but contain silence.

It is often a first step in machine learning and deep learning workflows to clean the audio data set.
This is particularly important for the validation and test data sets. Common types of cleaning include
resampling, converting to mono or stereo, trimming or expanding the duration of clips to a consistent
length, removing periods of silence, removing background noise, or gain normalization.

In this example, you clean an audio data set so that all the files have a sample rate of 16 kHz, are
mono, are in the FLAC format, and are normalized such that the max absolute magnitude of a signal
is 1.

Create an audioDatastore object that points to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,"toolbox","audio","samples");
ads = audioDatastore(folder);

Define a function to apply a sequence of operations on the audio data. The function definition is
located at the end of this example.

function [audioOut,adsInfo] = myTransform(audioIn,adsInfo)
 fs = adsInfo.SampleRate;
 desiredFs = 16e3;

 % Convert to mono
 x = mean(audioIn,2);

 % Resample to 16 kHz
 y = resample(x,desiredFs,fs);
 adsInfo.SampleRate = desiredFs;

 writeall

4-99

 % Normalize so that the max absolute value of a signal is 1
 audioOut = y/max(abs(y));
end

Create a transform datastore object that applies the cleaning operations.

adsTransform = transform(ads,@myTransform,"IncludeInfo",true);

Call writeall on the transform datastore object to create the clean data set. Specify the format as
FLAC. Write the data set to your current folder.

outputLocation = pwd;
writeall(adsTransform,outputLocation,"OutputFormat","flac")

Create a new datastore object that points to the clean data set.

adsClean = audioDatastore(outputLocation,"IncludeSubfolders",true)

adsClean =
 audioDatastore with properties:

 Files: {
 ' ...\Examples\audio-ex59507606\samples\Ambiance-16-44p1-mono-12secs.flac';
 ' ...\audio-ex59507606\samples\AudioArray-16-16-4channels-20secs.flac';
 ' ...\samples\ChurchImpulseResponse-16-44p1-mono-5secs.flac'
 ... and 26 more
 }
 Folders: {
 ' ...\vmgr$\home07\bhemmat\Documents\MATLAB\Examples\audio-ex59507606'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Supporting Function

function [audioOut,adsInfo] = myTransform(audioIn,adsInfo)
 fs = adsInfo.SampleRate;
 desiredFs = 16e3;
 x = mean(audioIn,2);
 y = resample(x,desiredFs,fs);
 adsInfo.SampleRate = desiredFs;
 audioOut = y/max(abs(y));
end

Input Arguments
ADS — Audio datastore
audioDatastore object

Audio datastore, specified as an audioDatastore object.

outputLocation — Folder location to write data
character vector | string

4 Classes

4-100

Folder location to write data, specified as a character vector or string. You can specify a full or
relative path in outputLocation.
Example: outputLocation = '../../dir/data'
Example: outputLocation = 'C:\Users\MyName\Desktop'
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'FolderLayout','flatten'

FolderLayout — Layout of files in output folder
'duplicate' (default) | 'flatten'

Layout of files in output folder, specified as the comma-separated pair consisting of 'FolderLayout'
and 'duplicate' or 'flatten'.

• 'duplicate' –– Replicate the folder structure of the data that the audio datastore points to.
Specify the FolderLayout as 'duplicate' to maintain correspondence between the input and
output data sets.

• 'flatten' –– Write all the files from the input to the specified output folder without any
intermediate folders.

Data Types: char | string

OutputFormat — Output file format
'wav' (default) | 'flac' | 'ogg' | 'mp4' | 'm4a'

Output file format, specified as the comma-separated pair consisting of 'OutputFormat' and
'wav', 'flac', 'ogg', 'mp4', or 'm4a'.
Data Types: char | string

BitsPerSample — Number of output bits per sample
16 (default) | 8 | 24 | 32 | 64

Number of output bits per sample, specified as the comma-separated pair consisting of
'BitsPerSample' and an integer.

Dependencies

To enable this name-value pair argument, set OutputFormat to 'wav' or 'flac'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

BitRate — Kilobits per second (kbit/s)
128 (default) | 64 | 96 | 160 | 192 | 256 | 320

Number of kilobits per second (kbit/s) used to compress audio files, specified as the comma-separated
pair consisting of 'BitRate' and an integer. On Windows 7 or later, the only valid values are 96,
128, 160, and 192.

 writeall

4-101

In general, a larger BitRate value results in higher compression quality.
Dependencies

To enable this name-value pair argument, set OutputFormat to 'm4a' or 'mp4'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

FilenamePrefix — Prefix added to file name
character vector | string

Prefix added to file name, specified as the comma-separated pair consisting of 'FilenamePrefix'
and a character vector or string.

The writeall function adds the specified prefix to the output file names. For example, the following
code adds today's date as the prefix to all the output file names:

prefixText = string(datetime('today'));
writeall(ADS,'C:\myFolder','FilenamePrefix',prefixText);

Data Types: char | string

FilenameSuffix — Suffix added to file name
character vector | string

Suffix added to the file name, specified as the comma-separated pair consisting of
'FilenameSuffix' and a character vector or string. The file name suffix is applied before the file
extension.

The writeall function adds the specified suffix to the output file names. For example, the following
code adds the descriptive text 'clean' as the suffix to all the output file names:

writeall(ADS,'C:\myFolder','FilenameSuffix','clean');

Data Types: char | string

UseParallel — Indicator to write in parallel
false (default) | true

Indicator to write in parallel, specified as the comma-separated pair consisting of 'UseParallel'
and false or true.

By default, the writeall function writes in serial. If you set UseParallel to true, then the
writeall function writes the output files in parallel.

Note Writing in parallel requires Parallel Computing Toolbox™.

Data Types: logical

WriteFcn — Custom write function
function handle

Custom write function, specified as the comma-separated pair consisting of 'WriteFcn' and a
function handle. The specified function is responsible for creating the output files. You can use
WriteFcn to write data in a variety of formats, even if writeall does not directly support the
output format.

4 Classes

4-102

Function Signature

The custom write function requires three input arguments: audioIn, info, and
suggestedOutputType. The function can also accept additional inputs, such as name-value pairs,
after the first three required inputs.

function myWriter(audioIn,info,suggestedOutputType,varargin)

• audioIn contains data read from the input datastore ADS.
• info is an object of type matlab.io.datastore.WriteInfo with fields listed in the table.

Field Description Type
ReadInfo The second output of the

read method.
struct

SuggestedOutputName A fully qualified, globally
unique file name that meets

the location and naming
requirements.

string

Location The specified
outputLocation passed to

writeall.

string

• suggestedOutputType –– Suggested output file type.

Example Function

A simple write function that resamples audio to 44.1 kHz before writing.

function myWriter(data,info,~)
 fs = info.ReadInfo.SampleRate;
 desiredFs = 44.1e3;
 data = resample(data,desiredFs,fs);
 audiowrite(writeInfo.SuggestedOutputName,data,desiredFs);
end

To use myWriter as in the writeall function, use these commands:

ads = audioDatastore(location);
outputLocation = 'C:/tmp/MyData';
writeall(ads,outputLocation,'WriteFcn',@myWriter)

Data Types: function_handle

See Also
audioDatastore

Introduced in R2020a

 writeall

4-103

transform
Transform audio datastore

Syntax
transformDatastore = transform(ADS,@fcn)
transformDatastore = transform(ADS,@fcn,Name,Value)

Description
transformDatastore = transform(ADS,@fcn) creates a new datastore that transforms output
from the read function.

transformDatastore = transform(ADS,@fcn,Name,Value) specifies options using one or
more Name,Value pair arguments.

Examples

Output Mono Audio from Datastore

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Call transform to create a new datastore that mixes multichannel signals to mono.

ADSnew = transform(ADS,@(x)mean(x,2));

Read from the new datastore and confirm that it only outputs mono signals.

while hasdata(ADSnew)
 audio = read(ADSnew);
 fprintf('Number of channels = %d\n',size(audio,2))
end

Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1

4 Classes

4-104

Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1
Number of channels = 1

Clip Audio to Five Seconds

The audio samples included with Audio Toolbox™ have varying durations. Use the transform
function to customize the read function so that it outputs a random five second segment of the audio
samples.

Specify the file path to the audio samples included with Audio Toolbox. Create an audio datastore that
points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Define a function to take as input the output of the read function. Make the function extract five
seconds worth of data from the audio signal.

function [dataOut,info] = extractSegment(audioIn,info)
 [N,numChan] = size(audioIn);
 newN = round(info.SampleRate*5);
 if newN > N % signal length < 5 seconds
 numPad = newN - N + 1;
 dataOut = [audioIn;zeros(numPad,numChan,'like',audioIn)];
 elseif newN < N % signal length > 5 seconds
 start = randi(N - newN + 1);
 dataOut = audioIn(start:start+newN-1,:);
 else % signal length == 5 seconds
 dataOut = audioIn;
 end
end

Call transform to create a TransformedDatastore with Transforms set to the function you
defined.

ADSnew = transform(ADS,@extractSegment,'IncludeInfo',true)

ADSnew =
 TransformedDatastore with properties:

 UnderlyingDatastore: [1x1 audioDatastore]
 SupportedOutputFormats: [1x16 string]

 transform

4-105

 Transforms: {@extractSegment}
 IncludeInfo: 1

Read the first three audio files and verify that the outputs are five second segments.

for i = 1:3
 [audio,info] = read(ADSnew);
 fprintf('Duration = %d seconds\n',size(audio,1)/info.SampleRate)
end

Duration = 5 seconds
Duration = 5 seconds
Duration = 5 seconds

Output Mel Spectrogram

Use transform to create an audio datastore that returns a mel spectrogram representation from the
read function.

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Define a function that transforms audio data from a time-domain representation to a log mel
spectrogram. The function adds the additional outputs from the melSpectrogram function to the
info struct output from reading the audio datastore.

function [dataOut,infoOut] = extractMelSpectrogram(audioIn,info)

 [S,F,T] = melSpectrogram(audioIn,info.SampleRate);

 dataOut = 10*log10(S+eps);
 infoOut = info;
 infoOut.CenterFrequencies = F;
 infoOut.TimeInstants = T;
end

Call transform to create a TransformedDatastore with Transforms set to
extractMelSpectrogram.

ADSnew = transform(ADS,@extractMelSpectrogram,'IncludeInfo',true)

ADSnew =
 TransformedDatastore with properties:

 UnderlyingDatastore: [1x1 audioDatastore]
 SupportedOutputFormats: [1x16 string]
 Transforms: {@extractMelSpectrogram}
 IncludeInfo: 1

Read the first three audio files and plot the log mel spectrograms. If there are multiple channels, plot
only the first channel.

4 Classes

4-106

for i = 1:3
 [melSpec,info] = read(ADSnew);

 figure(i)
 surf(info.TimeInstants,info.CenterFrequencies,melSpec(:,:,1),'EdgeColor','none');
 xlabel('Time (s)')
 ylabel('Frequency (Hz)')
 [~,name] = fileparts(info.FileName);
 title(name)
 axis([0 info.TimeInstants(end) info.CenterFrequencies(1) info.CenterFrequencies(end)])
 view([0,90])
end

 transform

4-107

4 Classes

4-108

Output Spectral Shape Features

Use transform to create an audio datastore that returns feature vectors.

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Define a function, extractFeatureVector, that transforms the audio data from a time-domain
representation to feature vectors.

function [dataOut,info] = extractFeatureVector(audioIn,info)

 % Convert to frequency-domain representation
 windowLength = 256;
 overlapLength = 128;
 [~,f,~,S] = spectrogram(mean(audioIn,2), ...
 hann(windowLength,"Periodic"), ...
 overlapLength, ...
 windowLength, ...
 info.SampleRate, ...
 "power", ...

 transform

4-109

 "onesided");

 % Extract features
 [kurtosis,spread,centroid] = spectralKurtosis(S,f);
 skewness = spectralSkewness(S,f);
 crest = spectralCrest(S,f);
 decrease = spectralDecrease(S,f);
 entropy = spectralEntropy(S,f);
 flatness = spectralFlatness(S,f);
 flux = spectralFlux(S,f);
 rolloff = spectralRolloffPoint(S,f);
 slope = spectralSlope(S,f);

 % Concatenate to create feature vectors
 dataOut = [kurtosis,spread,centroid,skewness,crest,decrease,entropy,flatness,flux,rolloff,slope];

end

Call transform to create a TransformedDatastore with Transforms set to
extractFeatureVector.

ADSnew = transform(ADS,@extractFeatureVector,'IncludeInfo',true)

ADSnew =

 TransformedDatastore with properties:

 UnderlyingDatastore: [1x1 audioDatastore]
 SupportedOutputFormats: [1x16 string]
 Transforms: {@extractFeatureVector}
 IncludeInfo: 1

Call read to return the feature vectors for the audio over time.

featureMatrix = read(ADSnew);
[numFeatureVectors,numFeatures] = size(featureMatrix)

numFeatureVectors =

 4215

numFeatures =

 11

Apply Bandpass Filtering

Use transform to create an audio datastore that applies bandpass filtering before returning audio
from the read function.

4 Classes

4-110

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Define a function, applyBandpassFilter, that applies a bandpass filter with a passband between 1
and 15 kHz.

function [audioOut,info] = applyBandpassFilter(audioIn,info)

 audioOut = bandpass(audioIn,[1e3,15e3],info.SampleRate);

end

Call transform to create a TransformedDatastore with Transforms set to
applyBandpassFilter.

ADSnew = transform(ADS,@applyBandpassFilter,'IncludeInfo',true)

ADSnew =
 TransformedDatastore with properties:

 UnderlyingDatastore: [1x1 audioDatastore]
 SupportedOutputFormats: [1x16 string]
 Transforms: {@applyBandpassFilter}
 IncludeInfo: 1

Call read to return the bandpass filtered audio from the transform datastore. Call read to return the
bandpass filtered audio from the original datastore. Plot the spectrograms to visualize the difference.

[audio1,info1] = read(ADS);
[audio2,info2] = read(ADSnew);

spectrogram(audio1,hann(512),256,512,info1.SampleRate,'yaxis')
title('Original Signal')

 transform

4-111

spectrogram(audio2,hann(512),256,512,info2.SampleRate,'yaxis')
title('Filtered Signal')

4 Classes

4-112

Input Arguments
ADS — Audio datastore
audioDatastore object

Audio datastore, specified as an audioDatastore object.

@fcn — Function that transforms data
function handle

Function that transforms data, specified as a function handle. The signature of the function depends
on the IncludeInfo parameter.

• If IncludeInfo is set to false (default), the function transforms the audio output from read.
The info output from read is unaltered.

 transform

4-113

The transform function must have this signature:

function dataOut = fcn(audio)
...
end

• If IncludeInfo is set to true, the function transforms the audio output from read, and can use
or modify the information returned from read.

The transform function must have this signature:

function [dataOut,infoOut] = fcn(audio,infoIn)
...
end

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'IncludeInfo',tf

IncludeInfo — Pass info through customized read function
false (default) | true

Pass info through the customized read function, specified as true or false. If true, the transform
function can use or modify the information it gets from read. If unspecified, IncludeInfo defaults
to false.

4 Classes

4-114

Data Types: logical

Output Arguments
transformDatastore — New datastore with customized read
TransformedDatastore

New datastore with customized read, returned as a TransformedDatastore with
UnderlyingDatastore set to ADS, Transforms set to fcn, and IncludeInfo set to true or
false.

See Also
audioDatastore | combine | hasdata | preview | read | readall | reset

Introduced in R2019a

 transform

4-115

combine
Combine data from multiple datastores

Syntax
ADSnew = combine(ADS1,ADS2,...,ADSN)

Description
ADSnew = combine(ADS1,ADS2,...,ADSN) combines two or more datastores by horizontally
concatenating the data returned by read of the input datastores.

Examples

Combine Datastores

Create a datastore that maintains parity between the audio of the underlying datastores. Create two
separate audio datastores, and then create a combined datastore representing the two underlying
datastores.

Create a datastore ads1 that points to the audio files included with Audio Toolbox.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ads1 = audioDatastore(folder);

Create a second datastore ads2 by adding noise to the audio in the ads1.

ads2 = transform(ads1,@(x) x + 0.01*randn(size(x)));

Create a combined datastore from ads1 and ads2.

adsCombined = combine(ads1,ads2);

Read the first pair of audio files from the combined datastore. Each read operation on this combined
datastore returns a pair of audio signals in a 1-by-2 cell array and a pair of info structs in a 1-by-2 cell
array.

[dataOut,infoOut] = read(adsCombined)

dataOut=1×2 cell array
 {539648x1 double} {539648x1 double}

infoOut=1×2 cell array
 {1x1 struct} {1x1 struct}

Plot the spectrograms of the first channels from both audio signals.

figure(1)
spectrogram(dataOut{1},hamming(512),256,512,infoOut{1}.SampleRate,'yaxis')
title('Original Data')

4 Classes

4-116

figure(2)
idx = size(dataOut,2)/2+1;
spectrogram(dataOut{2},hamming(512),256,512,infoOut{2}.SampleRate,'yaxis')
title('Noised Data')

 combine

4-117

Input Arguments
ADS1,ADS2,...,ADSN — Audio datastores to combine
audioDatastore objects

Audio datastores to combine, specified as two or more comma separated audioDatastore objects.

Output Arguments
ADSnew — New audio datastore with combined data
audioDatastore object

New audio datastore with combined data, returned as a
matlab.io.datastore.CombinedDatastore object.

Calling read on the combined datastore returns a cell array containing the output of calling read on
the individual datastores.

See Also
audioDatastore | hasdata | preview | read | readall | reset | transform

Introduced in R2019a

4 Classes

4-118

progress
Fraction of files read

Syntax
fractionRead = progress(ADS)

Description
fractionRead = progress(ADS) returns the fraction of files read in the datastore as a
normalized value in the range [0,1].

Examples

Return Fraction of Files Read

Create an audioDatastore object ADS. Read a file from the datastore and then call progress to
return the fraction of files read.

ADS = audioDatastore(fullfile(matlabroot,'toolbox','audio','samples'))

ADS =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

fractionOfFilesRead = progress(ADS)

fractionOfFilesRead = 0

data = read(ADS);
fractionOfFilesRead = progress(ADS)

fractionOfFilesRead = 0.0345

 progress

4-119

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

Output Arguments
fractionRead — Fraction of files read
normalized value in the range [0,1]

Fraction of files read, returned as a normalized value in the range [0,1].
Data Types: double

See Also
audioDatastore | hasdata

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using LSTM Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

4 Classes

4-120

numpartitions
Return estimate for reasonable number of partitions for parallel processing

Syntax
n = numpartitions(ADS)
n = numpartitions(ADS,pool)

Description
n = numpartitions(ADS) returns the default number of partitions for the datastore, ADS. The
default number of partitions is the total number of files.

n = numpartitions(ADS,pool) returns a reasonable number of partitions to parallelize ADS over
the parallel pool, based on the total number of files and the number of workers in pool. To parallelize
datastore access, you must have Parallel Computing Toolbox installed.

Examples

Estimate Reasonable Number of Partitions for Audio Datastore

numpartitions returns a reasonable number of partitions for an audio datastore. You can use
numpartitions as input to the partition function.

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');

ADS = audioDatastore(folder);

Use numpartitions to estimate a reasonable number of partitions for the audio datastore, ADS. By
default, numpartitions returns the number of files the audio datastore points to.

n = numpartitions(ADS)

n = 29

Number of Partitions for Parallel Datastore Access

Partition a datastore to facilitate parallel access over the available parallel pool of workers.

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

 numpartitions

4-121

Return an estimate for a reasonable number of partitions for parallel processing, given the current
parallel pool.

pool = gcp;
n = numpartitions(ADS,pool);

Partition the audio datastore and read the data in each part.

parfor ii = 1:n
 subds = partition(ADS,n,ii);
 while hasdata(subds)
 data = read(subds);
 end
end

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

pool — Parallel pool
parallel pool object

Parallel pool object.

Output Arguments
n — Number of partitions
positive integer

Number of partitions to parallelize datastore access over.

See Also
audioDatastore | partition

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using LSTM Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

4 Classes

4-122

partition
Partition datastore and return on partitioned portion

Syntax
subADS = partition(ADS,numPartitions,index)
subADS = partition(ADS,'Files',index)
subADS = partition(ADS,'Files',filename)

Description
subADS = partition(ADS,numPartitions,index) partitions datastore ADS into the number of
parts specified by numPartitions and returns the partition corresponding to the index.

subADS = partition(ADS,'Files',index) partitions the datastore by files and returns the
partition corresponding to the file of index index in the Files property.

subADS = partition(ADS,'Files',filename) partitions the datastore by files and returns the
partition corresponding to the file specified by filename.

Examples

Partition Datastore into Specific Number of Parts

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder)

ADS =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Partition the datastore into three parts.

 partition

4-123

subADS1 = partition(ADS,3,1)

subADS1 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 7 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

subADS2 = partition(ADS,3,2)

subADS2 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\JetAirplane-16-11p025-mono-16secs.wav';
 'B:\matlab\toolbox\audio\samples\Laughter-16-8-mono-4secs.wav';
 'B:\matlab\toolbox\audio\samples\MainStreetOne-24-96-stereo-63secs.wav'
 ... and 7 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

subADS3 = partition(ADS,3,3)

subADS3 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\RockGuitar-16-96-stereo-72secs.flac';
 'B:\matlab\toolbox\audio\samples\SoftGuitar-44p1_mono-10mins.ogg';
 'B:\matlab\toolbox\audio\samples\SpeechDFT-16-8-mono-5secs.wav'
 ... and 6 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}

4 Classes

4-124

 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Partition Datastore into Default Number of Parts

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Get the default number of partitions for ADS.

n = numpartitions(ADS);

Partition the datastore into the default number of partitions and return the datastore corresponding
to the first partition.

subADS = partition(ADS,n,1);

Read the data in subADS.

while hasdata(subADS)
 data = read(subADS);
end

Partition Datastore by Files

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Partition the datastore by files and return the part corresponding to the second file. subds contains
one file.

subds = partition(ADS,'Files',2)

subds =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav'
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]

 partition

4-125

 DefaultOutputFormat: "wav"

Number of Partitions for Parallel Datastore Access

Partition a datastore to facilitate parallel access over the available parallel pool of workers.

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Return an estimate for a reasonable number of partitions for parallel processing, given the current
parallel pool.

pool = gcp;
n = numpartitions(ADS,pool);

Partition the audio datastore and read the data in each part.

parfor ii = 1:n
 subds = partition(ADS,n,ii);
 while hasdata(subds)
 data = read(subds);
 end
end

Input Arguments
ADS — Audio datastore
audioDatastore object

Audio datastore, specified as an audioDatastore object.

numPartitions — Number of partitions
positive integer

Number of partitions, specified as a positive integer. Use numpartitions to estimate a reasonable
value for numPartitions.
Data Types: double

index — Index of sub-datastore
positive integer

Index of sub-datastore, specified as a positive integer in the range [1,numPartitions].
Data Types: double

filename — File name
character vector

File name, specified as a character vector.

4 Classes

4-126

The value of filename must match exactly the file name contained in the Files property of the
datastore.
Data Types: char

Output Arguments
subADS — Output audio datastore
audioDatastore object

Output audio datastore, returned as an audioDatastore object.

See Also
audioDatastore | numpartitions

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using LSTM Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

 partition

4-127

countEachLabel
Count number of unique labels

Syntax
tbl = countEachLabel(ADS)
tbl = countEachLabel(ADS,'TableVariable',VariableName)

Description
tbl = countEachLabel(ADS) counts the number of times each unique label occurs in the
datastore. In other words, it counts the number of files with each unique label. The output tbl is a
table with variable names Label and Count.

tbl = countEachLabel(ADS,'TableVariable',VariableName) counts the number of times
each unique label occurs in the datastore. When the datastore Labels property is specified by a
table, you must specify VariableName. VariableName is the table variable (column) name you want
to count.

Examples

Label Count

Specify the file path to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,'toolbox','audio','samples');

Create an audio datastore that points to the specified folder. Specify the LabelSource property as
foldernames, so that the label associated with each file is set to the folder name that contains the
file.

ads = audioDatastore(folder,'Labelsource','foldernames')

ads =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: [samples; samples; samples ... and 26 more categorical]
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

4 Classes

4-128

Call countEachLabel to count the number of times each unique label occurs.

tbl = countEachLabel(ads)

tbl=1×2 table
 Label Count
 _______ _____

 samples 29

Label Count when Labels Is Specified by Table

If the Labels property of an audio datastore is specified as a table, you must specify the table
variable name when counting labels.

Specify the file path to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,'toolbox','audio','samples');

Create an audio datastore that points to the specified folder.

ADS = audioDatastore(folder)

ADS =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

The file names contain information about the files. Parse the file names to collect information about
whether a file is mono or stereo and whether a file is longer than thirty seconds. Create a table
containing the parsed information and then set the Labels property of the audio datastore to the
label table.

numFiles = numel(ADS.Files);

numChannels = cell(numFiles,1);
isLong = cell(numFiles,1);

for i = 1:numFiles
 if ~isempty(strfind(ADS.Files{i},'mono'))

 countEachLabel

4-129

 numChannels{i} = 'mono';
 elseif ~isempty(strfind(ADS.Files{i},'stereo'))
 numChannels{i} = 'stereo';
 else
 numChannels{i} = 'unknown';
 end

 secs = str2double(regexp(ADS.Files{i}, '-(\d+)secs', 'tokens', 'once'));
 if secs > 30
 isLong{i} = true;
 elseif secs <= 30
 isLong{i} = false;
 else
 isLong{i} = 'unknown';
 end
end
labelTable = table(numChannels,isLong, ...
 'VariableNames',{'NumberOfChannels','IsLongerThan30Seconds'});

ADS.Labels = labelTable;

Call countEachLabel on the audio datastore and specify the TableVariable as
NumberOfChannels. Call countEachLabel and specify the TableVariable as
IsLongerThan30Seconds.

countNumberOfChannelLabels = countEachLabel(ADS,'TableVariable','NumberOfChannels')

countNumberOfChannelLabels=3×2 table
 NumberOfChannels Count
 ________________ _____

 mono 16
 stereo 11
 unknown 2

countDurationLabels = countEachLabel(ADS,'TableVariable','IsLongerThan30Seconds')

countDurationLabels=3×2 table
 IsLongerThan30Seconds Count
 _____________________ _____

 false 18
 true 7
 unknown 4

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

VariableName — Label table variable name
character vector | string

4 Classes

4-130

Label table variable name, specified as a character vector or string that corresponds to a table
variable of the Label property.

This syntax is required if the Label property of audioDatastore is specified by a table.
Data Types: char | string

Output Arguments
tbl — Table of label counts
two-column table

Table of label counts, returned as a two-column table containing the name of each label in ADS and
the number of files associated with each label.
Data Types: table

See Also
audioDatastore | splitEachLabel

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using LSTM Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

 countEachLabel

4-131

splitEachLabel
Splits datastore according to specified label proportions

Syntax
[ADS1,ADS2] = splitEachLabel(ADS,p)
[ADS1,...,ADSM] = splitEachLabel(ADS,p1,...,pN)
___ = splitEachLabel(___ ,'randomized')
___ = splitEachLabel(___ ,Name,Value)

Description
[ADS1,ADS2] = splitEachLabel(ADS,p) splits the audio files in ADS into two new datastores,
ADS1 and ADS2. The new datastore ADS1 contains the first p files from each label ,and ADS2 contains
the remaining files from each label. p can be either a number between 0 and 1, exclusive, indicating
the percentage of the files from each label to assign to ADS1, or an integer indicating the absolute
number of files from each label to assign to ADS1.

[ADS1,...,ADSM] = splitEachLabel(ADS,p1,...,pN) splits the datastore into N+1 new
datastores. The new datastore ADS1 contains the first p1 files from each label, the next new datastore
ADS2 contains the next p2 files, and so on. If p1,…,pN represent numbers of files, then their sum
must be no more than the number of files in the smallest label in the original datastore, ADS.

___ = splitEachLabel(___ ,'randomized') randomly assigns the specified proportion of files
from each label to the new datastores.

___ = splitEachLabel(___ ,Name,Value) specifies the properties of the new datastores using
one or more name-value pair arguments. For example, you can specify which labels to split with
'Include','labelname'.

Examples

Split by Fractions

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder,'FileExtensions','.wav');

Add the label A to the first half of the files, and the label B to the second half. If there are an odd
number of files, assign the extra file the label B. Call countEachLabel to confirm that half of the
files are labeled A and half the files are labeled B.

labels = [repmat({'A'},1,floor(numel(ADS.Files)/2)), ...
 repmat({'B'},1,ceil(numel(ADS.Files)/2))];
ADS.Labels = labels;

countEachLabel(ADS)

4 Classes

4-132

ans=2×2 table
 Label Count
 _____ _____

 A 10
 B 11

Split ADS into two datastores, ADS1 and ADS2, specifying that each new datastore contains fifty
percent of each label and the corresponding files. Call countEachLabel to confirm that half of the
files are labeled A and half of the files are labeled B for each of the new datastores.

[ADS1,ADS2] = splitEachLabel(ADS,0.5)

ADS1 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 8 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 8 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

ADS2 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Engine-16-44p1-stereo-20sec.wav';
 'B:\matlab\toolbox\audio\samples\FemaleSpeech-16-8-mono-3secs.wav';
 'B:\matlab\toolbox\audio\samples\Heli_16ch_ACN_SN3D.wav'
 ... and 7 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 7 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

ADS1count = countEachLabel(ADS1)

ADS1count=2×2 table
 Label Count
 _____ _____

 splitEachLabel

4-133

 A 5
 B 6

ADS2count = countEachLabel(ADS2)

ADS2count=2×2 table
 Label Count
 _____ _____

 A 5
 B 5

Split by Number of Files

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder,'FileExtensions','.wav');

Add the label A to the first half of the files, and the label B to the second half. If there are an odd
number of files, assign the extra file the label B. Call countEachLabel to confirm that half of the
files are labeled A and half the files are labeled B.

labels = [repmat({'A'},1,floor(numel(ADS.Files)/2)), ...
 repmat({'B'},1,ceil(numel(ADS.Files)/2))];
ADS.Labels = labels;

countEachLabel(ADS)

ans=2×2 table
 Label Count
 _____ _____

 A 10
 B 11

Split ADS into two datastores, ADS1 and ADS2. Specify that ADS1 contains four of each label and its
corresponding file. ADS2 contains the remaining labels and corresponding files. Call
countEachLabel to confirm that ADS1 contains four files labeled A and four files labeled B, and that
ADS2 contains the remaining labels.

[ADS1,ADS2] = splitEachLabel(ADS,4)

ADS1 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 5 more
 }

4 Classes

4-134

 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 5 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

ADS2 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Counting-16-44p1-mono-15secs.wav';
 'B:\matlab\toolbox\audio\samples\Engine-16-44p1-stereo-20sec.wav';
 'B:\matlab\toolbox\audio\samples\FemaleSpeech-16-8-mono-3secs.wav'
 ... and 10 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 10 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

ADS1count = countEachLabel(ADS1)

ADS1count=2×2 table
 Label Count
 _____ _____

 A 4
 B 4

ADS2count = countEachLabel(ADS2)

ADS2count=2×2 table
 Label Count
 _____ _____

 A 6
 B 7

Split Several Ways by Fractions

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder,'FileExtensions','.wav');

 splitEachLabel

4-135

Add the label A to the first half of the files, and the label B to the second half. If there is an odd
number of files, assign the extra file the label B. Call countEachLabel to confirm that half of the
files are labeled A and half the files are labeled B.

labels = [repmat({'A'},1,floor(numel(ADS.Files)/2)), ...
 repmat({'B'},1,ceil(numel(ADS.Files)/2))];
ADS.Labels = labels;

countEachLabel(ADS)

ans=2×2 table
 Label Count
 _____ _____

 A 10
 B 11

Split ADS into three new datastores, ADS60, ADS10, and ADS30. The first datastore, ADS60, contains
the first 60% of files with the A label and the first 60% of files with the B label. ADS10 contains the
next 10% of files from each label. ADS30 contains the remaining 30% of files from each label. If the
percentage applied to a label does not result in a whole number of files, splitEachLabel rounds
down to the nearest whole number.

[ADS60,ADS10,ADS30] = splitEachLabel(ADS,0.6,0.1)

ADS60 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 10 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 10 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

ADS10 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\FemaleSpeech-16-8-mono-3secs.wav';
 'B:\matlab\toolbox\audio\samples\Turbine-16-44p1-mono-22secs.wav'
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'B'}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

4 Classes

4-136

 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

ADS30 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Heli_16ch_ACN_SN3D.wav';
 'B:\matlab\toolbox\audio\samples\JetAirplane-16-11p025-mono-16secs.wav';
 'B:\matlab\toolbox\audio\samples\Laughter-16-8-mono-4secs.wav'
 ... and 3 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 3 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Call countEachLabel to confirm the correct distribution of labels for each datastore.

countEachLabel(ADS60)

ans=2×2 table
 Label Count
 _____ _____

 A 6
 B 7

countEachLabel(ADS10)

ans=2×2 table
 Label Count
 _____ _____

 A 1
 B 1

countEachLabel(ADS30)

ans=2×2 table
 Label Count
 _____ _____

 A 3
 B 3

 splitEachLabel

4-137

Split Labels Several Ways by Number of Files

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder,'FileExtensions','.wav');

Add the label A to the first half of the files, and the label B to the second half. If there is an odd
number of files, assign the extra file the label B. Call countEachLabel to confirm that half of the
files are labeled A and half the files are labeled B.

labels = [repmat({'A'},1,floor(numel(ADS.Files)/2)), ...
 repmat({'B'},1,ceil(numel(ADS.Files)/2))];
ADS.Labels = labels;

countEachLabel(ADS)

ans=2×2 table
 Label Count
 _____ _____

 A 10
 B 11

Split ADS into three new datastores, ADS1, ADS2, and ADS3. The first datastore, ADS1, contains the
first file with the A label and the first file with the B label. ADS2 contains the next file from each label.
ADS3 contains the remaining files from each label. If the percentage applied to a label does not result
in a whole number of files, splitEachLabel rounds down to the nearest whole number.

[ADS1,ADS2,ADS3] = splitEachLabel(ADS,1,1)

ADS1 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\MainStreetOne-24-96-stereo-63secs.wav'
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'B'}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

ADS2 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 'B:\matlab\toolbox\audio\samples\NoisySpeech-16-22p5-mono-5secs.wav'
 }
 Folders: {

4 Classes

4-138

 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'B'}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

ADS3 =
 audioDatastore with properties:

 Files: {
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav';
 'B:\matlab\toolbox\audio\samples\Click-16-44p1-mono-0.2secs.wav';
 'B:\matlab\toolbox\audio\samples\Counting-16-44p1-mono-15secs.wav'
 ... and 14 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 14 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Call countEachLabel to confirm the correct distribution of labels for each datastore.

countEachLabel(ADS1)

ans=2×2 table
 Label Count
 _____ _____

 A 1
 B 1

countEachLabel(ADS2)

ans=2×2 table
 Label Count
 _____ _____

 A 1
 B 1

countEachLabel(ADS3)

ans=2×2 table
 Label Count
 _____ _____

 A 8
 B 9

 splitEachLabel

4-139

Split Labels in Random Order

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder,'FileExtensions','.wav')

ADS =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 18 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Add the label A to the first half of the files, and the label B to the second half. If there is an odd
number of files, assign the extra file the label B. Call countEachLabel to confirm that half of the
files are labeled A and half the files are labeled B.

labels = [repmat({'A'},1,floor(numel(ADS.Files)/2)), ...
 repmat({'B'},1,ceil(numel(ADS.Files)/2))];
ADS.Labels = labels;

countEachLabel(ADS)

ans=2×2 table
 Label Count
 _____ _____

 A 10
 B 11

Create two new datastores from the files in ADS by randomly drawing from each label. The first
datastore, ADS1, contains two random files with the A label and two random files with the B label.
ADS2 contains the remaining files from each label.

[ADS1,ADS2] = splitEachLabel(ADS,2,'randomized')

ADS1 =
 audioDatastore with properties:

 Files: {

4 Classes

4-140

 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav';
 'B:\matlab\toolbox\audio\samples\Engine-16-44p1-stereo-20sec.wav';
 'B:\matlab\toolbox\audio\samples\MainStreetOne-24-96-stereo-63secs.wav'
 ... and 1 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'B' ... and 1 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

ADS2 =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 'B:\matlab\toolbox\audio\samples\Click-16-44p1-mono-0.2secs.wav'
 ... and 14 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 14 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Include and Exclude Specified Labels

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder,'FileExtensions','.wav')

ADS =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 18 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }

 splitEachLabel

4-141

 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Add the label A to the first half of the files, and the label B to the second half. If there is an odd
number of files, assign the extra file the label B. Call countEachLabel to confirm that half of the
files are labeled A and half the files are labeled B.

labels = [repmat({'A'},1,floor(numel(ADS.Files)/2)), ...
 repmat({'B'},1,ceil(numel(ADS.Files)/2))];
ADS.Labels = labels;

countEachLabel(ADS)

ans =

 2x2 table

 Label Count
 _____ _____

 A 10
 B 11

Create two new datastores from the files in ADS, including only the files with the A label. ADS1
contains the first 70% of files with the A label, and ADS2 contains the remaining 30% of labels with
the A label.

[ADS1,ADS2] = splitEachLabel(ADS,0.7,'Include','A')

ADS1 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 4 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 4 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

ADS2 =

4 Classes

4-142

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Heli_16ch_ACN_SN3D.wav';
 'B:\matlab\toolbox\audio\samples\JetAirplane-16-11p025-mono-16secs.wav';
 'B:\matlab\toolbox\audio\samples\Laughter-16-8-mono-4secs.wav'
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A'}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Equivalently, you can split only the A label by excluding the B label.

[ADS1,ADS2] = splitEachLabel(ADS,0.7,'Exclude','B')

ADS1 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 4 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A' ... and 4 more}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

ADS2 =

 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Heli_16ch_ACN_SN3D.wav';
 'B:\matlab\toolbox\audio\samples\JetAirplane-16-11p025-mono-16secs.wav';
 'B:\matlab\toolbox\audio\samples\Laughter-16-8-mono-4secs.wav'
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 Labels: {'A'; 'A'; 'A'}
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]

 splitEachLabel

4-143

 DefaultOutputFormat: "wav"

Split Using Fraction and Label Table

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder)

ADS =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Create a label table with two variables:

• containsMusic -- Can be either true or false.
• instrument -- Can be Guitar, Drums, or Unknown.

containsGuitar = contains(ADS.Files,'guitar','IgnoreCase',true);
containsDrums = contains(ADS.Files,'drum','IgnoreCase',true);
containsMusic = or(containsGuitar,containsDrums);

instrument = strings(size(ADS.Files));
instrument(:) = "Unknown";
instrument(containsGuitar) = "Guitar";
instrument(containsDrums) = "Drums";

Assign the label table to the Labels property of audio datastore to associate the rows of the label
table with the rows of the datastore. Call countEachLabel to determine the incidences of
containsMusic and instrument.

labels = table(containsMusic,instrument);
ADS.Labels = labels;

containsMusicCount = countEachLabel(ADS,'TableVariable','containsMusic')

containsMusicCount=2×2 table
 containsMusic Count
 _____________ _____

4 Classes

4-144

 false 22
 true 7

instrumentCount = countEachLabel(ADS,'TableVariable','instrument')

instrumentCount=3×2 table
 instrument Count
 __________ _____

 Drums 4
 Guitar 3
 Unknown 22

Split the datastore ADS into two, based on whether the audio file contains music. ADS1 contains 70%
of the audio files that contain music, and ADS2 contains the rest. Call countEachLabel to verify that
the ratio of containsMusic == true to containsMusic == false is preserved for the new
datastores, within rounding.

[ADS1,ADS2] = splitEachLabel(ADS,0.7,'TableVariable','containsMusic');
ADS1_containsMusicCount = countEachLabel(ADS1,'TableVariable','containsMusic')

ADS1_containsMusicCount=2×2 table
 containsMusic Count
 _____________ _____

 false 15
 true 5

ADS2_containsMusicCount = countEachLabel(ADS2,'TableVariable','containsMusic')

ADS2_containsMusicCount=2×2 table
 containsMusic Count
 _____________ _____

 false 7
 true 2

Split the datastore ADS into two, based on the type of instrument present in the audio file. ADS3
contains 25% of the audio files that have an instrument label, and ADS4 contains the rest. Call
countEachLabel to verify that the ratio of instrument == "drums" to instrument ==
"guitar" is preserved for the new datastores, within rounding.

[ADS3,ADS4] = splitEachLabel(ADS,0.25,'TableVariable','instrument');
ADS3_instrumentCount = countEachLabel(ADS3,'TableVariable','instrument')

ADS3_instrumentCount=3×2 table
 instrument Count
 __________ _____

 Drums 1
 Guitar 1
 Unknown 6

 splitEachLabel

4-145

ADS4_instrumentCount = countEachLabel(ADS4,'TableVariable','instrument')

ADS4_instrumentCount=3×2 table
 instrument Count
 __________ _____

 Drums 3
 Guitar 2
 Unknown 16

Split by Number of Files and Label Table

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Create a label table with two variables:

• containsMusic - Can be either true or false.
• instrument - Can be Guitar, Drums, or Unknown.

containsGuitar = contains(ADS.Files,'guitar','IgnoreCase',true);
containsDrums = contains(ADS.Files,'drum','IgnoreCase',true);
containsMusic = or(containsGuitar,containsDrums);

instrument = strings(size(ADS.Files));
instrument(:) = "Unknown";
instrument(containsGuitar) = "Guitar";
instrument(containsDrums) = "Drums";

Assign the label table to the Labels property of audio datastore to associate the rows of the label
table with the rows of the datastore. Call countEachLabel to determine the incidences of
containsMusic and instrument.

labels = table(containsMusic,instrument);
ADS.Labels = labels;

containsMusicCount = countEachLabel(ADS,'TableVariable','containsMusic')

containsMusicCount=2×2 table
 containsMusic Count
 _____________ _____

 false 22
 true 7

instrumentCount = countEachLabel(ADS,'TableVariable','instrument');

Split the datastore ADS into two, based on whether the audio file contains music. ADS1 contains 5 of
each label under the table variable containsMusic, and ADS2 contains the rest. Call
countEachLabel to verify.

4 Classes

4-146

[ADS1,ADS2] = splitEachLabel(ADS,5,'TableVariable','containsMusic');
ADS1_containsMusicCount = countEachLabel(ADS1,'TableVariable','containsMusic')

ADS1_containsMusicCount=2×2 table
 containsMusic Count
 _____________ _____

 false 5
 true 5

ADS2_containsMusicCount = countEachLabel(ADS2,'TableVariable','containsMusic')

ADS2_containsMusicCount=2×2 table
 containsMusic Count
 _____________ _____

 false 17
 true 2

Split the datastore ADS into two, based on the type of instrument present in the audio file. ADS3
contains 2 of each label under the table variable instrument, and ADS4 contains the rest. Call
countEachLabel to verify.

[ADS3,ADS4] = splitEachLabel(ADS,2,'TableVariable','instrument');
ADS3_instrumentCount = countEachLabel(ADS3,'TableVariable','instrument')

ADS3_instrumentCount=3×2 table
 instrument Count
 __________ _____

 Drums 2
 Guitar 2
 Unknown 2

ADS4_instrumentCount = countEachLabel(ADS4,'TableVariable','instrument')

ADS4_instrumentCount=3×2 table
 instrument Count
 __________ _____

 Drums 2
 Guitar 1
 Unknown 20

Input Arguments
ADS — Input audio datastore
audioDatastore object

Input audio datastore, specified as an audioDatastore object.

p — Proportion of files to split
scalar in interval (0,1) | positive integer scalar

 splitEachLabel

4-147

Proportion of files to split, specified as a scalar in the interval (0,1), or a positive integer scalar.

If p is in the interval (0,1), it represents the percentage of the files from each label to assign to ADS1.
If p represents a percentage, and it does not result in a whole number, then splitEachLabel
rounds down to the nearest whole number.

If p is an integer, it represents the absolute number of files from each label to assign to ADS1. When p
represents a number of files, there must be at least p files associated with each label.
Data Types: double

p1,...,pN — List of proportions
scalars in interval (0,1) | positive integer scalars

List of proportions, specified as scalars in the interval (0,1) or positive integer scalars.

If the proportions are in the interval (0,1), they represent the percentage of the files from each label
to assign to the output datastores. When the proportions represent percentages, their sum must be
no more than 1.

If the proportions are integers, they indicate the absolute number of files from each label to assign to
the output datastores. When the proportions represent numbers of files, there must be enough files
associated with each label to satisfy each proportion.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: [ADS1,ADS2] = splitEachLabel(ADS,0.5,'Exclude','noisy')

Include — Labels to include
categorical, logical, or numeric vector | cell array of character vectors | string array

Labels to include, specified as the comma-separated pair consisting of 'Include' and a vector, cell
array, or string array of label names with the same type as the Labels property. Each name must
match one of the labels in the Labels property of the datastore.

This option cannot be used with the 'Exclude' option.

Exclude — Labels to exclude
categorical, logical, or numeric vector | cell array of character vectors | string array

Labels to exclude, specified as the comma-separated pair consisting of 'Exclude' and a vector, cell
array, or string array of label names with the same type as the Labels property. Each name must
match one of the labels in the Labels property of the datastore.

This option cannot be used with the 'Include' option.

TableVariable — Label table variable name
char | string

4 Classes

4-148

Table variable name, specified as the comma-separated pair consisting of 'TableVariable' and a
character vector or string. When the Labels property of the audio datastore ADS is a table, you must
use 'TableVariable' to specify which label you are using to split.
Data Types: char | string

Output Arguments
[ADS1,ADS2] — Output audio datastores
audioDatastore objects

Output audio datastores, returned as audioDatastore objects. ADS1 contains the specified
proportion of files from each label in ADS, and ADS2 contains the remaining files.

[ADS1,...,ADSM] — List of output audio datastores
audioDatastore objects

List of output audio datastores, returned as audioDatastore objects. The number of elements in the
list is one more that the number of listed proportions. Each of the new datastores contains the
proportion of each label in ADS defined by p1,…,pN. Any files left over are assigned to the Mth
datastore.

See Also
audioDatastore | countEachLabel | subset

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

 splitEachLabel

4-149

preview
Read first file from datastore for preview

Syntax
data = preview(ADS)

Description
data = preview(ADS) always reads the first file from ADS. preview does not affect the state of
ADS.

Examples

Preview Data in Audio Datastore

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Preview the data in the audio datastore.

data = preview(ADS);
plot(data)

4 Classes

4-150

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

Output Arguments
data — Subset of data
array of audio samples

Subset of data, returned as an array of audio samples.

See Also
audioDatastore | hasdata

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using LSTM Networks”
“Music Genre Classification Using Wavelet Time Scattering”

 preview

4-151

Introduced in R2018b

4 Classes

4-152

subset
Create datastore with subset of files

Syntax
ADSsubset = subset(ADS,indices)

Description
ADSsubset = subset(ADS,indices) returns an audio datastore, ADSsubset, which contains a
subset of the files in ADS.

Examples

Create Datastore with Subset Based on File Name

subset creates an audio datastore containing a subset of the files of the original datastore.

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder)

ADS =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Create a logical vector indicating whether the file names in the audio datastore contain 'Guitar'.

fileContainsGuitar = cellfun(@(c)contains(c,'Guitar'),ADS.Files)

fileContainsGuitar = 29x1 logical array

 0
 0

 subset

4-153

 0
 0
 0
 0
 0
 0
 0
 0
 ⋮

Call subset with the audio datastore and the indices corresponding to the files you want create a
new audio datastore from.

ADSsubset = subset(ADS,fileContainsGuitar)

ADSsubset =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\RockGuitar-16-44p1-stereo-72secs.wav';
 'B:\matlab\toolbox\audio\samples\RockGuitar-16-96-stereo-72secs.flac';
 'B:\matlab\toolbox\audio\samples\SoftGuitar-44p1_mono-10mins.ogg'
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Create Datastore with Every Other File

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder)

ADS =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'

4 Classes

4-154

 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Create an audio datastore containing every other file of the original datastore.

indices = 1:2:numel(ADS.Files);
ADSsubset = subset(ADS,indices)

ADSsubset =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav';
 'B:\matlab\toolbox\audio\samples\Counting-16-44p1-mono-15secs.wav'
 ... and 12 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

indices — Indices of files for subset
vector of indices | logical vector

Specify indices as:

• A vector containing the indices of files to be included in ADSsubset.
• A logical vector the same length as the number of files in ADS. If specifying indices as a logical

vector, true indicates that the corresponding files are included in ADSsubset.

Data Types: double | logical

Output Arguments
ADSsubset — Subset of audio datastore
audioDatastore object

Subset of audio datastore, returned as an audioDatastore object.

 subset

4-155

See Also
audioDatastore | splitEachLabel

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using LSTM Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

4 Classes

4-156

shuffle
Shuffle files in datastore

Syntax
shuffledADS = shuffle(ADS)

Description
shuffledADS = shuffle(ADS) creates a deep copy of the input datastore, ADS, and shuffles the
files using randperm.

Examples

Shuffle Files

Create an audioDatastore object ADS. Shuffle the files to create a new datastore containing the
same files in random order.

ADS = audioDatastore(fullfile(matlabroot,'toolbox','audio','samples'))

ADS =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

ADSshuffled = shuffle(ADS)

ADSshuffled =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\SoftGuitar-44p1_mono-10mins.ogg';
 'B:\matlab\toolbox\audio\samples\Engine-16-44p1-stereo-20sec.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }

 shuffle

4-157

 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

Input Arguments
ADS — Input audio datastore
audioDatastore object

Input audio datastore, specified as an audioDatastore object.

Output Arguments
shuffledADS — Shuffled audio datastore
audioDatastore object

Shuffled audio datastore, returned as an audioDatastore object containing randomly ordered files
from ADS.

See Also
audioDatastore

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using LSTM Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

4 Classes

4-158

hasdata
Return true if there is more data in datastore

Syntax
tf = hasdata(ADS)

Description
tf = hasdata(ADS) returns logical 1 (true) if there is data available to read from the datastore
specified by ADS. Otherwise, it returns logical 0 (false).

Examples

Keep Reading While Datastore Has Data

hasdata returns a logical scalar indicating whether or not there is unread data in the datastore. You
can use audioDatastore to read files sequentially until all data is read.

Specify the file path to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,'toolbox','audio','samples');

Create an audio datastore that points to the specified folder.

ADS = audioDatastore(folder);

While the datastore has unread data, read from the datastore.

while hasdata(ADS)
 data = read(ADS);
end

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

Output Arguments
tf — Indication if data is available to read
true | false

Indication is data is available to read from the datastore, returned as true or false.
Data Types: logical

 hasdata

4-159

See Also
audioDatastore | progress | read

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using LSTM Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

4 Classes

4-160

reset
Reset datastore read pointer to start of data

Syntax
reset(ADS)

Description
reset(ADS) resets the datastore read pointer to the start of the data. Resetting allows re-reading
from the same datastore.

Examples

Reset Audio Datastore to Initial State

Create an audioDatastore object ADS.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

While the datastore has unread files, call read in a loop to read files sequentially.

while hasdata(ADS)
 data = read(ADS);
end

Reset the datastore to the state where no data has been read from it. Read the first file from the
datastore.

reset(ADS)
data = read(ADS);

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

See Also
audioDatastore

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using LSTM Networks”

 reset

4-161

“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

4 Classes

4-162

readall
Read all audio files from datastore

Syntax
data = readall(ADS)

Description
data = readall(ADS) reads all audio files from the datastore.

If all the data in the datastore does not fit in memory, then readall returns an error.

Examples

Read All Data in Audio Datastore

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

Read all the data in the datastore.

readall(ADS)

ans=29×1 cell array
 { 539648x1 double}
 { 320512x4 double}
 { 227497x1 double}
 { 8000x1 double}
 { 685056x1 double}
 { 882688x2 double}
 { 24000x1 double}
 {1115760x2 double}
 {1214832x2 double}
 { 263304x16 double}
 { 180224x1 double}
 { 32768x1 double}
 {6076484x2 double}
 { 112893x1 double}
 { 913152x1 double}
 { 913152x1 double}
 ⋮

 readall

4-163

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

Output Arguments
data — All audio files in audio datastore
cell array

All files in the audio datastore, returned as a cell array where each cell corresponds to a file.

See Also
audioDatastore | read

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using LSTM Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

4 Classes

4-164

read
Read next consecutive audio file

Syntax
data = read(ADS)
[data,info] = read(ADS)

Description
data = read(ADS) returns audio extracted from the datastore. Each subsequent call to the read
function continues reading from the endpoint of the previous call.

[data,info] = read(ADS) also returns information about the extracted audio data.

Examples

Read Data in Audio Datastore

Specify the file path to the audio samples included with Audio Toolbox™. Create an audio datastore
that points to the specified folder.

folder = fullfile(matlabroot,'toolbox','audio','samples');
ADS = audioDatastore(folder);

While the audio datastore has unread files, read consecutive files from the datastore. Use progress
to monitor the fraction of files read.

while hasdata(ADS)
 data = read(ADS);
 fprintf('Fraction of files read: %.2f\n',progress(ADS))
end

Fraction of files read: 0.03
Fraction of files read: 0.07
Fraction of files read: 0.10
Fraction of files read: 0.14
Fraction of files read: 0.17
Fraction of files read: 0.21
Fraction of files read: 0.24
Fraction of files read: 0.28
Fraction of files read: 0.31
Fraction of files read: 0.34
Fraction of files read: 0.38
Fraction of files read: 0.41
Fraction of files read: 0.45
Fraction of files read: 0.48
Fraction of files read: 0.52
Fraction of files read: 0.55
Fraction of files read: 0.59
Fraction of files read: 0.62

 read

4-165

Fraction of files read: 0.66
Fraction of files read: 0.69
Fraction of files read: 0.72
Fraction of files read: 0.76
Fraction of files read: 0.79
Fraction of files read: 0.83
Fraction of files read: 0.86
Fraction of files read: 0.90
Fraction of files read: 0.93
Fraction of files read: 0.97
Fraction of files read: 1.00

Return Information About Data

Specify the file path to the audio samples you want to include in the audio datastore. In this example,
the samples are located on a local desktop. Create an audio datastore that points to the specified
folder.

folder = 'C:\Users\bhemmat\Desktop';
ADS = audioDatastore(folder,'LabelSource','foldernames');

When you read data from the datastore, you can additionally return information about the data as a
struct. The information struct contains the file name, any labels associated with the file, and the
sample rate of the file.

[data,info] = read(ADS);
info

info =

 struct with fields:

 SampleRate: 44100
 FileName: 'C:\Users\bhemmat\Desktop\Turbine-16-44p1-mono-22secs.wav'
 Label: Desktop

Input Arguments
ADS — Audio datastore
audioDatastore object

Specify ADS as an audioDatastore object.

Output Arguments
data — Audio data
M-by-N matrix

Audio data, returned as a M-by-N matrix, where:

• M –– Total samples per channel in file.

4 Classes

4-166

• N –– Number of channels in file.

info — Information about audio data
struct

Information about audio data, returned as a struct with the following fields:

• FileName –– Name of the current file.
• Label –– All labels of the file.
• SampleRate –– Sample rate of the file.

See Also
audioDatastore | hasdata | readall

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using LSTM Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

 read

4-167

audioDatastore
Datastore for collection of audio files

Description
Use an audioDatastore object to manage a collection of audio files, where each individual audio
file fits in memory, but the entire collection of audio files does not necessarily fit.

Creation
Syntax
ADS = audioDatastore(location)
ADS = audioDatastore(location,Name,Value)

Description

ADS = audioDatastore(location) creates a datastore ADS based on an audio file or collection of
audio files in location.

ADS = audioDatastore(location,Name,Value) specifies additional properties using one or
more name-value pair arguments.

Input Arguments

location — Files or folders to include in datastore
path | DsFileSet object

Files or folders included in the datastore, specified as a path or a DsFileSet object.

• path — Specify the path as a character vector, cell array of character vectors, string scalar, or a
string array, containing the location of files or folders. Specify location as a local path to files or
folders. If the files are not in the current folder, then local path must specify full or relative paths.
Files within subfolders of the specified folder are not automatically included in the datastore. You
can use the wildcard character (*) when specifying the local path. This character specifies that the
datastore include all matching files or all files in the matching folders.

• DsFileSet object — You also can specify location as a DsFileSet object. For more
information, see matlab.io.datastore.DsFileSet.

When location represents a folder, the datastore includes only supported file formats and ignores
any other format. To specify a custom list of file extensions to include in your datastore, see the
FileExtensions property.
Example: 'song.wav'
Example: '../dir/music/song.wav'
Example: {'C:\dir\music\song.wav','C:\dir\speech\english.mp3'}
Example: 'C:\dir\music*.ogg'

4 Classes

4-168

Data Types: char | string | cell

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ADS = audioDatastore('C:\dir\audiodata','FileExtensions','.ogg')

IncludeSubfolders — Subfolder inclusion flag
false (default) | true

Subfolder inclusion flag, specified as the comma-separated pair consisting of
'IncludeSubfolders' and true or false. Specify true to include all files and subfolders within
each folder or false to include only the files within each folder.

If you do not specify 'IncludeSubfolders', then the default value is false.
Example: 'IncludeSubfolders',true
Data Types: logical | double

LabelSource — Source providing label data
'none' (default) | 'foldernames'

Source providing label data, specified as the comma-separated pair consisting of 'LabelSource'
and 'none' or 'foldernames'. If 'none' is specified, then the Labels property is empty. If
'foldernames' is specified, then labels are assigned according to the folder names and stored in
the Labels property. You can later modify the labels by accessing the Labels property directly.
Data Types: char | string

FileExtensions — Audio file extensions
character vector | cell array of character vectors | string scalar | string array

Audio file extensions, specified as the comma-separated pair consisting of 'FileExtensions' and a
character vector, cell array of character vectors, string scalar, or string array. If you do not specify
'FileExtensions', then audioDatastore automatically includes all supported file types:

• .wav
• .avi
• .aif
• .aifc
• .aiff
• .mp3
• .au
• .snd
• .mp4
• .m4a
• .flac
• .ogg

 audioDatastore

4-169

• .mov

Example: 'FileExtensions','.wav'
Example: 'FileExtensions',{'.mp3','.mp4'}
Data Types: char | cell | string

In addition to these name-value pairs, you also can specify any of the properties on this page as
name-value pairs, except for the Files property.

Properties
Files — Files included in datastore
character vector | cell array of character vectors | string scalar | string array

Files included in the datastore, specified as a character vector, cell array of character vectors, string
scalar, or string array. Each character vector or string is a full path to a file. The location argument
in the audioDatastore defines Files when the datastore is created.
Data Types: char | cell | string

Folders — Folders used to create audio datastore
N-by-1 cell array of character vectors

This property is read-only.

Folders used to create the audio datastore, returned as an N-by-1 cell array of character vectors.
Each row specifies a unique folder containing audio files that the audioDatastore object points to.
Data Types: cell

Labels — File labels
categorical, logical, or numeric vector | cell array | string array | table

File labels for the files in the datastore, specified as a vector, a cell array, a string array, or a table.
The order of the labels in the array or table corresponds to the order of the associated files in the
datastore.

If you specify LabelSource as 'foldernames' when creating the audioDatastore object, then
the label name for a file is the name of the folder containing it. If you do not specify LabelSource as
'foldernames', then Labels is an empty cell array or string array. If you change the Files
property after the datastore is created, then the Labels property is not automatically updated to
incorporate the added fields.
Data Types: categorical | cell | logical | double | single | string | table

OutputDataType — Data type of output read
'double' (default) | 'native'

Data type of the output, specified as 'double' or 'native'.

• 'double' –– Double-precision normalized samples.
• 'native' –– Native data type found in the file. Refer to audioread for more information about

data types when OutputDataType is set to native.

The default value of this property is 'double'.

4 Classes

4-170

Data Types: char | string

AlternateFileSystemRoots — Alternate file system root paths
string row vector | cell array of string vectors | cell array of character vectors

Alternate file system root paths, specified as a string row vector, a cell array of string vectors, or a
cell array of character vectors. Use AlternateFileSystemRoots when you create a datastore on a
local machine but must access and process data on another machine (possibly of a different operating
system). Also, when processing data using Parallel Computing Toolbox and MATLAB Parallel Server™,
and the data is stored on your local machines with a copy of the data available on different platform
cloud or cluster machines, you must use AlternateFileSystemRoots to associate the root paths.

• To associate a set of root paths that are equivalent to one another, specify
AlternateFileSystemRoots as a string vector. For example:

["Z:\datasets","/mynetwork/datasets"]

• To associate multiple sets of root paths that are equivalent for the datastore, specify
AlternateFileSystemRoots as a cell array containing multiple rows, where each row
represents a set of equivalent root paths. Specify each row in the cell array as either a string
vector or a cell array of character vectors. For example:

• Specify AlternateFileSystemRoots as a cell array of string vectors.

{["Z:\datasets", "/mynetwork/datasets"]; ...
 ["Y:\datasets", "/mynetwork2/datasets","S:\datasets"]}

• Alternatively, specify AlternateFileSystemRoots as a cell array of cell arrays of character
vectors.

{{'Z:\datasets', '/mynetwork/datasets'}; ...
 {'Y:\datasets", '/mynetwork2/datasets','S:\datasets'}}

The value of AlternateFileSystemRoots must satisfy these conditions:

• Contains one or more rows, where each row specifies a set of equivalent root paths.
• Each row specifies multiple root paths, and each root path must contain at least two characters.
• Root paths are unique and are not subfolders of one another.
• Contains at least one root path entry that points to the location of the files.

Data Types: char | cell | string

SupportedOutputFormats — Formats supported for writing audio files
["wav","flac","ogg","mp4","m4a"]

This property is read-only.

Formats supported for writing audio files when using the writeall function, specified as
["wav","flac","ogg","mp4","m4a"].
Data Types: string

DefaultOutputFormat — Default output audio file format
"wav" (default)

This property is read-only.

 audioDatastore

4-171

Default output format for writing audio files when using the writeall function, specified as "wav".
Data Types: string

Object Functions
read Read next consecutive audio file
readall Read all audio files from datastore
reset Reset datastore read pointer to start of data
hasdata Return true if there is more data in datastore
shuffle Shuffle files in datastore
subset Create datastore with subset of files
preview Read first file from datastore for preview
progress Fraction of files read
splitEachLabel Splits datastore according to specified label proportions
countEachLabel Count number of unique labels
partition Partition datastore and return on partitioned portion
numpartitions Return estimate for reasonable number of partitions for parallel processing
combine Combine data from multiple datastores
transform Transform audio datastore
writeall Write datastore to files
isPartitionable Determine whether datastore is partitionable
isShuffleable Determine whether datastore is shuffleable

Examples

Create Audio Datastore

Specify the file path to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,'toolbox','audio','samples');

Create an audio datastore that points to the specified folder.

ADS = audioDatastore(folder)

ADS =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\Ambiance-16-44p1-mono-12secs.wav';
 'B:\matlab\toolbox\audio\samples\AudioArray-16-16-4channels-20secs.wav';
 ' ...\toolbox\audio\samples\ChurchImpulseResponse-16-44p1-mono-5secs.wav'
 ... and 26 more
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

4 Classes

4-172

Specify File Extensions to Include

Specify the file path to the audio samples included with Audio Toolbox™.

folder = fullfile(matlabroot,'toolbox','audio','samples');

Create an audio datastore that points to the .ogg files in the specified folder.

ADS = audioDatastore(folder,'FileExtension','.ogg')

ADS =
 audioDatastore with properties:

 Files: {
 'B:\matlab\toolbox\audio\samples\SoftGuitar-44p1_mono-10mins.ogg'
 }
 Folders: {
 'B:\matlab\toolbox\audio\samples'
 }
 AlternateFileSystemRoots: {}
 OutputDataType: 'double'
 Labels: {}
 SupportedOutputFormats: ["wav" "flac" "ogg" "mp4" "m4a"]
 DefaultOutputFormat: "wav"

See Also
datastore | mapreduce | tall

Topics
“Speech Command Recognition Using Deep Learning”
“Speaker Identification Using Pitch and MFCC”
“Denoise Speech Using Deep Learning Networks”
“Classify Gender Using LSTM Networks”
“Music Genre Classification Using Wavelet Time Scattering”

Introduced in R2018b

 audioDatastore

4-173

midimsg
Create MIDI message

Description
Create a MIDI message in MATLAB using midimsg. Create a MIDI device interface using
mididevice. Send and receive messages using midisend and midireceive. When you create a
MIDI message, you specify it as a MIDI message type.

For a tutorial on MIDI messages and interfacing with MIDI devices, see “MIDI Device Interface”.

Creation
Syntax
msg = midimsg('Note',channel,note,velocity,duration,timestamp)
msg = midimsg('NoteOn',channel,note,velocity,timestamp)
msg = midimsg('NoteOff',channel,note,velocity,timestamp)
msg = midimsg('ControlChange',channel,ccnumber,ccvalue,timestamp)
msg = midimsg('ProgramChange',channel,program,timestamp)
msg = midimsg('SystemExclusive',bytes,timestamp)
msg = midimsg('SystemExclusive',timestamp)
msg = midimsg('Data',bytes,timestamp)
msg = midimsg('EOX',timestamp)
msg = midimsg('TimingClock',timestamp)
msg = midimsg('Start',timestamp)
msg = midimsg('Continue',timestamp)
msg = midimsg('Stop',timestamp)
msg = midimsg('ActiveSensing',timestamp)
msg = midimsg('SystemReset',timestamp)
msg = midimsg('TuneRequest',timestamp)
msg = midimsg('MIDITimeCodeQuarterFrame',seq,value,timestamp)
msg = midimsg('SongPositionPointer',position,timestamp)
msg = midimsg('SongSelect',song,timestamp)

4 Classes

4-174

msg = midimsg('AllSoundOff',channel,timestamp)
msg = midimsg('ResetAllControllers',channel,timestamp)
msg = midimsg('LocalControl',channel,localcontrol,timestamp)
msg = midimsg('PolyOn',channel,timestamp)
msg = midimsg('MonoOn',channel,monoChannels,timestamp)
msg = midimsg('OmniOn',channel,timestamp)
msg = midimsg('OmniOff',channel,timestamp)
msg = midimsg('AllNotesOff',channel,timestamp)
msg = midimsg('PolyKeyPressure',channel,note,pressure,timestamp)
msg = midimsg('ChannelPressure',channel,pressure,timestamp)
msg = midimsg('PitchBend',channel,change,timestamp)
msg = midimsg
msg = midimsg(size)
msg = midimsg(0)

Description

msg = midimsg('Note',channel,note,velocity,duration,timestamp) returns two MIDI
messages: NoteOn and NoteOff, with specified Channel, Note, Velocity, and Timestamp
properties. The Timestamp property of the NoteOff message is determined as the Timestamp
property of the NoteOn message plus the duration.

msg = midimsg('NoteOn',channel,note,velocity,timestamp) returns a NoteOn midimsg,
with specified Channel, Note, Velocity, and Timestamp properties.

msg = midimsg('NoteOff',channel,note,velocity,timestamp) returns a NoteOff
midimsg, with specified Channel, Note, Velocity, and Timestamp properties.

msg = midimsg('ControlChange',channel,ccnumber,ccvalue,timestamp) returns a
ControlChange midimsg, with specified Channel, CCNumber, CCValue, and Timestamp
properties.

msg = midimsg('ProgramChange',channel,program,timestamp) returns a ProgramChange
midimsg, with specified Channel, Program, and Timestamp properties.

msg = midimsg('SystemExclusive',bytes,timestamp) returns a complete
SystemExclusive message sequence, with specified Timestamp property.

msg = midimsg('SystemExclusive',timestamp) returns a SystemExclusive midimsg, with
specified Timestamp property.

msg = midimsg('Data',bytes,timestamp) returns a Data midimsg for use in a System
Exclusive message, with specified MsgBytes and Timestamp properties. bytes is specified as a
scalar, vector, or multi-dimensional array of elements. Each element of bytes must be in the range
[0,127].

msg = midimsg('EOX',timestamp) returns an EOX midimsg, with specified Timestamp property.

msg = midimsg('TimingClock',timestamp) returns a TimingClock midimsg, with specified
Timestamp property.

msg = midimsg('Start',timestamp) returns a Start midimsg, with specified Timestamp
property.

 midimsg

4-175

msg = midimsg('Continue',timestamp) returns a Continue midimsg, with specified
Timestamp property.

msg = midimsg('Stop',timestamp) returns a Stop midimsg, with specified Timestamp
property.

msg = midimsg('ActiveSensing',timestamp) returns a ActiveSensing midimsg, with
specified Timestamp property.

msg = midimsg('SystemReset',timestamp) returns a SystemReset midimsg, with specified
Timestamp property.

msg = midimsg('TuneRequest',timestamp) returns a TuneRequest midimsg, with specified
Timestamp property.

msg = midimsg('MIDITimeCodeQuarterFrame',seq,value,timestamp) returns a
MIDITimeCodeQuarterFrame midimsg, with specified TimeCodeSequence, TimeCodeValue, and
Timestamp properties.

msg = midimsg('SongPositionPointer',position,timestamp) returns a
SongPositionPointer midimsg, with specified SongPosition and Timestamp properties.

msg = midimsg('SongSelect',song,timestamp) returns a SongSelect midimsg, with
specified Song and Timestamp properties.

msg = midimsg('AllSoundOff',channel,timestamp) returns a AllSoundOff midimsg, with
specified Channel and Timestamp properties.

msg = midimsg('ResetAllControllers',channel,timestamp) returns a
ResetAllControllers midimsg, with specified Channel and Timestamp properties.

msg = midimsg('LocalControl',channel,localcontrol,timestamp) returns a
LocalControl midimsg, with specified Channel, LocalControl, and Timestamp properties.

msg = midimsg('PolyOn',channel,timestamp) returns a PolyOn midimsg, with specified
Channel and Timestamp properties.

msg = midimsg('MonoOn',channel,monoChannels,timestamp) returns a MonoOn midimsg,
with specified Channel, MonoChannels, and Timestamp properties.

msg = midimsg('OmniOn',channel,timestamp) returns an OmniOn midimsg, with specified
Channel and Timestamp properties.

msg = midimsg('OmniOff',channel,timestamp) returns an OmniOff midimsg, with specified
Channel and Timestamp properties.

msg = midimsg('AllNotesOff',channel,timestamp) returns an AllNotesOff midimsg, with
specified Channel and Timestamp properties.

msg = midimsg('PolyKeyPressure',channel,note,pressure,timestamp) returns a
PolyKeyPressure midimsg, with specified Channel, Note, Pressure, and Timestamp properties.

msg = midimsg('ChannelPressure',channel,pressure,timestamp) returns a
ChannelPressure midimsg, with specified Channel, Pressure, and Timestamp properties.

4 Classes

4-176

msg = midimsg('PitchBend',channel,change,timestamp) returns a PitchBend midimsg,
with specified Channel, PitchChange, and Timestamp properties.

msg = midimsg returns a scalar midimsg with all zero bytes. All zero bytes indicates a MIDI
message with Type set to Data.

msg = midimsg(size) returns a midimsg array of size with all zero bytes.

msg = midimsg(0) returns an empty midimsg.

Note If timestamp is listed as an argument, it is optional and defaults to zero. The exception is the
'SystemExclusive',bytes,timestamp syntax, in which case the timestamp argument is
required.

Properties
Type — Type of MIDI message
NoteOn | NoteOff | ControlChange | ProgramChange | SystemExclusive | Data | EOX | ...

This property is read-only.

Type of MIDI message, returned as one of the following midimsgtype enumeration values:

NoteOn Data Stop SongPosition
Pointer

PolyOn PolyKeyPress
ure

NoteOff EOX ActiveSensin
g

SongSelect MonoOn ChannelPress
ure

ControlChang
e

TimingClock SystemReset AllSoundOff OmniOn PitchBendCha
nge

ProgramChang
e

Start TuneRequest ResetAllCont
rollers

OmniOff Undefined

SystemExclus
ive

Continue MIDITimeCode
QuarterFrame

LocalControl AllNotesOff

You can specify the type of MIDI message during creation as a character vector, string, or member of
the midimsgtype enumeration.

For example, the following create equivalent MIDI messages:

• midimsg('SongPositionPointer',1)
• midimsg("SongPositionPointer",1)
• midimsg(midimsgtype.SongPositionPointer,1)

NumMsgBytes — Number of bytes in MIDI message
scalar | vector | array

This property is read-only.

Number of bytes in the MIDI message, returned as a scalar, vector, or array the same size as msg.
Data Types: double

 midimsg

4-177

MsgBytes — Actual bytes of constructed MIDI message (decimal)
scalar | vector | array

This property is read-only.

Actual bytes of the constructed MIDI message in decimal, returned as a scalar, vector, or array the
same size as msg.
Data Types: uint8

Timestamp — Location in time for MIDI message
scalar | vector | array

Location in time for the MIDI message, specified as a scalar, vector, or array the same size as msg.

You can specify the timestamp as any numeric value. However, the timestamp is always stored and
returned as type double.

For more on how MIDI timestamps are implemented in Audio Toolbox, see “MIDI Message Timing”.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Channel — MIDI channel to which message is addressed
integer in the range [1,16]

MIDI channel to which message is addressed, specified as an integer in the range [1,16].

Dependencies

This property is valid only for NoteOn, NoteOff, PolyKeyPressure, AllSoundOff,
ResetAllControllers, LocalControl, AllNotesOff, OmniOn, OmniOff, MonoOn, PolyOn,
ControlChange, ProgramChange, ChannelPressure, and PitchBend midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Note — MIDI note number
integer in the range [0,127]

MIDI note number, specified as an integer in the range [0,127]. The MIDI specification defines note
number 60 as Middle C, and all other notes are relative. MIDI devices and software define the
mapping between a note and a MIDI note number. If Middle C is arbitrarily assumed to be C5 for the
target MIDI hardware or software, the following table maps between MIDI note numbers and notes:

4 Classes

4-178

Dependencies

This property is valid only for NoteOn, NoteOff, and PolyKeyPressure midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Velocity — Velocity of MIDI message
integer in the range [0,127]

Velocity of MIDI message, specified as a scalar integer in the range [0,127]. Velocity describes how
fast, or "hard," a note is played. A higher number corresponds to faster velocity.

Dependencies

This property is valid only for NoteOn and NoteOff midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

KeyPressure — Key pressure
integer in the range [0,127]

Key pressure, specified as a scalar integer in the range [0,127]. Key pressure applies aftertouch to an
individual note. For example, on a keyboard, key pressure describes the pressure applied to a key
after that key has been struck (after a NoteOn message is sent). You can use KeyPressure to add
expression to held notes.

Dependencies

This property is valid only for PolyKeyPressure midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LocalControl — Enable local control
true | false

Enable local control, specified as true or false. When local control is set to false, all devices on a
given channel respond only to data received over MIDI.

 midimsg

4-179

Dependencies

This property is valid only for LocalControl midimsg objects.
Data Types: logical

MonoChannels — Channels for MonoOn messages
integer in the range [0,16]

Channels for MonoOn messages, specified as a scalar integer in the range [0,16].
Dependencies

This property is valid only for MonoOn midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CCNumber — Control change number
integer in the range [0,119]

Control change number, specified as an integer in the range [0,119].
Dependencies

This property is valid only for ControlChange midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

CCValue — Control change value
integer in the range [0,127]

Control change value, specified as an integer in the range [0,127].
Dependencies

This property is valid only for ControlChange midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Program — Program number to switch to
integer in the range [0,127]

Program number to switch to, specified as an integer in the range [0,127].
Dependencies

This property is valid only for ProgramChange midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ChannelPressure — Channel pressure
integer in the range [0,127]

Channel pressure, specified as an integer in the range [0,127]. Key pressure applies aftertouch to all
notes in a channel.
Dependencies

This property is valid only for ChannelPressure midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

4 Classes

4-180

PitchChange — Amount of pitch change to apply
integer in the range [0,16383]

Amount of pitch change to apply, specified as an integer in the range [0,16383]. The center position
(no effect) is 8192. Sensitivity is a function of the receiver.

Dependencies

This property is valid only for PitchBend midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TimeCodeSequence — Sequence number
integer in the range [0,7]

Sequence number, specified as an integer in the range [0,7].

Dependencies

This property is valid only for MIDITimeCodeQuarterFrame midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

TimeCodeValue — Time code value
integer in the range [0,15]

Time code value, specified as an integer in the range [0,15].

Dependencies

This property is valid only for MIDITimeCodeQuarterFrame midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SongPosition — Position in song to go to
integer in the range [0,16383]

Position in song to go to, specified as an integer in the range [0,16383].

Dependencies

This property is valid only for SongPositionPointer midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Song — Song number to switch to
integer in the range [0,127]

Song number to switch to, specified as an integer in the range [0,127].

Dependencies

This property is valid only for SongSelect midimsg objects.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Examples

 midimsg

4-181

Create Note Messages

You can create MIDI note messages using the NoteOn and NoteOff midimsg objects. A NoteOn
message indicates that a note should begin playing. A NoteOff message indicates that a note should
stop playing. Alternatively, you can send a second NoteOn message with velocity set to zero to
indicate that the note should stop playing. The Audio Toolbox® provides a convenience syntax to
create pairs of note on and note off messages.

Create a pair of MIDI messages to indicate a Note On and Note Off sequence using the Note
convenience syntax. Specify that the note starts after one second, and has a duration of two seconds.

channel = 1;
note = 60;
velocity = 64;
duration = 2;
timestamp = 1;
msgs = midimsg('Note',channel,note,velocity,duration,timestamp)

msgs=2×1 object
 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 64 Timestamp: 1 [90 3C 40]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 3 [90 3C 00]

Two midimsg objects are created and returned as an array. The Note syntax returns the note off
message as a NoteOn midimsg object with Velocity set to zero.

To create Note On and Note Off messages separately, create two NoteOn messages and concatenate
them.

msgs = [midimsg('NoteOn',channel,note,velocity,timestamp), ...
 midimsg('NoteOn',channel,note,0,3)]

msgs=1×2 object
 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 64 Timestamp: 1 [90 3C 40]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 3 [90 3C 00]

You can also specify the Note Off using a NoteOff midimsg object. Using the NoteOff syntax
enables you to specify a release velocity.

 msgs = [midimsg('NoteOn',channel,note,velocity,timestamp), ...
 midimsg('NoteOff',channel,note,velocity,3)]

msgs=1×2 object
 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 64 Timestamp: 1 [90 3C 40]
 NoteOff Channel: 1 Note: 60 Velocity: 64 Timestamp: 3 [80 3C 40]

Control Change Messages for Control Surfaces

To create a control change message, specify the midimsg Type as ControlChange and set the
required parameters: Channel, CCNumber, and CCValue. To determine the channel and control

4 Classes

4-182

number assigned to your MIDI control surface, use midiid. Enter midiid at the Command Prompt
and then move the control you want to identify.

[ccInfo,deviceName] = midiid;

Move the control you wish to identify; type ^C to abort.
Waiting for control message... done

midiid returns the control change number and channel as a single number according to the
following formula: ccInfo = (Channel*1000 + CCNumber). Define a MIDI Control Change
message to move the identified controller. Your MIDI Control Surface must be bidirectional to receive
Control Change messages.

channel = floor(ccInfo/1000);
ccnumber = ccInfo - channel*1000;
ccvalue = 1;
msg = midimsg('ControlChange',channel,ccnumber,ccvalue)

msg =
 MIDI message:
 ControlChange Channel: 1 CCNumber: 16 CCValue: 1 Timestamp: 0 [B0 10 01]

Create a mididevice object using the deviceName identified using midiid. Send the MIDI
message to your device.

device = mididevice(deviceName);
midisend(device,msg);

Create a Program Change Message

Program Change messages, sometimes called "patch change" messages, specify how notes are
interpreted. For example, a Program Change message can specify the instrument being played. To
create a ProgramChange midimsg object, specify the midimsg type as ProgramChange, and the
required property values: Channel and Program.

channel = 4;
program = 7;
msg = midimsg('ProgramChange',channel,program)

msg =
 MIDI message:
 ProgramChange Channel: 4 Program: 7 Timestamp: 0 [C3 07]

Create a System Exclusive Message

System Exclusive messages are defined by a sequence of midimsg objects: SystemExclusive,
Data, and EOX. To create a System Exclusive sequence, specify the SystemExclusive midimsg
type during creation and then specify the bytes of the message. This syntax requires a timestamp.

bytes = [0 1 2];
timestamp = 0;
msg = midimsg('SystemExclusive',bytes,timestamp)

 midimsg

4-183

msg=3×1 object
 MIDI message:
 SystemExclusive Timestamp: 0 [F0]
 Data Timestamp: 0 [00 01 02]
 EOX Timestamp: 0 [F7]

You can also create the SystemExclusive, Data, and EOX midimsg objects individually. For
example, the following midimsg array is the same as the preceding.

msg = [midimsg('SystemExclusive',timestamp), ...
 midimsg('Data',bytes,timestamp), ...
 midimsg('EOX',timestamp)]

msg=1×3 object
 MIDI message:
 SystemExclusive Timestamp: 0 [F0]
 Data Timestamp: 0 [00 01 02]
 EOX Timestamp: 0 [F7]

Create a Scalar Default MIDI Message

The default MIDI message is a scalar with all zero bytes, and Type is Data.

msg = midimsg

msg =
 MIDI message:
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]

Preallocate Array of MIDI Messages

You can create a MIDI message array by specifying the size by a scalar or row vector.

If you specify the size as a scalar M, midimsg returns an M-by-M array with all zero bytes.

msg = midimsg(2)

msg=2×2 object
 MIDI message:
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]

An array of MIDI messages is always displayed vertically in order of their linear indexing. You can
refer to individual elements of the array by specifying its position in each dimension, or by its linear
index. For example, change the Timestamp of the third element from 0 to 2 using linear
indexing, and then from 2 to 3 using first dimensional indexing.

msg(3).Timestamp = 2

4 Classes

4-184

msg=2×2 object
 MIDI message:
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 2 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]

msg(1,2).Timestamp = 3

msg=2×2 object
 MIDI message:
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 3 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]

You can also specify nonsymmetric arrays. If you specify the size as a row vector of two or more
elements, midimsg returns an M-by-N-by-...-X multidimensional array. For example, to specify a three
dimensional array with each dimension having a different number of elements, specify the size as a
row vector of three elements.

msg = midimsg([2,1,3])

msg =
 MIDI message:
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]
 Data Timestamp: 0 [00 00 00 00 00 00 00 00]

size(msg)

ans = 1×3

 2 1 3

Create Empty MIDI Message

msg = midimsg(0)

msg =

 empty MIDI message array

Manipulate Array of MIDI Messages

In this example, you create an array of MIDI messages, and then index into the array in a loop to
define a melody.

 midimsg

4-185

Create a 22-by-1 array of MIDI messages with all zero data.

msgArray = midimsg([22,1]);

To create a melody, create MIDI NoteOn and NoteOff messages by indexing in a loop. Display the
result.

melody = [60,65,60,57,55,53,60,65,60,67,60];
for i = 1:numel(melody)
 idx = (2*i-1):(2*i);
 msgArray(idx) = midimsg('Note',1,melody(i),50,0.5,i);
end
msgArray

msgArray=22×1 object
 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 1 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 1.5 [90 3C 00]
 NoteOn Channel: 1 Note: 65 Velocity: 50 Timestamp: 2 [90 41 32]
 NoteOn Channel: 1 Note: 65 Velocity: 0 Timestamp: 2.5 [90 41 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 3 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 3.5 [90 3C 00]
 NoteOn Channel: 1 Note: 57 Velocity: 50 Timestamp: 4 [90 39 32]
 NoteOn Channel: 1 Note: 57 Velocity: 0 Timestamp: 4.5 [90 39 00]
 NoteOn Channel: 1 Note: 55 Velocity: 50 Timestamp: 5 [90 37 32]
 NoteOn Channel: 1 Note: 55 Velocity: 0 Timestamp: 5.5 [90 37 00]
 NoteOn Channel: 1 Note: 53 Velocity: 50 Timestamp: 6 [90 35 32]
 NoteOn Channel: 1 Note: 53 Velocity: 0 Timestamp: 6.5 [90 35 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 7 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 7.5 [90 3C 00]
 NoteOn Channel: 1 Note: 65 Velocity: 50 Timestamp: 8 [90 41 32]
 NoteOn Channel: 1 Note: 65 Velocity: 0 Timestamp: 8.5 [90 41 00]
 ⋮

The order of the MIDI messages in the array is only important for readability. When you send MIDI
messages using a mididevice object, the mididevice object reorders your MIDI messages
according to their timestamps and sends them in chronological order. Create a PitchBend MIDI
message to bend the fourth note downward and add it to the MIDI message array. For readability, sort
the MIDI message array by Timestamp.

msg = midimsg('PitchBend',1,7192,4.01);
msgArray = [msgArray;msg]

msgArray=23×1 object
 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 1 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 1.5 [90 3C 00]
 NoteOn Channel: 1 Note: 65 Velocity: 50 Timestamp: 2 [90 41 32]
 NoteOn Channel: 1 Note: 65 Velocity: 0 Timestamp: 2.5 [90 41 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 3 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 3.5 [90 3C 00]
 NoteOn Channel: 1 Note: 57 Velocity: 50 Timestamp: 4 [90 39 32]
 NoteOn Channel: 1 Note: 57 Velocity: 0 Timestamp: 4.5 [90 39 00]
 NoteOn Channel: 1 Note: 55 Velocity: 50 Timestamp: 5 [90 37 32]
 NoteOn Channel: 1 Note: 55 Velocity: 0 Timestamp: 5.5 [90 37 00]
 NoteOn Channel: 1 Note: 53 Velocity: 50 Timestamp: 6 [90 35 32]
 NoteOn Channel: 1 Note: 53 Velocity: 0 Timestamp: 6.5 [90 35 00]

4 Classes

4-186

 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 7 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 7.5 [90 3C 00]
 NoteOn Channel: 1 Note: 65 Velocity: 50 Timestamp: 8 [90 41 32]
 NoteOn Channel: 1 Note: 65 Velocity: 0 Timestamp: 8.5 [90 41 00]
 ⋮

timeStamps = [msgArray.Timestamp];
[~,idx] = sort(timeStamps);

msgArray = msgArray(idx)

msgArray=23×1 object
 MIDI message:
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 1 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 1.5 [90 3C 00]
 NoteOn Channel: 1 Note: 65 Velocity: 50 Timestamp: 2 [90 41 32]
 NoteOn Channel: 1 Note: 65 Velocity: 0 Timestamp: 2.5 [90 41 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 3 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 3.5 [90 3C 00]
 NoteOn Channel: 1 Note: 57 Velocity: 50 Timestamp: 4 [90 39 32]
 PitchBend Channel: 1 PitchChange: 7192 Timestamp: 4.01 [E0 18 38]
 NoteOn Channel: 1 Note: 57 Velocity: 0 Timestamp: 4.5 [90 39 00]
 NoteOn Channel: 1 Note: 55 Velocity: 50 Timestamp: 5 [90 37 32]
 NoteOn Channel: 1 Note: 55 Velocity: 0 Timestamp: 5.5 [90 37 00]
 NoteOn Channel: 1 Note: 53 Velocity: 50 Timestamp: 6 [90 35 32]
 NoteOn Channel: 1 Note: 53 Velocity: 0 Timestamp: 6.5 [90 35 00]
 NoteOn Channel: 1 Note: 60 Velocity: 50 Timestamp: 7 [90 3C 32]
 NoteOn Channel: 1 Note: 60 Velocity: 0 Timestamp: 7.5 [90 3C 00]
 NoteOn Channel: 1 Note: 65 Velocity: 50 Timestamp: 8 [90 41 32]
 ⋮

See Also
mididevice | midireceive | midisend

Topics
“MIDI Device Interface”

External Websites
MIDI Manufacturers Association

Introduced in R2018a

 midimsg

4-187

https://www.midi.org/

mididevice
Send and receive MIDI messages

Description
Interface to a MIDI device in MATLAB using mididevice. Package MIDI messages using midimsg.
Send and receive messages using midisend and midireceive. Use mididevinfo to query your
system for available MIDI devices.

For a tutorial on interfacing with MIDI devices, see “MIDI Device Interface”.

Creation
Syntax
device = mididevice(deviceNameOrID)
device = mididevice('Input',inDeviceNameOrID)
device = mididevice('Output',outDeviceNameOrID)
device = mididevice('Input',inDeviceNameOrID,'Output',outDeviceNameOrID)

Description

device = mididevice(deviceNameOrID) returns an interface to the MIDI device specified by
deviceNameOrID. If the MIDI device supports MIDI in and MIDI out, then device also supports
MIDI in and MIDI out.

device = mididevice('Input',inDeviceNameOrID) returns an input interface to the MIDI
input device, inDeviceNameOrID.

device = mididevice('Output',outDeviceNameOrID) returns an output interface to the MIDI
output device, outDeviceNameOrID.

device = mididevice('Input',inDeviceNameOrID,'Output',outDeviceNameOrID)
returns a MIDI I/O interface, where input is received from inDeviceNameOrID and output is sent to
outDeviceNameOrID.

4 Classes

4-188

Properties
Input — Input device name associated with mididevice
empty char array (default)

This property is read-only.

Input device name attached to your mididevice object, returned as a character array.

Input is set during the creation of the mididevice object and cannot be modified later.
Data Types: char

Output — Output device name associated with mididevice
empty char array (default)

This property is read-only.

Output device name attached to your mididevice object, returned as a character array

Output is set during the creation of the mididevice object and cannot be modified later.
Data Types: char

InputID — Input device ID associated with mididevice
-1 (default)

This property is read-only.

Unique MIDI input device ID attached to your mididevice object, returned as a scalar double. If
your system includes different MIDI devices with the same name, using the device ID removes
ambiguity.

InputID is set during the creation of the mididevice object and cannot be modified later.
Data Types: double

OutputID — Output device name associated with mididevice
-1 (default)

This property is read-only.

Unique MIDI output device ID attached to your mididevice object, returned as a scalar double. If
your system includes different MIDI devices with the same name, using the device ID removes
ambiguity.

OutputID is set during the creation of the mididevice object and cannot be modified later.
Data Types: double

Object Functions
midisend Send MIDI message to MIDI device
midireceive Receive MIDI message from MIDI device
hasdata Determine if data is available to read from MIDI device

 mididevice

4-189

Examples

Connect Input and Output to Single MIDI Device

Query your system for available MIDI devices.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'USB MIDI Interface '
 2 output MMSystem 'Microsoft GS Wavetable Synth'
 3 output MMSystem 'USB MIDI Interface '

Create a MIDI device object to interface with your selected device. If you specify a single MIDI device
object, and it is capable of both input and output, mididevice connects to both the input and output.

device = mididevice('USB MIDI Interface ')

device =
 mididevice connected to
 Input: 'USB MIDI Interface ' (1)
 Output: 'USB MIDI Interface ' (3)

Connect Input to MIDI Device

Query your system for MIDI devices.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'USB MIDI Interface '
 2 output MMSystem 'Microsoft GS Wavetable Synth'
 3 output MMSystem 'USB MIDI Interface '

Create a MIDI device object to interface with your selected input device. As soon as you create the
MIDI device object, it begins listening for MIDI messages and storing them in a buffer.

device = mididevice('Input','USB MIDI Interface ');

Connect Output to MIDI Device

Query your system for available MIDI devices.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'

4 Classes

4-190

 1 input MMSystem 'USB MIDI Interface '
 2 output MMSystem 'Microsoft GS Wavetable Synth'
 3 output MMSystem 'USB MIDI Interface '

Create a MIDI device object to interface with your selected output device.

device = mididevice('Output','USB MIDI Interface ')

device =
 mididevice connected to
 Output: 'USB MIDI Interface ' (3)

Connect Input and Output to Different MIDI Devices

Query your system for available MIDI devices.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'USB MIDI Interface '
 2 output MMSystem 'Microsoft GS Wavetable Synth'
 3 output MMSystem 'USB MIDI Interface '

Create a MIDI device object that receives data from one device and sends data to another device. In
this example, the MIDI device object receives MIDI messages from the 'USB MIDI Interface '
device and sends data to the 'Microsoft GS Wavetable Synth' virtual output device. To avoid
ambiguity, the MIDI devices are specified by the device IDs.

device = mididevice('Input',1,'Output',2)

device =
 mididevice connected to
 Input: 'USB MIDI Interface ' (1)
 Output: 'Microsoft GS Wavetable Synth' (2)

See Also
mididevinfo | midimsg | midireceive | midisend

Topics
“MIDI Device Interface”

External Websites
MIDI Manufacturers Association

Introduced in R2018a

 mididevice

4-191

https://www.midi.org/

hasdata
Determine if data is available to read from MIDI device

Syntax
tf = hasdata(device)

Description
tf = hasdata(device) returns logical 1 (true) if there is data available to read from the
mididevice specified by device. Otherwise, it returns logical 0 (false).

Examples

Determine if Data Is Available to Receive

Create a mididevice object to interface with your MIDI device. Query your system for available
MIDI devices.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'nanoKONTROL2'
 2 input MMSystem 'USB Uno MIDI Interface'
 3 output MMSystem 'Microsoft GS Wavetable Synth'
 4 output MMSystem 'nanoKONTROL2'
 5 output MMSystem 'USB Uno MIDI Interface'

device = mididevice('USB Uno MIDI Interface')

device =
 mididevice connected to
 Input: 'USB Uno MIDI Interface' (2)
 Output: 'USB Uno MIDI Interface' (5)

As soon as your mididevice object is created, it begins listening for MIDI messages and storing
them in a buffer. When you call midireceive, MIDI messages are retrieved from the buffer and
returned. You can use hasdata to query whether your mididevice object buffer contains unread
MIDI messages.

hasdata(device)

ans = logical
 0

4 Classes

4-192

Input Arguments
device — mididevice object
mididevice object

Specify device as an object created by mididevice.

See Also
mididevice | mididevinfo | midimsg | midisend

Topics
“MIDI Device Interface”

External Websites
MIDI Manufacturers Association

Introduced in R2018a

 hasdata

4-193

https://www.midi.org/

midireceive
Receive MIDI message from MIDI device

Syntax
msgs = midireceive(device)
msgs = midireceive(device,maxmsgs)

Description
msgs = midireceive(device) returns the MIDI messages, msgs, received from a MIDI device
using the MIDI device interface, device.

msgs = midireceive(device,maxmsgs) specifies the maximum number of MIDI messages to
return as maxmsgs.

Examples

Receive MIDI Messages

To determine what MIDI devices are attached to your MIDI input ports, call mididevinfo. Use the
availableDevices struct to specify a valid MIDI device to create a mididevice object.

availableDevices = mididevinfo;
device = mididevice(availableDevices.input(1).ID);

Once your MIDI device object is created, it begins listening to MIDI messages from your specified
device and storing them in a buffer. To get all MIDI messages in the buffer, call midireceive. In this
example, several keys on a MIDI keyboard are played.

msgs = midireceive(device)

msgs =

 MIDI message:
 NoteOn Channel: 1 Note: 52 Velocity: 64 Timestamp: 3.94 [90 34 40]
 NoteOn Channel: 1 Note: 52 Velocity: 0 Timestamp: 4.179 [90 34 00]
 NoteOn Channel: 1 Note: 48 Velocity: 64 Timestamp: 4.19 [90 30 40]
 NoteOn Channel: 1 Note: 47 Velocity: 64 Timestamp: 4.382 [90 2F 40]
 NoteOn Channel: 1 Note: 48 Velocity: 0 Timestamp: 4.459 [90 30 00]
 NoteOn Channel: 1 Note: 48 Velocity: 64 Timestamp: 4.59 [90 30 40]
 NoteOn Channel: 1 Note: 47 Velocity: 0 Timestamp: 4.776 [90 2F 00]
 NoteOn Channel: 1 Note: 50 Velocity: 64 Timestamp: 4.788 [90 32 40]
 NoteOn Channel: 1 Note: 47 Velocity: 64 Timestamp: 4.802 [90 2F 40]
 NoteOn Channel: 1 Note: 52 Velocity: 64 Timestamp: 4.831 [90 34 40]
 NoteOn Channel: 1 Note: 47 Velocity: 0 Timestamp: 4.84 [90 2F 00]
 NoteOn Channel: 1 Note: 48 Velocity: 0 Timestamp: 4.912 [90 30 00]
 NoteOn Channel: 1 Note: 52 Velocity: 0 Timestamp: 4.953 [90 34 00]
 NoteOn Channel: 1 Note: 50 Velocity: 0 Timestamp: 5.079 [90 32 00]

Reading from the buffer clears the data. For example, if no more MIDI messages are sent, and the
buffer is reread, midireceive returns an empty MIDI message.

msgs = midireceive(device)

4 Classes

4-194

msgs =

 empty MIDI message array

Receive Limited Number of MIDI Messages

Query your system for available output from MIDI devices. Specify that the output of a MIDI device is
connected to the input of your mididevice object.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'USB MIDI Interface '
 2 output MMSystem 'Microsoft GS Wavetable Synth'
 3 output MMSystem 'USB MIDI Interface '

device = mididevice('Input','USB MIDI Interface ');

Once your MIDI device object is created, it begins listening to MIDI messages from your specified
device and storing them in a buffer. To get a limited number of MIDI messages from the buffer, call
midireceive and specify the maximum number of messages to return. In this example, five keys are
played on a MIDI device. A maximum of four MIDI messages are received at each call to
midireceive.

midireceive(device,4)

ans =

 MIDI message:
 NoteOn Channel: 1 Note: 36 Velocity: 64 Timestamp: 2929.71 [90 24 40]
 NoteOn Channel: 1 Note: 36 Velocity: 0 Timestamp: 2929.91 [90 24 00]
 NoteOn Channel: 1 Note: 37 Velocity: 64 Timestamp: 2930.43 [90 25 40]
 NoteOn Channel: 1 Note: 37 Velocity: 0 Timestamp: 2930.59 [90 25 00]

midireceive(device,4)

ans =

 MIDI message:
 NoteOn Channel: 1 Note: 38 Velocity: 64 Timestamp: 2931.16 [90 26 40]
 NoteOn Channel: 1 Note: 38 Velocity: 0 Timestamp: 2931.32 [90 26 00]
 NoteOn Channel: 1 Note: 39 Velocity: 64 Timestamp: 2931.87 [90 27 40]
 NoteOn Channel: 1 Note: 39 Velocity: 0 Timestamp: 2932.01 [90 27 00]

midireceive(device,4)

ans =

 MIDI message:
 NoteOn Channel: 1 Note: 40 Velocity: 64 Timestamp: 2932.52 [90 28 40]
 NoteOn Channel: 1 Note: 40 Velocity: 0 Timestamp: 2932.66 [90 28 00]

Input Arguments
device — Object of mididevice
object of mididevice

Specify device as an object created by mididevice.

 midireceive

4-195

maxmsgs — Maximum number of messages to return
positive integer scalar

Maximum number of messages to return, specified as a positive integer scalar.
Data Types: double

Output Arguments
msgs — Object of midimsg
scalar | column vector

Object of midimsg, returned as a scalar or column vector. The number of MIDI messages in the
mididevice buffer and maxmsgs determine the size of msgs.

See Also
mididevice | mididevinfo | midimsg | midisend

Topics
“MIDI Device Interface”

External Websites
MIDI Manufacturers Association

Introduced in R2018a

4 Classes

4-196

https://www.midi.org/

midisend
Send MIDI message to MIDI device

Syntax
midisend(device,msg)
midisend(device,varargin)

Description
midisend(device,msg) sends the MIDI message, msg, to a MIDI device using the MIDI device
interface, device.

midisend(device,varargin) creates MIDI messages using varargin and then sends the MIDI
messages. The varargin syntax is for convenience and includes a call to midimsg with the call to
midisend.

Examples

Send MIDI Messages to Device

Query your system for available MIDI device output ports. Use the availableDevices struct to
specify a valid MIDI device and create a mididevice object.

availableDevices = mididevinfo;
device = mididevice(availableDevices.output(2).ID);

Create a pair of NoteOn messages (to indicate Note On and Note Off) and send them to your selected
MIDI device.

msgs = midimsg('Note',1,48,64,0.25);
midisend(device,msgs)

Define and Send MIDI Messages to Device

midisend enables you to combine the definition and sending of a midimsg into a single function call.
Send middle C on channel 3 with velocity 64.

mididevinfo

 MIDI devices available:
 ID Direction Interface Name
 0 output MMSystem 'Microsoft MIDI Mapper'
 1 input MMSystem 'nanoKONTROL2'
 2 input MMSystem 'USB Uno MIDI Interface'
 3 output MMSystem 'Microsoft GS Wavetable Synth'
 4 output MMSystem 'nanoKONTROL2'
 5 output MMSystem 'USB Uno MIDI Interface'

 midisend

4-197

device = mididevice('USB Uno MIDI Interface')

device =
 mididevice connected to
 Input: 'USB Uno MIDI Interface' (2)
 Output: 'USB Uno MIDI Interface' (5)

midisend(device,'NoteOn',3,60,64)

Compile and Play MIDI Messages

Get the name of an available output MIDI device on your system.

mInfo = mididevinfo;

Disregard cmd.exe warnings about UNC directory pathnames.
Disregard cmd.exe warnings about UNC directory pathnames.

midiDeviceName = mInfo.output(1).Name;

Create a mididevice object.

device = mididevice(midiDeviceName);

Create a MIDI message array.

msgs = [];
for ii = 1:8
 msgs = [msgs;midimsg('Note',1,20+8*ii,64,1,ii)];
end

To listen to the MIDI messages, send the MIDI messages to your device.

midisend(device,msgs)

To compile the previous steps, encapsulate the code in a function and then call mcc.

function playMusic1()
 mInfo = mididevinfo;
 midiDeviceName = mInfo.output(1).Name;
 device = mididevice(midiDeviceName);

 msgs = [];
 for ii = 1:8
 msgs = [msgs;midimsg('Note',1,20+8*ii,64,1,ii)];
 end

 midisend(device,msgs)
end

mcc playMusic1 -m -w disable

Execute the compiled code. You will not hear any sound. This is because the executable opened, sent
the MIDI messages to the queue, and then closed, aborting its commands before the MIDI messages
had a chance to play.

!playMusic1.exe

4 Classes

4-198

To keep the executable open long enough for the MIDI messages to play, add a pause to the
executable. Set the duration of the pause to equal the duration of the MIDI messages.

function playMusic2()
 mInfo = mididevinfo;
 midiDeviceName = mInfo.output(1).Name;
 device = mididevice(midiDeviceName);

 msgs = [];
 for ii = 1:8
 msgs = [msgs;midimsg('Note',1,20+8*ii,64,1,ii)];
 end

 midisend(device,msgs)
 pause(msgs(end).Timestamp)
end

mcc playMusic2 -m -w disable

Play the compiled executable. The sound that plays through your MIDI device is the same as the
uncompiled version.

!playMusic2.exe

Input Arguments
device — Object of mididevice
scalar

Specify device as an object created by mididevice.

msg — Object of midimsg
scalar | vector | array

Specify msg as an object created by midimsg.

varargin — Variable number of arguments describing MIDI message
midimsg input arguments

Specify varargin as a valid combination of arguments that can construct a MIDI message. See
midimsg for a description of valid arguments.

See Also
mididevice | mididevinfo | midimsg | midireceive

Topics
“MIDI Device Interface”

External Websites
MIDI Manufacturers Association

Introduced in R2018a

 midisend

4-199

https://www.midi.org/

audioPlugin class
Base class for audio plugins

Description
audioPlugin is the base class for audio plugins. In your class definition file, you must subclass your
object from this base class or from the audioPluginSource class, which inherits from
audioPlugin. Subclassing enables you to inherit the attributes necessary to generate plugins and
access Audio Toolbox functionality.

To inherit from the audioPlugin base class directly, type this syntax as the first line of your class
definition file:

classdef myAudioPlugin < audioPlugin

myAudioPlugin is the name of your object.

For a tutorial on designing audio plugins, see “Audio Plugins in MATLAB”.

Methods
getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

Copy Semantics
Handle. To learn how handle classes affect copy operations, see “Object Behavior” (MATLAB) in the
MATLAB documentation.

Examples

Design Valid Audio Plugin

Design a valid basic audio plugin class

Terminology:

• A valid audio plugin is one that can be deployed in a digital audio workstation (DAW) environment.
To validate it, use the validateAudioPlugin function. To generate it, use the
generateAudioPlugin function.

• A basic audio plugin inherits from the audioPlugin class but not the matlab.System class.

Define a basic audio plugin class that inherits from audioPlugin.

classdef myAudioPlugin < audioPlugin
end

Add a processing function to your plugin class.

4 Classes

4-200

All valid audio plugins include a processing function. For basic audio plugins, the processing function
is named process. The processing function is where audio processing occurs. It always has an
output.

classdef myAudioPlugin < audioPlugin
 methods
 function out = process(~,in)
 out = in;
 end
 end
end

Design Valid Audio Plugin That Uses getSampleRate

Design an audioPlugin class that uses the getSampleRate method to get the sample rate at which
the plugin is run. The plugin in this example, simpleStrobe, uses the sample rate to determine a
constant 50 ms strobe period.

classdef simpleStrobe < audioPlugin
 % simpleStrobe Add audio strobe effect
 % Add a strobe effect by gain switching between 0 and 1 in
 % 50 ms increments. Although the input sample rate can change,
 % the strobe period remains constant.
 %
 % simpleStrobe properties:
 % period - Number of samples between gain switches
 % gain - Gain multiplier, one or zero
 % count - Number of samples since last gain switch
 %
 %
 % simpleStrobe methods:
 % process - Multiply input frame by gain, element by element
 % reset - Reset count and gain to initial conditions
 % and get sample rate

 properties
 Period = 44100*0.05;
 Gain = 1;
 end
 properties (Access = private)
 Count = 1;
 end
 methods
 function out = process(plugin,in)
 for i = 1:size(in,1)
 if plugin.Count == plugin.Period
 plugin.Gain = 1 - plugin.Gain;
 plugin.Count = 1;
 end
 in(i,:) = in(i,:)*plugin.Gain;
 plugin.Count = plugin.Count + 1;
 end
 out = in;
 end
 function reset(plugin)
 plugin.Period = floor(getSampleRate(plugin)*0.05);

 audioPlugin class

4-201

 plugin.Count = 1;
 plugin.Gain = 1;
 end
 end
end

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
audioPluginSource

Functions
audioPluginInterface | audioPluginParameter | generateAudioPlugin |
validateAudioPlugin

Topics
“Audio Plugins in MATLAB”
“Audio Plugin Example Gallery”
“Hierarchies of Classes — Concepts” (MATLAB)

Introduced in R2016a

4 Classes

4-202

getSampleRate
Class: audioPlugin

Get sample rate at which the plugin is run

Syntax
sampleRate = getSampleRate(myAudioPlugin)

Description
sampleRate = getSampleRate(myAudioPlugin) returns the sample rate in Hz at which the
plugin is being run.

• In a digital audio workstation (DAW) environment, the DAW user sets the sample rate.
getSampleRate interacts with the DAW to determine the sample rate.

• In the MATLAB environment, getSampleRate returns the value set by a previous call to
setSampleRate. If setSampleRate has not been called, getSampleRate returns the default
value, 44100.

Introduced in R2016a

 getSampleRate

4-203

setSampleRate
Class: audioPlugin

Set sample rate at which the plugin is run

Syntax
setSampleRate(myAudioPlugin,sampleRate)

Description
setSampleRate(myAudioPlugin,sampleRate) sets the sample rate of the plugin,
myAudioPlugin, to the value specified by sampleRate. Specify sampleRate as a positive real
integer. setSampleRate enables the MATLAB environment to mimic behavior in a digital audio
workstation (DAW) environment.

Note A plugin must not call setSampleRate on itself. If the plugin attempts to call setSampleRate
on itself, generateAudioPlugin throws an error.

Introduced in R2016a

4 Classes

4-204

audioPluginSource class
Base class for audio source plugins

Description
audioPluginSource is the base class for audio source plugins. Use audio source plugins to produce
audio signals.

To create a valid audio source plugin, in your class definition file, subclass your object from the
audioPluginSource class. Subclassing enables you to inherit the attributes necessary to generate
audio source plugins and access Audio Toolbox functionality. To inherit from the
audioPluginSource base class directly, type this syntax as the first line of your class definition file:

classdef myAudioSourcePlugin < audioPluginSource

myAudioSourcePlugin is the name of your object.

Methods
getSamplesPerFrame Get frame size returned by the plugin
setSamplesPerFrame Set frame size returned by the plugin (MATLAB environment only)

Inherited Methods

getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

Copy Semantics
Handle. To learn how handle classes affect copy operations, see “Object Behavior” (MATLAB) in the
MATLAB documentation.

Examples

Design Valid Audio Plugin

Design a valid basic audio source plugin class

Terminology:

• A valid audio source plugin is one that can be deployed in a digital audio workstation (DAW)
environment. To validate it, use the validateAudioPlugin function. To generate it, use the
generateAudioPlugin function.

• A basic audio source plugin inherits from the audioPluginSource class but not the
matlab.System class.

Define a basic audio source plugin class that inherits from audioPluginSource.

 audioPluginSource class

4-205

classdef myAudioSourcePlugin < audioPluginSource
end

Add a processing function to your audio source plugin class.

All valid audio source plugins include a processing function. For basic audio source plugins, the
processing function is named process. The processing function defines the audio signal that your
plugin outputs. Audio source plugins do not accept audio signals as input to the processing function.

The default audio plugin interface assumes a stereo output. Specify the processing output as a matrix
with two columns. These columns correspond to the left and right channels of a stereo signal. The
number of rows in the output matrix correspond to the frame size.

The output frame size must match the frame size of the environment in which the plugin is run. A
DAW environment has variable frame size. To determine the current environment frame size, call
getSamplesPerFrame in the process function.

classdef myAudioSourcePlugin < audioPluginSource
 methods
 function out = process(plugin)
 out = 0.5*randn(getSamplesPerFrame(plugin),2);
 end
 end
end

myAudioSourcePlugin generates a Gaussian white noise audio signal with 0.5 standard deviation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
audioPlugin

Functions
audioPluginInterface | audioPluginParameter | generateAudioPlugin |
validateAudioPlugin

Topics
“Audio Plugins in MATLAB”
“Audio Plugin Example Gallery”
“Hierarchies of Classes — Concepts” (MATLAB)

Introduced in R2016a

4 Classes

4-206

getSamplesPerFrame
Class: audioPluginSource

Get frame size returned by the plugin

Syntax
frameSize = getSamplesPerFrame(myAudioSourcePlugin)

Description
frameSize = getSamplesPerFrame(myAudioSourcePlugin) returns the frame size at which
the plugin is run. frameSize is the number of output samples (rows) that the current call to the
processing function of myAudioSourcePlugin must return.

• In a digital audio workstation (DAW) environment, getSamplesPerFrame interacts with the DAW
to determine the frame size. Frame size can vary from call to call, as determined by the DAW
environment.

• In the MATLAB environment, getSamplesPerFrame returns the value set by a previous call to
the setSamplesPerFrame method. If setSamplesPerFrame has not been called, then
getSamplesPerFrame returns the default value, 256.

Note When authoring source plugins in MATLAB, getSamplesPerFrame is valid only when called in
the processing function.

Introduced in R2016a

 getSamplesPerFrame

4-207

setSamplesPerFrame
Class: audioPluginSource

Set frame size returned by the plugin (MATLAB environment only)

Syntax
setSamplesPerFrame(myAudioSourcePlugin,frameSize)

Description
setSamplesPerFrame(myAudioSourcePlugin,frameSize) sets the frame size (rows) that the
source plugin, myAudioSourcePlugin, must return in subsequent calls to its processing function.
Specify frameSize as a real integer greater than or equal to 0. setSamplesPerFrame enables the
MATLAB environment to mimic behavior in a digital audio workstation (DAW) environment.

Note Do not use setSamplesPerFrame in a generated plugin. If you call setSamplesPerFrame in
your authored plugin, generateAudioPlugin throws an error.

Introduced in R2016a

4 Classes

4-208

externalAudioPlugin class
Base class for external audio plugins

Description
externalAudioPlugin is the base class for hosted audio plugins. When you load an external plugin
using loadAudioPlugin, an object of that plugin is created having externalAudioPlugin or
externalAudioPluginSource as a base class. The externalAudioPluginSource class is used
when the external audio plugin is a source plugin.

For a tutorial on hosting audio plugins, see “Host External Audio Plugins”.

Methods
dispParameter Display information of single or multiple parameters
getParameter Get normalized value and information about parameter
info Get information about hosted plugin
process Process audio stream
setParameter Set normalized parameter value of hosted plugin

Inherited Methods

getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

Copy Semantics
Handle. To learn how handle classes affect copy operations, see “Object Behavior” (MATLAB) in the
MATLAB documentation.

Examples

Specify Hosted Plugin Parameter Values

Load a VST audio plugin into MATLAB® by specifying its full path. If you are using a Mac, replace
the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox/audio/samples/ParametricEqualizer.dll');
hostedPlugin = loadAudioPlugin(pluginPath)

Use info to return information about the hosted plugin.

info(hostedPlugin)

Use setParameter to change the normalized value of the Medium Center Frequency parameter
to 0.75. Specify the parameter by its index.

 externalAudioPlugin class

4-209

setParameter(hostedPlugin,5,0.75)

When you set the normalized parameter value, the parameter display value is automatically updated.
The normalized parameter value generally corresponds to the position of a UI widget or MIDI
controller. The parameter display value typically reflects the value used internally for processing.

Use dispParameter to display the updated table of parameters.

dispParameter(hostedPlugin)

Alternatively, you can use getParameter to return the normalized value of a single parameter.

parameterIndex = 5;
parameterValue = getParameter(hostedPlugin,parameterIndex)

Run External Plugin in MATLAB

Load a VST audio plugin into MATLAB™ by specifying its full path. If you are using a Mac, replace
the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox','audio','samples','ParametricEqualizer.dll');
hostedPlugin = loadAudioPlugin(pluginPath);

Create input and output objects for an audio stream loop that reads from a file and writes to your
audio device. Set the sample rate of the hosted plugin to the sample rate of the input to the plugin.

fileReader = dsp.AudioFileReader('FunkyDrums-44p1-stereo-25secs.mp3');
deviceWriter = audioDeviceWriter('SampleRate',fileReader.SampleRate);
setSampleRate(hostedPlugin,fileReader.SampleRate);

Set the MediumPeakGain property to -20 dB.

hostedPlugin.MediumPeakGain = -20;

Use the hosted plugin to process the audio file in an audio stream loop. Sweep the medium peak gain
upward in the loop to hear the effect.

while hostedPlugin.MediumPeakGain < 19
 hostedPlugin.MediumPeakGain = hostedPlugin.MediumPeakGain + 0.04;
 x = fileReader();
 y = process(hostedPlugin,x);
 deviceWriter(y);
end

release(fileReader)
release(deviceWriter)

See Also
Functions
loadAudioPlugin

Classes
audioPlugin | audioPluginSource | externalAudioPluginSource

4 Classes

4-210

Topics
“Host External Audio Plugins”
“Hierarchies of Classes — Concepts” (MATLAB)

Introduced in R2016b

 externalAudioPlugin class

4-211

dispParameter
Class: externalAudioPlugin

Display information of single or multiple parameters

Syntax
dispParameter(hostedPlugin)
dispParameter(hostedPlugin,parameter)

Description
dispParameter(hostedPlugin) displays all parameters and associated indices, values, displayed
values, and display labels. For example:

dispParameter(hostedPlugin)

 Parameter Value Display

 1 Wet: 1.0000 +0.0 dB
 2 Dry: 1.0000 +0.0 dB
 3 1: Enabled: 1.0000 ON
 4 1: Length: 0.0000 0.0 ms
 5 1: Length: 0.0156 4.00 8N
 6 1: Feedback: 0.0000 -inf dB
 7 1: Lowpass: 1.0000 20000 Hz
 8 1: Hipass: 0.0000 0 Hz
 9 1: Resolution: 1.0000 24 bits
 10 1: Stereo width: 1.0000 1.00
 11 1: Volume: 1.0000 +0.0 dB
 12 1: Pan: 0.5000 0.0 %

The Value column corresponds to the normalized parameter value. Generally, the normalized
parameter value represents the position of a UI widget or MIDI controller. The Display column
corresponds to an internal parameter value used for processing. The Value and Display are related
by an unknown mapping that is internal to the hosted plugin.

dispParameter(hostedPlugin,parameter) displays a subset of parameters. You can specify a
parameter by its name as a character vector, string, or as a vector of one or more parameter indices.
For example:

• dispParameter(hostedPlugin,'Gain') displays information about the 'Gain' parameter of
hostedPlugin.

• dispParameter(hostedPlugin,[1,3]) displays information about parameters specified by
indices 1 and 3.

Introduced in R2016b

4 Classes

4-212

getParameter
Class: externalAudioPlugin

Get normalized value and information about parameter

Syntax
value = getParameter(hostedPlugin,parameter)
[value, parameterInformation] = getParameter(hostedPlugin,parameter)

Description
value = getParameter(hostedPlugin,parameter) returns the normalized value of the
parameter of hostedPlugin. You can specify a parameter by its name as a character vector, string,
or by its index. For example:

• getParameter(hostedPlugin,'Gain') returns the normalized value of the hosted plugin
parameter named 'Gain'. If the parameter name is not unique, getParameter returns an error.

• getParameter(hostedPlugin,2) returns information about the parameter specified by index
2.

[value, parameterInformation] = getParameter(hostedPlugin,parameter) returns a
structure containing additional information about the specified parameter of the hosted plugin.

Field Description
DisplayName Display name or prompt of the plugin parameter, returned as a character vector.

The display name is intended for display on the plugin’s user interface (UI).
DisplayValue Display value of the plugin parameter, returned as a character vector. The

parameter DisplayValue corresponds to the normalized parameter value by
an unknown mapping internal to the hosted plugin. Generally, the display value
reflects the value used internally by the plugin for processing, while the
normalized parameter value corresponds to the position of a MIDI control or
widget on a UI.

Label Label intended for display with DisplayValue on the plugin’s UI, returned as a
character vector. Typical labels include dB and Hz.

Introduced in R2016b

 getParameter

4-213

info
Class: externalAudioPlugin

Get information about hosted plugin

Syntax
pluginInfo = info(hostedPlugin)

Description
pluginInfo = info(hostedPlugin) returns a structure containing information about the hosted
plugin.

Field Description
PluginName Display name of plugin.
Format Software interface. Supported formats include VST, VST3, and AU.
InputChannels Number of channels passed to the processing function of the plugin.
OutputChannels Number of channels returned from the processing function of the plugin.
NumParams Total number of plugin parameters.
PluginPath Path specified when plugin is loaded using loadAudioPlugin.
VendorName Name of the plugin creator.
VendorVersion Version number. Typically used to track plugin releases.
UniqueID Unique identifier of plugin used for recognition in certain digital audio

workstation (DAW) environments.

Introduced in R2016b

4 Classes

4-214

process
Class: externalAudioPlugin

Process audio stream

Syntax
audioOut = process(hostedPlugin,audioIn)

Description
audioOut = process(hostedPlugin,audioIn) returns an audio signal processed according to
the algorithm and parameters of hostedPlugin. For source plugins, call process without an audio
input. Use info(hostedPlugin) to determine the number of channels (columns) of the input and
output audio signal.

Use setSamplesPerFrame(hostedPlugin) to specify the frame size returned by hosted source
plugins.

Introduced in R2016b

 process

4-215

setParameter
Class: externalAudioPlugin

Set normalized parameter value of hosted plugin

Syntax
setParameter(hostedPlugin,parameter,newValue)

Description
setParameter(hostedPlugin,parameter,newValue) sets the normalized value corresponding
to the parameter of hostedPlugin to newValue. Specify the parameter by its unique display name
or its index. Specify the new normalized parameter value as a scalar in the range 0–1.

For example, assume hostedPlugin has a parameter with index 3 and a unique display name,
'Gain'. These commands are identical:

• setParameter(hostedPlugin,'Gain',0.2)
• setParameter(hostedPlugin,3,0.2)

Note A hosted plugin might quantize its parameters. The result of setParameter for quantized
parameters depends on the type of quantization.

Introduced in R2016b

4 Classes

4-216

externalAudioPluginSource class
Base class for external audio source plugins

Description
externalAudioPluginSource is the base class for hosted audio source plugins. When you load an
external plugin using loadAudioPlugin, an object of that plugin is created having
externalAudioPlugin or externalAudioPluginSource as a base class. The
externalAudioPluginSource class is used when the external audio plugin is a source plugin.

For a tutorial on hosting audio plugins, see “Host External Audio Plugins”.

Methods
Inherited Methods

dispParameter Display information of single or multiple parameters
getParameter Get normalized value and information about parameter
info Get information about hosted plugin
process Process audio stream
setParameter Set normalized parameter value of hosted plugin

getSampleRate Get sample rate at which the plugin is run
setSampleRate Set sample rate at which the plugin is run

getSamplesPerFrame Get frame size returned by the plugin
setSamplesPerFrame Set frame size returned by the plugin (MATLAB environment only)

Copy Semantics
Handle. To learn how handle classes affect copy operations, see “Object Behavior” (MATLAB) in the
MATLAB documentation.

Examples

Specify Hosted Source Plugin Parameter Values

Load a VST audio source plugin into MATLAB® by specifying its full path. If you are using a Mac,
replace the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox/audio/samples/oscillator.dll');
hostedSourcePlugin = loadAudioPlugin(pluginPath)

Use info to return information about the hosted plugin.

 externalAudioPluginSource class

4-217

info(hostedSourcePlugin)

Use setParameter to change the normalized value of the Frequency parameter to 0.8. Specify the
parameter by its index.

setParameter(hostedSourcePlugin,1,0.8)

When you set the normalized parameter value, the parameter display value is automatically updated.
Generally, the normalized parameter value corresponds to the position of a UI widget or MIDI
controller. The parameter display value typically reflects the value used internally by the plugin for
processing.

Use dispParameter to display the updated table of parameters.

dispParameter(hostedSourcePlugin)

Alternatively, you can use getParameter to return the normalized value of a single parameter.

getParameter(hostedSourcePlugin,1)

Run External Source Plugin in MATLAB

Load a VST audio source plugin into MATLAB™ by specifying its full path. If you are using a Mac,
replace the .dll file extension with .vst.

pluginPath = fullfile(matlabroot,'toolbox','audio','samples','oscillator.dll');
hostedSourcePlugin = loadAudioPlugin(pluginPath);

Set the Amplitude property to 0.5. Set the Frequency property to 16 kHz.

hostedSourcePlugin.Amplitude = 0.5;
hostedSourcePlugin.Frequency = 16000;

Set the sample rate at which to run the plugin. Create an output object to write to your audio device.

setSampleRate(hostedSourcePlugin,44100);
deviceWriter = audioDeviceWriter('SampleRate',44100);

Use the hosted source plugin to output an audio stream. The processing in the audio stream loop
ramps the frequency parameter down and then up.

k = 1;
for i = 1:1000
 hostedSourcePlugin.Frequency = hostedSourcePlugin.Frequency - 30*k;
 y = process(hostedSourcePlugin);
 deviceWriter(y);
 if (hostedSourcePlugin.Frequency - 30 <= 0.1) || (hostedSourcePlugin.Frequency + 30 >= 20e3)
 k = -1*k;
 end
end

release(deviceWriter)

4 Classes

4-218

See Also
Functions
loadAudioPlugin

Classes
audioPlugin | audioPluginSource | externalAudioPlugin

Topics
“Host External Audio Plugins”
“Hierarchies of Classes — Concepts” (MATLAB)

Introduced in R2016b

 externalAudioPluginSource class

4-219

Blocks

5

Voice Activity Detector
Detect presence of speech in audio signal
Library: Audio Toolbox / Measurements

Description
The Voice Activity Detector block detects the presence of speech in an audio signal. You can also use
the Voice Activity Detector block to output an estimate of the noise variance per frequency bin.

Ports
Input

x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

SilenceToSpeech — Threshold (dB)
scalar in the range [0, 1]

Dependencies

To enable this port, select Specify silence-to-speech probability from input port for the
“Probability of transition from a silence frame to a speech frame” on page 5-0 parameter.
Data Types: single | double

SpeechToSilence — Threshold (dB)
scalar in the range [0, 1]

Dependencies

To enable this port, select Specify speech-to-silence probability from input port for the
“Probability of transition from a speech frame to a silence frame” on page 5-0 parameter.
Data Types: single | double

Output

P — Probability that speech is present
scalar | row vector

The block outputs a scalar or row vector with the same number of columns as the input signal.

5 Blocks

5-2

This port is unnamed until you select the Output noise variance parameter.
Data Types: single | double

N — Estimate of noise variance per frequency bin
column vector | matrix

The block outputs a column vector or a matrix with the same number of columns as the input signal.
Dependencies

To enable this port, select the Output noise variance parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Domain of the input — Domain of the input
Time (default) | Frequency

Window — Windowing function applied before FFT
Hann (default) | Chebyshev | Flat Top | Hamming | Kaiser | Rectangular

The window function is designed using the algorithms of the following functions:

• Hann –– hann
• Chebyshev –– chebwin
• Flat Top –– flattopwin
• Hamming –– hamming
• Kaiser –– kaiser

Tunable: No
Dependencies

To enable this parameter, set Domain of the input to Time.

Sidelobe attenuation of the window (dB) — Sidelobe attenuation of the window (dB)
60 (default) | positive finite scalar
Dependencies

To enable this parameter, set Domain of the input to Time and Window to Chebyshev or Kaiser.
Data Types: single | double

Inherit FFT length from input dimensions — Set FFT length to number of input
samples
on (default) | off

Tunable: No
Dependencies

To enable this parameter, set Domain of the input to Time.

 Voice Activity Detector

5-3

FFT length — Number of bins in frequency domain
1024 (default) | positive integer

Tunable: No

Dependencies

To enable this parameter, set Domain of the input to Time and clear the Inherit FFT length from
input dimensions parameter.
Data Types: single | double

Probability of transition from a silence frame to a speech frame — Probability
that a speech frame follows a silence frame
0.2 (default) | scalar in the range [0,1]

To specify Probability of transition from a silence frame to a speech frame from an input port,
select Specify silence-to-speech probability from input port.

Tunable: Yes
Data Types: single | double

Probability of transition from a speech frame to a silence frame — Probability
that a silence frame follows a speech frame
0.1 (default) | scalar in the range [0,1]

To specify Probability of transition from a speech frame to a silence frame from an input port,
select Specify speech-to-silence probability from input port.

Tunable: Yes
Data Types: single | double

Output noise variance — Output estimate of noise variance per frequency bin
off (default) | on

When you select this parameter, an additional output port, N, is added to the block.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation – Simulate the model using generated C code. The first time you run a
simulation, Simulink® generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

• Interpreted execution – Simulate the model using the MATLAB interpreter. This option
reduces startup time, but has a slower simulation speed than Code generation. In this mode,
you can debug the source code of the block.

Tunable: No

Block Characteristics
Data Types double | single

5 Blocks

5-4

Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
The Voice Activity Detector implements the algorithm described in [1].

If Domain of the input is specified as Time, the input signal is windowed and then converted to the
frequency domain according to the Window, Sidelobe attenuation of the window (dB), and FFT
length parameters. If Domain of the input is specified as Frequency, the input is assumed to be a
windowed discrete time Fourier transform (DTFT) of an audio signal. The signal is then converted to
the power domain. Noise variance is estimated according to [2]. The posterior and prior SNR are
estimated according to the Minimum Mean-Square Error (MMSE) formula described in [3]. A log
likelihood ratio test with a Hidden Markov Model (HMM)-based hang-over scheme is used, according
to [1].

References
[1] Sohn, Jongseo., Nam Soo Kim, and Wonyong Sung. "A Statistical Model-Based Voice Activity

Detection." Signal Processing Letters IEEE. Vol. 6, No. 1, 1999.

[2] Martin, R. "Noise Power Spectral Density Estimation Based on Optimal Smoothing and Minimum
Statistics." IEEE Transactions on Speech and Audio Processing. Vol. 9, No. 5, 2001, pp. 504–
512.

[3] Ephraim, Y., and D. Malah. "Speech Enhancement Using a Minimum Mean-Square Error Short-
Time Spectral Amplitude Estimator." IEEE Transactions on Acoustics, Speech, and Signal
Processing. Vol. 32, No. 6, 1984, pp. 1109–1121.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Voice Activity Detector

5-5

See Also
voiceActivityDetector

Introduced in R2018a

5 Blocks

5-6

Cepstral Feature Extractor
Extract cepstral features from audio segment
Library: Audio Toolbox / Measurements

Description
The Cepstral Feature Extractor block extracts cepstral features from an audio segment. Cepstral
features are commonly used to characterize speech and music signals.

Ports
Input

Port_1 — Audio input to cepstral feature extractor
column vector | matrix

Audio input to the cepstral feature extractor, specified as a column vector or a matrix. If specified as a
matrix, the columns are treated as independent audio channels.
Data Types: single | double

Output

coeffs — Cepstral coefficients
column vector | matrix

Cepstral coefficients, returned as a column vector or a matrix. If the coefficients matrix is an N-by-M
matrix, N is determined by the values you specify in the Number of coefficients to return and Log
energy usage parameters. M equals the number of input audio channels.

When the Log energy usage parameter is set to:

• Append –– The block prepends the log energy value to the coefficients vector. The length of the
coefficients vector is 1 + NumCoeffs, where NumCoeffs is the value specified in the Number of
coefficients to return parameter.

• Replace –– The block replaces the first coefficient with the log energy of the signal. The length of
the coefficients vector is NumCoeffs.

• Ignore –– The block does not calculate or return the log energy.

This port is unnamed until you select Output delta parameter, the Output delta-delta parameter, or
both.
Data Types: single | double

delta — Change in coefficients
column vector | matrix

 Cepstral Feature Extractor

5-7

Change in coefficients over consecutive calls to the algorithm, returned as a column vector or a
matrix. The delta array is of the same size and data type as the coeffs array.

Dependencies

To enable this port, select the Output delta parameter.
Data Types: single | double

deltaDelta — Change in delta values
column vector | matrix

Change in delta values over consecutive calls to the algorithm, returned as a column vector or a
matrix. The deltaDelta array is the same size and data type as the coeffs and delta arrays.

Dependencies

To enable this port, select the Output delta-delta parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Filter bank type — Type of filter bank
Mel (default) | Gammatone

Type of filter bank, specified as either Mel or Gammatone:

• Mel –– The block computes the mel frequency cepstral coefficients (MFCC).
• Gammatone –– The block computes the gammatone cepstral coefficients (GTCC).

Tunable: No

Domain of the input signal — Input signal domain
Time (default) | Frequency

Input signal domain, specified as either Time or Frequency.

Tunable: No

Number of coefficients to return — Number of coefficients to return
13 (default) | positive integer

Number of coefficients to return, specified as an integer in the range [2, v], where v is the number of
valid passbands. The number of valid passbands depends on the type of filter bank:

• Mel –– The number of valid passbands is defined as sum(κ <= floor(fs/2))-2, where κ is the
number of band edges in the mel filter bank and fs is the sample rate.

• Gammatone –– The number of valid passbands is defined as ceil(hz2erb(R(2))-
hz2erb(R(1))), where R is the frequency range of the gammatone filter bank.

Tunable: No
Data Types: single | double

5 Blocks

5-8

Nonlinear rectification — Type of nonlinear rectification
Log (default) | Cubic-Root

Type of nonlinear rectification applied prior to the discrete cosine transform.

Tunable: No

Inherit FFT length from input dimensions — Inherit FFT length from input
on (default) | off

When you select this parameter, the FFT length is equal to the number of rows in the input signal.

Tunable: No
Dependencies

To enable this parameter, set Domain of the input signal to Time.

FFTLength — FFT length
[] (default) | positive integer

FFT length, specified as a positive integer. The default, [], means that the FFT length is equal to the
number of rows in the input signal.

Tunable: No
Dependencies

To enable this parameter, set Domain of the input signal to Time and select the Inherit FFT
length from input dimensions parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Log energy usage — Specify how the log energy is shown
Append (default) | Replace | Ignore

Specify how the log energy is shown in the coefficients vector output, specified as:

• Append –– The block prepends the log energy to the coefficients vector. The length of the
coefficients vector is 1 + NumCoeffs, where NumCoeffs is the value specified in the Number of
coefficients to return parameter.

• Replace –– The block replaces the first coefficient with the log energy of the signal. The length of
the coefficients vector is NumCoeffs.

• Ignore –– The block does not calculate or return the log energy.

Tunable: No

Output delta — Output delta values
off (default) | on

When you select this parameter, an additional output port, delta, is added to the block. This port
outputs the change in coefficients over consecutive calls to the algorithm.

Tunable: No

Output delta-delta — Output delta-delta values
off (default) | on

 Cepstral Feature Extractor

5-9

When you select this parameter, an additional output port, deltaDelta, is added to the block. This
port outputs the change in delta values over consecutive calls to the algorithm.

Tunable: No

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Input sample rate (Hz) parameter.

Tunable: No

Input sample rate (Hz) — Sample rate of input
16000 (default) | positive scalar

Input sample rate in Hz, specified as a real positive scalar.

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

Tunable: No

Advanced Tab

Gammatone frequency range (Hz) — Frequency range of gammatone filter bank (Hz)
[50 8000] (default) | two-element row vector

Frequency range of the gammatone filter bank in Hz, specified as a positive, monotonically increasing
two-element row vector. The maximum frequency range can be any finite number. The center
frequencies of the filter bank are equally spaced across the frequency range on the ERB scale.

Tunable: No

Dependencies

To enable this parameter, set Filter bank type to Gammatone.

Band edges of Mel filter bank (Hz) — Band edges of mel filter bank
row vector

Band edges of the filter bank in Hz, specified as a nonnegative monotonically increasing row vector in
the range [0, ∞). The maximum bandedge frequency can be any finite number. The number of
bandedges must be in the range [4, 80].

5 Blocks

5-10

The default band edges are spaced linearly for the first ten and then logarithmically thereafter. The
default band edges are set as recommended by [1].

Tunable: No

Dependencies

To enable this parameter, set Filter bank type to Mel.

Domain for Mel filter bank design — Mel filter bank design domain
Hz (default) | Bin

Mel filter bank design domain, specified as either Hz or Bin. The filterbank is designed as overlapped
triangles with band edges specified by the Band edges of filter bank (Hz) parameter.

The band edges are specified in Hz. When you set the design domain to:

• Hz –– Filter bank triangles are drawn in Hz and are mapped onto bins.

For details, see [1].

 Cepstral Feature Extractor

5-11

• Bin –– The band edge frequencies in Hz are converted to bins. The filter bank triangles are drawn
symmetrically in bins.

For details, see [2].

Tunable: No

Dependencies

To enable this parameter, set Filter bank type to Mel.

Filter bank normalization — Normalize filter bank
Bandwidth (default) | Area | None

Normalization technique used to normalize the weights of the filter bank, specified as:

• Bandwidth –– The weights of each bandpass filter are normalized by the corresponding
bandwidth of the filter.

• Area –– The weights of each bandpass filter are normalized by the corresponding area of the
bandpass filter.

5 Blocks

5-12

• None –– The weights of the filter are not normalized.

Tunable: No

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Algorithms
Auditory Cepstrum Coefficients

Auditory cepstrum coefficients are popular features extracted from speech signals for use in
recognition tasks. In the source-filter model of speech, cepstral coefficients are understood to
represent the filter (vocal tract). The vocal tract frequency response is relatively smooth, whereas the
source of voiced speech can be modeled as an impulse train. As a result, the vocal tract can be
estimated by the spectral envelope of a speech segment.

The motivating idea of cepstral coefficients is to compress information about the vocal tract
(smoothed spectrum) into a small number of coefficients based on an understanding of the cochlea.
Although there is no hard standard for calculating the coefficients, the basic steps are outlined by the
diagram.

Two popular implementations of the filter bank are the mel filter bank and the gammatone filter bank.

 Cepstral Feature Extractor

5-13

Mel Filter Bank

The default mel filter bank linearly spaces the first 10 triangular filters and logarithmically spaces the
remaining filters.

Gammatone Filter Bank

The default gammatone filter bank is composed of gammatone filters spaced linearly on the ERB
scale between 50 and 8000 Hz. The filter bank is designed by gammatoneFilterBank.

5 Blocks

5-14

Log Energy

If the input (x) is a time-domain signal, the log energy is computed using the following equation:

logE = log(sum(x2))

If the input (x) is a frequency-domain signal, the log energy is computed using the following equation:

logE = log sum x 2 /FFTLength

References
[1] Auditory Toolbox. https://engineering.purdue.edu/~malcolm/interval/1998-010/

AuditoryToolboxTechReport.pdf

[2] ETSI ES 201 108 V1.1.3 (2003-09). https://www.etsi.org/deliver/etsi_es/
201100_201199/201108/01.01.03_60/es_201108v010103p.pdf

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Voice Activity Detector | cepstralFeatureExtractor | mfcc | pitch | voiceActivityDetector

Topics
“Speaker Identification Using Pitch and MFCC”

Introduced in R2018a

 Cepstral Feature Extractor

5-15

https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf
https://engineering.purdue.edu/~malcolm/interval/1998-010/AuditoryToolboxTechReport.pdf
https://www.etsi.org/deliver/etsi_es/201100_201199/201108/01.01.03_60/es_201108v010103p.pdf
https://www.etsi.org/deliver/etsi_es/201100_201199/201108/01.01.03_60/es_201108v010103p.pdf

Audio Device Reader
Record from sound card
Library: Audio Toolbox / Sources

Description
The Audio Device Reader block reads audio samples using your computer's audio device. The Audio
Device Reader block specifies the driver, the device and its attributes, and the data type and size
output from your Audio Device Reader block.

Ports
Output

A — Output signal
scalar | vector | matrix

The output of the Audio Device Reader block is determined by the block’s parameters. If the block
output is a matrix, the columns correspond to independent channels.
Data Types: single | double | int16 | int32 | uint8

O — Number of samples overrun
scalar

This port outputs the number of samples overrun while acquiring a frame of data (one output matrix).

Dependencies

To enable this port, select the Output number of samples overrun parameter.
Data Types: uint32

5 Blocks

5-16

Parameters
Main Tab

Driver — Driver used to access your audio device
DirectSound (default) | ASIO | WASAPI

• ASIO drivers do not come pre-installed on Windows machines. To use the ASIO driver option,
install an ASIO driver outside of MATLAB.

Note If Driver is set to ASIO, open the ASIO UI outside of MATLAB to set the sound card buffer
size to the value specified by the Samples per frame parameter. See the documentation of your
ASIO driver for more information.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and WASAPI drivers, set
Sample rate (Hz) to a sample rate supported by your audio device.

This parameter applies only on Windows machines. Linux machines always use the ALSA driver. Mac
machines always use the CoreAudio driver.

Device — Device used to acquire audio samples
default audio device (default)

The device list is populated with devices available on your computer.

Info — View information about your audio input configuration
button

This button opens a dialog box that lists your selected audio driver, the full name of your audio
device, and the maximum input channels for your configuration. For example:

Sample rate (Hz) — Sample rate your device uses to acquire audio data
44100 (default) | integer

The possible range of Sample rate (Hz) depends on your audio hardware.

Number of channels — Number of channels acquired by your audio device
1 (default) | integer

The number of input channels is also the number of channels (matrix columns) output by the Audio
Device Reader block.
Dependencies

To specify which input channels your audio device acquires, on the Advanced tab, select the Use
default channel mapping parameter.

 Audio Device Reader

5-17

Samples per frame — Frame size read from audio device
1024 (default) | integer

Samples per frame is also the device buffer size, and the frame size (number of matrix rows) output
by the Audio Device Reader block.

Advanced Tab

Device bit depth — Data type used by device to acquire audio data
16-bit integer (default) | 8-bit integer | 16-bit integer | 24-bit integer | 32-bit
integer

Use default channel mapping — Toggle channel mapping source
on (default) | off

When you select this parameter, the block uses the default mapping between the sound card’s input
channels and the matrix columns output by this block. When you clear this parameter, you specify the
mapping in Device input channels.

Device input channels — Specify nondefault channel mapping
[1:MaximumInputChannels] (default) | scalar | vector

Nondefault map of device channels and matrix output by the Audio Device Reader block, specified as
a scalar or vector. For example:

If Device input channels is specified as 1:3, then:

• Channel 1 maps to the first column of the output matrix.
• Channel 2 maps to the second column of the output matrix.
• Channel 3 maps to the third column of the output matrix.

If Device input channels is specified as [3,1,2], then:

• Channel 3 maps to the first column of the output matrix.
• Channel 1 maps to the second column of the output matrix.
• Channel 2 maps to the third column of the output matrix.

Dependencies

To specify a nondefault mapping, clear the Use default mapping between sound card’s input
channels and columns of output of this block parameter.

Output number of samples overrun — Specify additional output port for number of
samples overrun
off (default) | on

When you select this parameter, an additional output port, O, is added to the block. The O port
outputs the number of samples overrun while acquiring a frame of data (one output matrix).

Output data type — Data type output from block
double (default) | single | int32 | int16 | uint8

5 Blocks

5-18

Block Characteristics
Data Types double | integera | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

a. Supports 16- and 32-bit signed and 8-bit unsigned integers.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The executable generated from this block relies on prebuilt dynamic library files (.dll files) included
with MATLAB. Use the packNGo function to package the code generated from this object and all the
relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and rebuild your
project in another development environment where MATLAB is not installed. For more details, see
“Run Audio I/O Features Outside MATLAB and Simulink”.

See Also
Audio Device Writer | audioDeviceReader | audioDeviceWriter

Topics
“Run Audio I/O Features Outside MATLAB and Simulink”
“Audio I/O: Buffering, Latency, and Throughput”

Introduced in R2016a

 Audio Device Reader

5-19

Audio Device Writer
Play to sound card
Library: Audio Toolbox / Sinks

DSP System Toolbox / Sinks

Description
The Audio Device Writer block writes audio samples to an audio output device.

Parameters of the Audio Device Writer block specify the driver, the device, and device attributes such
as sample rate and bit depth.

Ports
Input

Port_1 — Input signal
scalar | vector | matrix

If input to the Audio Device Writer block is of data type double or single, the block clips values
outside the range [–1, 1]. For other data types, the allowed input range is [min, max] of the specified
data type.
Data Types: single | double | int16 | int32 | uint8

Output

Port_1 — Number of samples underrun
scalar

This port outputs the number of samples underrun while writing a frame of data (one input matrix).

Dependencies

To enable this port, select the Output number of samples underrun parameter.
Data Types: uint32

5 Blocks

5-20

Parameters
Main Tab

Driver — Driver used to access your audio device
DirectSound (default) | ASIO | WASAPI

• ASIO drivers do not come pre-installed on Windows machines. To use the ASIO driver option,
install an ASIO driver outside of MATLAB.

Note If Driver is set to ASIO, open the ASIO UI outside of MATLAB to set the sound card buffer
size to the frame size (number of rows) input to the Audio Device Writer block. See the
documentation of your ASIO driver for more information.

• WASAPI drivers are supported for exclusive-mode only.

ASIO and WASAPI drivers do not provide sample rate conversion. For ASIO and WASAPI drivers,
supply an audio stream with a sample rate supported by your audio device.

This parameter applies only on Windows machines. Linux machines always use the ALSA driver. Mac
machines always use the CoreAudio driver.

To specify nondefault Driver values, you must install Audio Toolbox. If the toolbox is not installed,
specifying nondefault Driver values returns an error.

Device — Device used to play audio samples
default audio device (default)

The device list is populated with devices available on your computer.

Info — View information about your audio output configuration
button

This button opens a dialog box that lists your selected audio driver, the full name of your audio
device, and the maximum output channels for your configuration. For example:

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Sample rate (Hz).

Sample rate (Hz) — Sample rate used by device to play audio data
44100 (default) | positive scalar

The possible range of Sample rate (Hz) depends on your audio hardware.

 Audio Device Writer

5-21

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Device bit depth — Data type used by device to perform digital-to-analog conversion
16-bit integer (default) | 8-bit integer | 24-bit integer | 32-bit float

Before performing digital-to-analog conversion, the input data is cast to a data type specified by this
parameter.

Note To specify a nondefault Device bit depth, you must install Audio Toolbox. If the toolbox is not
installed, specifying a nondefault Device bit depth returns an error.

Use default channel mapping — Toggle channel mapping source
on (default) | off

When you select this parameter, the block uses the default mapping between columns of the matrix
input to this block and the channels of your device. When you clear this parameter, you specify the
mapping in Device output channels.

Device output channels — Specify nondefault channel mapping
[1:MaximumOutputChannels] (default) | scalar | vector

Nondefault mapping between columns of matrix input to the Audio Device Writer block and channels
of output device, specified as a scalar or vector. For example:

If Device output channels is specified as 1:3, then:

• The first column of the input matrix maps to channel 1.
• The second column of the input matrix maps to channel 2.
• The third column of the input matrix maps to channel 3.

If Device output channels is specified as [3,1,2], then:

• The first column of the input matrix maps to channel 3.
• The second column of the input matrix maps to channel 1.
• The third column of the input matrix maps to channel 2.

Note To selectively map between columns of the input matrix and your sound card's output channels,
you must install Audio Toolbox. If the toolbox is not installed, specifying nondefault values for Device
output channels returns an error.

Dependencies

To enable this parameter, clear the Use default mapping between columns of input of this block
and sound card’s output channels parameter.

5 Blocks

5-22

Output number of samples underrun — Specify output port for number of samples
underrun
off (default) | on

When you select this parameter, an output port is added to the block. The port outputs the number of
samples underrun while writing a frame of data (one input matrix).

Block Characteristics
Data Types double | integera | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

a. Supports 16- and 32-bit signed and 8-bit unsigned integers.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The following code generation limitations apply:

• Host computer only. Excludes Simulink Desktop Real-Time™ code generation.
• The executable generated from this block relies on prebuilt dynamic library files (.dll files)

included with MATLAB. Use the packNGo function to package the code generated from this block
and all the relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and
rebuild your project in another development environment where MATLAB is not installed. For
more details, see “Run Audio I/O Features Outside MATLAB and Simulink”.

See Also
Audio Device Reader | Binary File Reader | audioDeviceReader | audioDeviceWriter

Topics
“Run Audio I/O Features Outside MATLAB and Simulink”
“Audio I/O: Buffering, Latency, and Throughput”

Introduced in R2016a

 Audio Device Writer

5-23

Compressor
Dynamic range compressor
Library: Audio Toolbox / Dynamic Range Control

Description
The Compressor block performs dynamic range compression independently across each input
channel. Dynamic range compression attenuates the volume of loud sounds that cross a given
threshold. The block uses specified attack and release times to achieve a smooth applied gain curve.

Ports
Input

x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

T — Threshold (dB)
scalar
Dependencies

To enable this port, select Specify from input port for the “Threshold (dB)” on page 5-0
parameter.
Data Types: single | double

R — Ratio
scalar
Dependencies

To enable this port, select Specify from input port for the “Ratio” on page 5-0 parameter.
Data Types: single | double

K — Knee width (dB)
scalar
Dependencies

To enable this port, select Specify from input port for the “Knee width (dB)” on page 5-0
parameter.
Data Types: single | double

5 Blocks

5-24

AT — Attack time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Attack time (s)” on page 5-0
parameter.
Data Types: single | double

RT — Release time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Release time (s)” on page 5-0
parameter.
Data Types: single | double

Output

Y — Output signal
matrix

The Compressor block outputs a signal with the same data type as the input signal. The size of the
output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input signal.
• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the number of

elements in the 1-D vector.

Data Types: single | double

G — Gain applied to each input sample
matrix

Dependencies

To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Main Tab

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –50 to 0 inclusive

Operation threshold is the level above which gain is applied to the input signal.

To specify Threshold (dB) from an input port, select Specify from input port for the parameter.

Tunable: Yes

 Compressor

5-25

Ratio — Compression ratio
5 (default) | scalar in the range 1 to 50 inclusive

Compression ratio is the input/output ratio for signals that overshoot the operation threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB > Threshold (dB),
the compression ratio is defined as R = (x[n]− T)

(y[n]− T) , where

• R is the compression ratio.
• x[n] is the input signal in dB.
• y[n] is the output signal in dB.
• T is the threshold in dB.

To specify Ratio from an input port, select Specify from input port for the parameter.

Tunable: Yes

Knee width (dB) — Transition area in compression characteristic
0 (default) | scalar in the range 0 to 20 inclusive

For soft knee characteristics, the transition area is defined by the relation

y = x +
1
R − 1 × x− T + W

2
2

2 × W

for the range 2 × x− T ≤ W, where

• y is the output level in dB.
• x is the input level in dB.
• R is the compression ratio.
• T is the threshold in dB.
• W is the knee width in dB.

To specify Knee width (dB) from an input port, select Specify from input port for the parameter.

Tunable: Yes

View static characteristic — Open static characteristic plot of dynamic range
compressor
button

The plot is updated automatically when parameters of the Compressor block change.

Tunable: Yes

Attack time (s) — Time for applied gain to ramp up
0.05 (default) | scalar in the range 0 to 4 inclusive

Attack time is the time the compressor gain takes to rise from 10% to 90% of its final value when the
input goes above the threshold. The Attack time (s) parameter smooths the applied gain curve.

To specify Attack time (s) from an input port, select Specify from input port for the parameter.

5 Blocks

5-26

Tunable: Yes

Release time (s) — Time for applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4 inclusive

Release time is the time the compressor gain takes to drop from 90% to 10% of its final value when
the input goes below the threshold. The Release time (s) parameter smooths the applied gain curve.

To specify Release time (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Make-up gain mode — Make-up gain mode
Property (default) | Auto

• Property –– Make-up gain is set to the value specified by the Make-up gain (dB) parameter.
• Auto –– Make-up gain is applied at the output of the Compressor block such that a steady-state 0

dB input has a 0 dB output.

Tunable: No

Make-up gain (dB) — Applied make-up gain
0 (default) | scalar in the range –10 to 24 inclusive

Make-up gain compensates for gain lost during compression. It is applied at the output of the
Compressor block.

Tunable: Yes
Dependencies

To enable this parameter, set the Make-up gain mode parameter to Property.

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, specify the sample rate in the Input sample rate (Hz) parameter.

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Tunable: Yes
Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

When you select this parameter, an additional output port, G, is added to the block. The G port
outputs the gain applied on each input channel in dB.

 Compressor

5-27

Tunable: No

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time and has a simulation speed comparable to Code generation. In this mode, you can
debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
The Compressor block processes a signal frame by frame and element by element.

1 The N-point signal, x[n], is converted to decibels:

xdB[n] = 20 × log10 x[n]
2 xdB[n] passes through the gain computer. The gain computer uses the static compression

characteristic of the Compressor block to attenuate gain that is above the threshold.

5 Blocks

5-28

If you specified a soft knee, the gain computer has the following static characteristic:

xsc(xdB) =

xdB xdB < T − W
2

xdB +
1
R − 1 xdB− T + W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

T +
xdB− T

R xdB > T + W
2

,

where T is the threshold, R is the compression ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static characteristic:

xsc(xdB) =
xdB xdB < T

T +
xdB− T

R xdB ≥ T

3 The computed gain, gc[n], is calculated as

gc[n] = xsc[n]− xdB[n] .
4 gc[n] is smoothed using specified attack and release time parameters:

gs[n] =
αAgs[n− 1] + (1− αA)gc[n], gc[n] ≤ gs[n− 1]
αRgs[n− 1] + (1− αR)gc[n], gc[n] > gs[n− 1]

The attack time coefficient, α A, is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, α R, is calculated as

αR = exp −log(9)
Fs × TR

.

T A is the attack time period, specified by the Attack time (s) parameter. TR is the release time
period, specified by the Release time (s) parameter. Fs is the input sampling rate, specified by
the Inherit sample rate from input or the Input sample rate (Hz) parameter.

5 If Make-up gain (dB) is set to Auto, the make-up gain is calculated as the negative of the
computed gain for a 0 dB input:

M = −xsc xdB = 0 .

Given a steady-state input of 0 dB, this configuration achieves a steady-state output of 0 dB. The
make-up gain is determined by the Threshold (dB), Ratio, and Knee width (dB) parameters. It
does not depend on the input signal.

6 The make-up gain, M, is added to the smoothed gain, gs[n]:

gm[n] = gs[n] + M
7 The calculated gain in dB, gdB[n], is translated to a linear domain:

glin[n] = 10
gm[n]

20

 Compressor

5-29

8 The output of the dynamic range compressor is given as

y[n] = x[n] × glin[n] .

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial And Analysis." Journal of Audio Engineering Society. Vol. 60,
Issue 6, 2012, pp. 399–408.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Expander | Limiter | Noise Gate | compressor

Topics
“Dynamic Range Control”

Introduced in R2016a

5 Blocks

5-30

Crossover Filter
Audio crossover filter
Library: Audio Toolbox / Filters

Description
The Crossover Filter block implements an audio crossover filter, which is used to split an audio signal
into two or more frequency bands. Crossover filters are multiband filters whose overall magnitude
frequency response is flat.

Ports
Input

x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

F1 — Crossover frequency (Hz)
real scalar in the range 20 to 20000
Dependencies

To enable this port, select Specify from input port for the “Crossover frequency (Hz)” on page 5-
0 parameter.
Data Types: single | double

O1 — Crossover order
integer in the range 0 to 8
Dependencies

To enable this port, select Specify from input port for the “Crossover order” on page 5-0
parameter.
Data Types: single | double

F2 — Crossover frequency (Hz)
real scalar in the range 20 to 20000
Dependencies

To enable this port, you need to both:

 Crossover Filter

5-31

• Select Specify from input port for the “Crossover frequency (Hz)” on page 5-0 parameter.
• Set “Number of crossovers” on page 5-0 to 2, 3 or 4.

Data Types: single | double

O2 — Crossover order
integer in the range 0 to 8

Dependencies

To enable this port, you need to both:

• Select Specify from input port for the “Crossover order” on page 5-0 parameter.
• Set “Number of crossovers” on page 5-0 to 2, 3 or 4.

Data Types: single | double

F3 — Crossover frequency (Hz)
real scalar in the range 20 to 20000

Dependencies

To enable this port, you need to both:

• Select Specify from input port for the “Crossover frequency (Hz)” on page 5-0 parameter.
• Set “Number of crossovers” on page 5-0 to 3 or 4.

Data Types: single | double

O3 — Crossover order
integer in the range 0 to 8

Dependencies

To enable this port, you need to both:

• Select Specify from input port for the “Crossover order” on page 5-0 parameter.
• Set “Number of crossovers” on page 5-0 to 3 or 4.

Data Types: single | double

F4 — Crossover frequency (Hz)
real scalar in the range 20 to 20000

Dependencies

To enable this port, you need to both:

• Select Specify from input port for the “Crossover frequency (Hz)” on page 5-0 parameter.
• Set “Number of crossovers” on page 5-0 to 4.

Data Types: single | double

O4 — Crossover order
integer in the range 0 to 8

5 Blocks

5-32

Dependencies

To enable this port, you need to both:

• Select Specify from input port for the “Crossover order” on page 5-0 parameter.
• Set “Number of crossovers” on page 5-0 to 4.

Data Types: single | double

Output

Y1 — Output signal
matrix

Port Y1 always corresponds to a lowpass filter.

Dependencies

Available if Number of crossovers is set to 1, 2, 3, or 4.
Data Types: single | double

Y2 — Output signal
matrix

Depending on the number of crossovers specified, port Y2 outputs the original audio signal passed
through a bandpass or highpass filter.

Dependencies

Available if Number of crossovers is set to 1, 2, 3, or 4.
Data Types: single | double

Y3 — Output signal
matrix

Depending on the number of crossovers specified, port Y3 corresponds to a bandpass or highpass
filter of the original audio signal.

Dependencies

Available if Number of crossovers is set to 2, 3, or 4.
Data Types: single | double

Y4 — Output signal
matrix

Dependencies

Available if Number of crossovers is set to 3 or 4.
Data Types: single | double

Y5 — Output signal
matrix

 Crossover Filter

5-33

Dependencies

Available if Number of crossovers is set to 4.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Number of crossovers — Number of magnitude response band crossings
1 (default) | 2 | 3 | 4

If you specify multiple crossovers, the corresponding Crossover frequency (Hz) and Crossover
order parameters populate in the dialog box automatically.

The number of bands output by the Crossover Filter block is one more than the Number of
crossovers.

Number of Crossovers Number of Bands in Output
1 Two
2 Three
3 Four
4 Five

Crossover frequency (Hz) — Intersections of magnitude response bands
100 (default) | real scalar in the range 20 to 20000

Crossover frequencies are the intersections of magnitude response bands of the individual two-band
crossover filters used in the multiband crossover filter.

Tunable: Yes

Crossover order — Order of individual crossover filters
2 (default) | integer in the range [0, 8]

The crossover filter order relates to the crossover filter slope in dB/octave: slope = N × 6, where N is
the crossover order.

Tunable: Yes

View filter response — Open plot of magnitude response of each filter band
button

The plot is updated automatically when parameters of the Crossover Filter block change.

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Input sample rate (Hz).

5 Blocks

5-34

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Tunable: Yes
Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution – Simulate the model using the MATLAB interpreter. This option
reduces startup time and the simulation speed is comparable to Code generation. In this mode,
you can debug the source code of the block.

• Code generation – Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
The Crossover Filter block is implemented as a binary tree of crossover pairs with additional phase-
compensating sections [1]. Odd-order crossovers are implemented with Butterworth filters, while
even-order crossovers are implemented with cascaded Butterworth filters (Linkwitz-Riley filters).

Odd-Order Crossover Pair

Odd-order two-band (one crossover) filters are implemented as parallel complementary highpass and
lowpass filters.

 Crossover Filter

5-35

LP and HP are Butterworth filters of order N, implemented as direct-form II transposed second-order
sections. The shared cutoff frequency used in their design corresponds to the crossover of the
resulting bands.

Even-Order Crossover Pair

Even-order two-band (one crossover) filters are implemented as parallel complementary highpass and
lowpass filters.

LP and HP are Butterworth filters of order N/2, where N is the order of the overall filter. The filters
are implemented as direct-form II transposed second-order sections.

For overall filters of orders 2 and 6, XHI is multiplied by –1 internally so that the branches of your
crossover pair are in-phase.

Even-Order Three-Band Filter

Even-order three-band (two crossovers) filters are implemented as parallel complementary highpass
and lowpass filters organized in a tree structure.

The phase-compensating section is equivalent to an allpass filter.

The design of four-band and five-band filters (three and four crossovers) are extensions of the pattern
developed for even-order and odd-order crossovers and the tree structure specified for three-band
(two crossover) filters.

5 Blocks

5-36

References
[1] D’Appolito, Joseph A. "Active Realization of Multiway All-Pass Crossover Systems." Journal of

Audio Engineering Society. Vol. 35, Issue 4, 1987, pp. 239–245.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
crossoverFilter

Topics
“Multiband Dynamic Range Compression”

Introduced in R2016a

 Crossover Filter

5-37

Expander
Dynamic range expander
Library: Audio Toolbox / Dynamic Range Control

Description
The Expander block performs dynamic range expansion independently across each input channel.
Dynamic range expansion attenuates the volume of quiet sounds below a given threshold. The block
uses specified attack, release, and hold times to achieve a smooth applied gain curve.

Ports
Input

x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

R — Ratio
scalar
Dependencies

To enable this port, select Specify from input port for the “Ratio” on page 5-0 parameter.
Data Types: single | double

T — Threshold (dB)
scalar
Dependencies

To enable this port, select Specify from input port for the “Threshold (dB)” on page 5-0
parameter.
Data Types: single | double

K — Knee width (dB)
scalar
Dependencies

To enable this port, select Specify from input port for the “Knee width (dB)” on page 5-0
parameter.
Data Types: single | double

5 Blocks

5-38

AT — Attack time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Attack time (s)” on page 5-0
parameter.
Data Types: single | double

RT — Release time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Release time (s)” on page 5-0
parameter.
Data Types: single | double

HT — Hold time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Hold time (s)” on page 5-0 parameter.
Data Types: single | double

Output

Y — Output signal
matrix

The Expander block outputs a signal with the same data type as the input signal. The size of the
output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input signal.
• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the number of

elements in the 1-D vector.

This port is unnamed until you select the Output gain (dB) parameter.
Data Types: single | double

G — Gain applied to each input sample
matrix

Dependencies

To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

 Expander

5-39

Main Tab

Ratio — Expansion ratio
5 (default) | scalar in the range 1 to 50 inclusive

Expansion ratio is the input/output ratio for signals that undershoot the operation threshold.

Assuming a hard knee characteristic and a steady-state input such that x[n] dB < Threshold (dB),
the expansion ratio is defined as R = (y[n]− T)

(x[n]− T) , where

• R is the expansion ratio.
• y[n] is the output signal in dB.
• x[n] is the input signal in dB.
• T is the threshold in dB.

To specify Ratio from an input port, select Specify from input port for the parameter.

Tunable: Yes

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –140 to 0 inclusive

Operation threshold is the level below which gain is applied to the input signal.

To specify Threshold (dB) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Knee width (dB) — Transition area in the compression characteristic
0 (default) | scalar in the range 0 to 20

For soft knee characteristics, the transition area is defined by the relation

y = x +
(1− R) × x− T − W

2
2

2 × W

for the range 2 × x− T ≤ W, where

• y is the output level in dB.
• x is the input level in dB.
• R is the expansion ratio.
• T is the threshold in dB.
• W is the knee width in dB.

To specify Knee width (dB) from an input port, select Specify from input port for the parameter.

Tunable: Yes

View static characteristic — Open static characteristic plot of dynamic range
expander
button

5 Blocks

5-40

The plot is updated automatically when parameters of the Expander block change.

Tunable: Yes

Attack time (s) — Time for applied gain to ramp up
0.05 (default) | scalar in the range 0 to 4 inclusive

Attack time is the time the expander gain takes to rise from 10% to 90% of its final value when the
input goes below the threshold. The Attack time (s) parameter smooths the applied gain curve.

To specify Attack time (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Release time (s) — Time for applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4 inclusive

Release time is the time the expander gain takes to drop from 90% to 10% of its final value when the
input goes above the threshold. The Release time (s) parameter smooths the applied gain curve.

To specify Release time (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Hold time (s) — Time during which applied gain holds steady
0.05 (default) | scalar in the range 0 to 4 inclusive

Hold time is the period in which the applied gain is held constant before it starts moving toward its
steady-state value. Hold time begins when the input level crosses the operation threshold.

To specify Hold time (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, specify the sample rate in the Input sample rate (Hz) parameter.

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

 Expander

5-41

When you select this parameter, an additional output port, G, is added to the block. The G port
outputs the gain applied on each input channel in dB.

Tunable: No

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time and has a simulation speed comparable to Code generation. In this mode, you can
debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
The Expander block processes a signal frame by frame and element by element.

1 The N-point signal, x[n], is converted to decibels:

xdB[n] = 20 × log10 x[n]
2 xdB[n] passes through the gain computer. The gain computer uses the static characteristic

properties of the dynamic range expander to attenuate gain that is below the threshold.

5 Blocks

5-42

If you specified a soft knee, the gain computer has the following static characteristic:

xsc(xdB) =

T + xdB− T × R xdB < T − W
2

xdB +
1− R xdB− T − W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

xdB xdB > T + W
2

,

where T is the threshold, R is the expansion ratio, and W is the knee width.

If you specified a hard knee, the gain computer has the following static characteristic:

xsc(xdB) =
T + xdB− T × R xdB < T

xdB xdB ≥ T
3 The computed gain, gc[n], is calculated as

gc[n] = xsc[n]− xdB[n] .
4 gc[n] is smoothed using specified attack, release, and hold time parameters:

gs[n] =

αAgs[n− 1] + (1− αA)gc[n]
gs[n− 1]

αRgs[n− 1] + (1− αR)gc[n]
gs[n− 1]

CA > TH & gc[n] ≤ gs[n− 1]
CA ≤ TH

CR > TH & gc[n] > gs[n− 1]
CR ≤ TH

CA and CR are hold counters for attack and release, respectively. The limit, TH, is determined by
the Hold time (s) parameter.

The attack time coefficient, α A, is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, α R, is calculated as

αR = exp −log(9)
Fs × TR

.

TA is the attack time period, specified by the Attack time (s) parameter. T R is the release time
period, specified by the Release time (s) parameter. Fs is the input sampling rate, specified by
the Inherit sample rate from input or Input sample rate (Hz) parameter.

5 The smoothed gain in dB, gs[n], is translated to a linear domain:

glin[n] = 10
gs[n]
20 .

6 The output of the dynamic range expander is given as

y[n] = x[n] × glin[n] .

 Expander

5-43

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial And Analysis." Journal of Audio Engineering Society. Vol. 60,
Issue 6, 2012, pp. 399–408.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Compressor | Limiter | Noise Gate | expander

Topics
“Dynamic Range Control”

Introduced in R2016a

5 Blocks

5-44

Graphic EQ
Standards-based graphic equalizer
Library: Audio Toolbox / Filters

Description
The Graphic EQ block implements a graphic equalizer that can tune the gain on individual octave or
fractional octave bands. The block filters the data independently across each input channel over time
using the filter specifications. Center frequencies for bands in the graphic equalizer are based on the
ANSI S1.11-2004 standard.

Ports
Input

Port_1 — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a signal channel.

Data Types: single | double

Output

Port_1 — Output signal
matrix

The Graphic EQ block outputs a signal with the same data type as the input signal. The size of the
output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input signal.
• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the number of

elements in the 1-D vector input.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

EQ Order — Order of individual equalizer bands
2 (default) | positive even integer

Specify the order of individual equalizer bands as a positive even integer. All equalizer bands have the
same order.

 Graphic EQ

5-45

Tunable: Yes

Bandwidth — Filter bandwidth (octaves)
1 octave (default) | 2/3 octave | 1/3 octave

Specify the filter bandwidth as 1 octave, 2/3 octave, or 1/3 octave.

The ANSI S1.11-2004 standard defines the center and edge frequencies of your equalizer. The ISO
266:1997(E) standard specifies corresponding preferred frequencies for labeling purposes.

1-Octave Bandwidth

Center frequencies 32 63 126 251 501 1000 1995 3981 7943
15849

Edge frequencies 22 45 89 178 355 708 1413 2818 5623
1122 22387

Preferred frequencies 31.5 63 125 250 500 1000 2000 4000
8000 16000

2/3-Octave Bandwidth

Center frequencies 25 40 63 100 158 251 398 631 1000 1585
2512 3981 6310 10000 15849

Edge frequencies 20 32 50 79 126 200 316 501 794 1259
1995 3162 5012 7943 12589 19953

Preferred frequencies 25 40 63 100 160 250 400 630 1000 1600
2500 4000 6300 10000 16000

1/3-Octave Bandwidth

Center frequencies 25 32 40 50 63 79 100 126 158 200 251
316 398 501 631 794 1000 1259 1585
1995 2512 3162 3981 5012 6310 7943
10000 12589 15849 19953

Edge frequencies 22 28 35 45 56 71 89 112 141 178 224
282 355 447 562 708 891 1122 1413 1778
2239 2818 3548 4467 5623 7079 8913
11220 14125 17783 22387

Preferred frequencies 25 31.5 40 50 63 80 100 125 160 200
250 315 400 500 630 800 1000 1250 1600
2000 2500 3150 4000 5000 6300 8000
10000 12500 16000 20000

Tunable: Yes

Structure — Type of implementation
Cascade (default) | Parallel

Specify the type of implementation as Cascade or Parallel. See “Algorithms” on page 5-47 and
“Graphic Equalization” for information about these implementation structures.

Tunable: No

5 Blocks

5-46

Gains — Gain of each octave or fractional octave band (dB)
0 | scalar

Specify the gain of each octave or fractional octave band in dB. The number and position of filters in
the graphic equalizer depends on the Bandwidth on page 5-0 parameter.

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, specify the sample rate in Input sample rate (Hz) on page 5-0 .

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | scalar

Tunable: Yes
Dependencies

To enable this parameter, clear the Inherit sample rate from input on page 5-0 parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time and has simulation speed comparable to Code generation. In this mode, you can
debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time
but the speed of the subsequent simulations is faster than Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
The implementation of your graphic equalizer depends on the Structure on page 5-0 parameter.
See “Graphic Equalization” for a discussion of the pros and cons of the parallel and cascade

 Graphic EQ

5-47

implementations. Refer to the following sections to understand how these algorithms are
implemented in Audio Toolbox.

Parallel Structure

Filter Bank Design

The parallel implementation designs the individual equalizers using the octaveFilter design
method and spaces them on the spectrum according to the ANSI S1.11-2004 standard.

If you set the Input sample rate (Hz) parameter so that the Nyquist frequency (Input sample rate
(Hz)/2) is less than the final bandpass edge defined by the ANSI S1.11-2004 standard, then:

• The final bandpass filter is the one whose upper bandpass edge is less than the Nyquist frequency.
• The final filter is implemented as a highpass filter designed by the designParamEQ function.

Real-Time Computation

1 The input signal is fed into a filterbank of M filters, where M depends on the specified
Bandwidth and Input sample rate (Hz) parameters.

2 Each branch of the filterbank is multiplied by the linear form of the corresponding element of the
Gains parameter.

3 The branches are summed and the output signal is returned.

5 Blocks

5-48

Cascade Structure

Filter Bank Design

The cascade implementation designs the graphic equalizer filter bank using the
multibandParametricEQ System object.

Gain Setting

If the EQ Order on page 5-0 parameter is set to 2, then a gain correction is calculated according to
[1]. The gain correction is independent of the requested gains. The gain correction is recomputed
during the real-time processing only if the Input sample rate (Hz) parameter is modified.

If the EQ Order parameter is not set to 2, no gain correction is applied and the requested gains are
passed on to the multibandParametricEQ object.

Real-Time Computation

The input signal is fed into a cascade of M biquad filters, where M depends on the specified
Bandwidth and Input sample rate (Hz) parameters.

References
[1] Oliver, Richard J., and Jean-Marc Jot. "Efficient Multi-Band Digital Audio Graphic Equalizer with

Accurate Frequency Response Control." Presented at the 139th Convention of the AES, New
York, October 2015.

[2] Acoustical Society of America. American National Standard Specification for Octave-Band and
Fractional-Octave-Band Analog and Digital Filters. ANSI S1.11-2004. Melville, NY: Acoustical
Society of America, 2009.

 Graphic EQ

5-49

[3] International Organization for Standardization. Acoustics –– Preferred frequencies. ISO
266:1997(E). Second Edition. 1997.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Parametric EQ | designParamEQ | designShelvingEQ | designVarSlopeFilter | graphicEQ |
multibandParametricEQ

Topics
“Graphic Equalization”
“Equalization”

Introduced in R2017b

5 Blocks

5-50

Limiter
Dynamic range limiter
Library: Audio Toolbox / Dynamic Range Control

Description
The Limiter block performs dynamic range limiting independently across each input channel.
Dynamic range limiting suppresses the volume of loud sounds that cross a given threshold. The block
uses specified attack and release times to achieve a smooth applied gain curve.

Ports
Input

x — Input signal
1-D vector | matrix

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

T — Threshold (dB)
scalar

Dependencies

To enable this port, select Specify from input port for the “Threshold (dB)” on page 5-0
parameter.
Data Types: single | double

K — Knee width (dB)
scalar

Dependencies

To enable this port, select Specify from input port for the “Knee width (dB)” on page 5-0
parameter.
Data Types: single | double

AT — Attack time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Attack time (s)” on page 5-0
parameter.

 Limiter

5-51

Data Types: single | double

RT — Release time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Release time (s)” on page 5-0
parameter.
Data Types: single | double

Output

Y — Output signal
matrix

The Limiter block outputs a signal with the same data type as the input signal. The size of the output
depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input signal.
• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the number of

elements in the 1-D vector.

This port is unnamed until you select the Output gain (dB) parameter.
Data Types: single | double

G — Gain applied to each input sample
matrix

Dependencies

To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Main Tab

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –50 to 0 inclusive

Operation threshold is the level above which gain is applied to the input signal.

To specify Threshold (dB) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Knee width (dB) — Transition area in the limiter characteristic
0 (default) | scalar in the range 0 to 20 inclusive

For soft knee characteristics, the transition area is defined by the relation

5 Blocks

5-52

y = x−
x− T + W

2
2

2 × W

for the range 2 × x− T ≤ W, where

• y is the output level in dB.
• x is the input level in dB.
• T is the threshold in dB.
• W is the knee width in dB.

To specify Knee width (dB) from an input port, select Specify from input port for the parameter.

Tunable: Yes

View static characteristic — Open static characteristic plot of dynamic range limiter
button

The plot is updated automatically when parameters of the Limiter block change.

Tunable: Yes

Attack time (s) — Time for applied gain to ramp up
0 (default) | scalar in the range 0 to 4 inclusive

Attack time is the time the limiter gain takes to rise from 10% to 90% of its final value when the input
goes above the threshold. The Attack time (s) parameter smooths the applied gain curve.

To specify Attack time (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Release time (s) — Time for applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4 inclusive

Release time is the time the limiter gain takes to drop from 90% to 10% of its final value when the
input goes below the threshold. The Release time (s) parameter smooths the applied gain curve.

To specify Release time (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Make-up gain mode — Make-up gain mode
Property (default) | Auto

• Property –– Make-up gain is set to the value specified by the Make-up gain (dB) parameter.

• Auto –– Make-up gain is applied at the output of the Limiter block such that a steady-state 0 dB
input has a 0 dB output.

Tunable: No

Make-up gain (dB) — Applied make-up gain
0 (default) | scalar in the range –10 to 24 inclusive

 Limiter

5-53

Make-up gain compensates for gain lost during limiting. It is applied at the output of the Limiter
block.

Tunable: Yes

Dependencies

To enable this parameter, set the Make-up gain mode parameter to Property.

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, specify the sample rate in the Input sample rate (Hz) parameter.

Tunable: No

Input sample rate (Hz) — Specify input sample rate
44100 (default) | positive scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

When you select this parameter, an additional output port, G, is added to the block. The G port
outputs the gain applied on each input channel in dB.

Tunable: No

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time and has a simulation speed comparable to Code generation. In this mode, you can
debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single
Direct Feedthrough no

5 Blocks

5-54

Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
The Limiter block processes a signal frame by frame and element by element.

1 The N-point signal, x[n], is converted to decibels:

xdB[n] = 20 × log10 x[n]
2 xdB[n] passes through the gain computer. The gain computer uses the static characteristic

properties of the dynamic range limiter to brickwall gain that is above the threshold.

If you specified a soft knee, the gain computer has the following static characteristic:

xsc(xdB) =

xdB xdB < T − W
2

xdB−
xdB− T + W

2
2

2W T − W
2 ≤ xdB ≤ T + W

2

T xdB > T + W
2

,

where T is the threshold and W is the knee width.

If you specified a hard knee, the gain computer has the following static characteristic:

xsc(xdB) =
xdB xdB < T
T xdB ≥ T

3 The computed gain, gc[n], is calculated as

gc[n] = xsc[n]− xdB[n] .

 Limiter

5-55

4 gc[n] is smoothed using specified attack and release time parameters:

gs[n] =
αAgs[n− 1] + (1− αA)gc[n], gc[n] ≤ gs[n− 1]
αRgs[n− 1] + (1− αR)gc[n], gc[n] > gs[n− 1]

The attack time coefficient, αA , is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, αR , is calculated as

αR = exp −log(9)
Fs × TR

.

TA is the attack time period, specified by the Attack time (s) parameter. TR is the release time
period, specified by the Release time (s) parameter. Fs is the input sampling rate, specified by
the Inherit sample rate from input or Input sample rate (Hz) parameter.

5 If the Make-up gain (dB) parameter is set to Auto, the make-up gain is calculated as the
negative of the computed gain for a 0 dB input:

M = − xsc(xdB = 0)

Given a steady-state input of 0 dB, this configuration achieves a steady-state output of 0 dB. The
make-up gain is determined by the Threshold (dB) and Knee width (dB) parameters. It does
not depend on the input signal.

6 The make-up gain, M, is added to the smoothed gain, gs[n]:

gm[n] = gs[n] + M
7 The calculated gain in dB, gm[n], is translated to a linear domain:

glin[n] = 10
gm[n]

20

8 The output of the dynamic range limiter is given as

y[n] = x[n] × glin[n] .

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial And Analysis." Journal of Audio Engineering Society. Vol. 60,
Issue 6, 2012, pp. 399–408.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Compressor | Expander | Noise Gate | limiter

5 Blocks

5-56

Topics
“Dynamic Range Control”

Introduced in R2016a

 Limiter

5-57

Loudness Meter
Standard-compliant loudness measurements
Library: Audio Toolbox / Measurements

Description
The Loudness Meter block measures the loudness and true-peak of an audio signal based on EBU R
128 and ITU-R BS.1770-4 standards.

Ports
Input

Port_1 — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel. If you use the
default Channel weights, specify the input channels in order: [Left, Right, Center, Left surround,
Right surround].

• 1-D vector input –– The input is treated as a single channel.

Data Types: single | double

Output

M — Momentary loudness measurement
column vector

The block outputs a column vector with the same data type and number of rows as the input signal.
Data Types: single | double

S — Short-term loudness measurement
column vector

The block outputs a column vector with the same data type and number of rows as the input signal.
Data Types: single | double

TP — True-peak value
real scalar

The block outputs a real scalar with the same data type as the input signal.

Dependencies

To enable this port, select the Output true-peak value parameter.
Data Types: single | double

5 Blocks

5-58

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Channel weights — Linear weighting applied to each input channel
[1, 1, 1, 1.41, 1.41] (default) | nonnegative row vector

The number of elements of the row vector must be equal to or greater than the number of input
channels. Excess values in the vector are ignored.

The default channel weights follow the ITU-R BS.1170-4 standard. To use the default channel weights,
specify the input to the Loudness Meter block as a matrix whose columns correspond to channels in
this order: [Left, Right, Center, Left surround, Right surround].

It is a best practice to specify the channel weights in order: [Left, Right, Center, Left surround, Right
surround].

Tunable: Yes

Use relative scale for loudness measurements — Specify block to output loudness
measurements relative to target level
off (default) | on

• On — The loudness measurements are relative to the value specified by Target loudness level
(LUFS). The output of the block is returned in loudness units (LU).

• Off — The loudness measurements are absolute, and returned in loudness units full scale (LUFS).

Tunable: No

Target loudness level (LUFS) — Reference level for relative loudness measurements
–23 (default) | real scalar

For example, if the Target loudness level (LUFS) is –23, then a loudness value of –24 LUFS is
reported as –1 LU.

Tunable: Yes
Dependencies

To enable this parameter, select the Use relative scale for loudness measurements parameter.

Output true-peak value — Add output port for true-peak value
off (default) | on

When you select this parameter, an additional output port, TP, is added to the block. The TP port
outputs the true-peak value of the input frame.

Tunable: No

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

 Loudness Meter

5-59

Input sample rate (Hz) — Sample rate of input
44100 (default) | scalar

Tunable: Yes
Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time
but the speed of the subsequent simulations is comparable to Interpreted execution.

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

Tunable: No

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
The Loudness Meter block calculates the momentary loudness, short-term loudness, and true-peak
value of an audio signal. You can specify any number of channels and nondefault channel weights
used for loudness measurements. The block algorithm is described for the general case of n channels
and default channel weights.

5 Blocks

5-60

Loudness Measurements

The input channels, x, pass through a K-weighted filter implemented using the algorithm of the
Weighting Filter block. The K-weighted filter shapes the frequency spectrum to reflect perceived
loudness.

Momentary Loudness

1 The K-weighted channels, y, are divided into 0.4-second segments with 0.3-second overlap. If the
required number of samples have not been collected yet, the Loudness Meter block returns the
last computed value for momentary loudness. If enough samples have been collected, then the
power (mean square) of each segment of the K-weighted channels is calculated:

mPi = 1
w ∑

k = 1

w
yi

2[k]

• mPi is the momentary power of the ith segment.
• w is the segment length in samples.

2 The momentary loudness, mL, is computed for each segment:

mLi = − 0.691 + 10log10 ∑
c = 1

n
Gc × mP i, c LUFS

• Gc is the weighting for channel c.

mL is the momentary loudness returned by your Loudness Meter block.

Short-Term Loudness

1 The K-weighted channels, y, are divided into 3-second segments with 2.9-second overlap. If the
required number of samples have not been collected yet, the Loudness Meter block returns the
last computed values for short-term loudness and loudness range. If enough samples have been
collected, then the power (mean square) of each K-weighted channel is calculated:

sPi = 1
w ∑

k = 1

w
yi

2[k]

• sPi is the short-term power of the ith segment of a channel.
• w is the segment length in samples.

2 The short-term loudness, sL, is computed for each segment:

sLi = − 0.691 + 10 log10 ∑
c = 1

n
Gc × sP i, c LUFS

• Gc is the weighting for channel c.

sL is the short-term loudness returned by your Loudness Meter block.

True-Peak

The true-peak measurement considers only the current input frame of a call to your loudness meter.

 Loudness Meter

5-61

1 The signal is oversampled to at least 192 kHz. To optimize processing, the input sample rate
determines the exact oversampling. An input sample rate below 750 Hz is not considered.

Input Sample Rate (kHz) Upsample Factor
[0.75,1.5) 256
[1.5,3) 128
[3,6) 64
[6,12) 32
[12,24) 16
[24,48) 8
[48,96) 4
[96,192) 2
[192,∞) not required

2 The oversampled signal, a, passes through a lowpass filter with a half-polyphase length of 12 and
stopband attenuation of 80 dB. The filter design uses designMultirateFIR.

3 The filtered signal, b, is rectified and converted to the dB TP scale:

c = 20 × log10 b
4 The true-peak is determined as the maximum of the converted signal, c.

References
[1] International Telecommunication Union; Radiocommunication Sector. Algorithms to Measure

Audio Programme Loudness and True-Peak Audio Level. ITU-R BS.1770-4. 2015.

[2] European Broadcasting Union. Loudness Normalisation and Permitted Maximum Level of Audio
Signals. EBU R 128. 2014.

[3] European Broadcasting Union. Loudness Metering: 'EBU Mode' Metering to Supplement EBU R
128 Loudness Normalization. EBU R 128 Tech 3341. 2014.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
integratedLoudness | loudnessMeter

Introduced in R2016b

5 Blocks

5-62

MIDI Controls
Output values from controls on MIDI control surface
Library: Audio Toolbox / Sources

DSP System Toolbox / Sources

Description
The MIDI Controls block outputs values from controls on a MIDI control surface in real time. Use the
MIDI Controls block to interact with your audio processing model.

The MIDI Controls block combines the functionality of the general MIDI functions in MATLAB:
midicontrols, midiread, midisync. Use the MATLAB midiid command to discover MIDI device
names or MIDI device control numbers.

Ports
Output

Port_1 — Output signal
matrix

The output size of the MIDI Controls block is determined by the MIDI controls and MIDI control
numbers parameters.

The output data type is determined by the Output mode parameter.

Data Type Output Mode
double Normalized (0-1)
uint8 RAW MIDI (0-127)

Data Types: double | uint8

Parameters
MIDI device — MIDI control surface your block listens to
Default (default) | Specify other

To set the default MIDI device, use the setpref function. For example, if the device is named
BCF2000, at the MATLAB command line, enter:

setpref('midi','DefaultDevice','BCF2000');

MIDI device name — Device name of MIDI control surface your block listens to
character vector

The MIDI device name is assigned by the device manufacturer or host operating system, and
specified as a character vector. Use midiid to interactively identify your MIDI device.

 MIDI Controls

5-63

To enable this parameter, set MIDI device to Specify other.

MIDI controls — Specify if block responds to all controllers or specific controllers on MIDI
surface
Respond to any control (default) | Respond to specified controls

This parameter also determines the size of the block output port. If you choose Respond to any
control, then the block output is a scalar corresponding to the value of the most recently
manipulated control.

MIDI control numbers — Control numbers associated with MIDI surface controllers that
your block responds to
0 (default) | integer | array of integers

Use midiid to interactively identify the control numbers of your MIDI device. This parameter is
available when you set MIDI controls to Respond to specified controls.

Initial values — Control numbers associated with MIDI surface controllers that your
block responds to
0 (default) | scalar | array

If you specify Initial values as a scalar, all controls specified by MIDI control numbers are
assigned that value.

If you specify Initial values as an array, the array must be the same size as MIDI control numbers.

Send initial values to device at start — Synchronize MIDI surface with values
specified initial values
off (default) | on

Select this parameter to synchronize a MIDI device with values specified by the Initial values when
simulation starts. If your MIDI device can receive and respond to messages, it adjusts its controls as
specified. This parameter is valid only when MIDI controls is set to Respond to specified
controls.

Many MIDI devices are not bidirectional. Selecting this parameter with a unidirectional device has no
effect. The MIDI Controls block cannot tell whether a value is successfully sent to a device or even
whether the device is bidirectional. If sending a value fails, no errors or warnings are generated.

Output Mode — Output mode for MIDI control value
Normalized (0-1) (default) | RAW MIDI (0-127)

Block Characteristics
Data Types double | integer
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

5 Blocks

5-64

Tips
• The MIDI Controls block is not supported for rapid accelerator mode.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The executable generated from this block relies on prebuilt dynamic library files (.dll files) included
with MATLAB. Use the packNGo function to package the code generated from this object and all the
relevant files in a compressed zip file. Using this zip file, you can relocate, unpack, and rebuild your
project in another development environment where MATLAB is not installed. For more details, see
“Run Audio I/O Features Outside MATLAB and Simulink”.

See Also
Functions
midicontrols | midiid | midiread | midisync

Topics
“MIDI Control Surface Interface”

 MIDI Controls

5-65

Noise Gate
Dynamic range gate
Library: Audio Toolbox / Dynamic Range Control

Description
The Noise Gate block performs dynamic range gating independently across each input channel.
Dynamic range gating suppresses signals below a given threshold. The block uses specified attack,
release, and hold times to achieve a smooth applied gain curve.

Ports
Input

x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

T — Threshold (dB)
scalar

Dependencies

To enable this port, select Specify from input port for the “Threshold (dB)” on page 5-0
parameter.
Data Types: single | double

AT — Attack time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Attack time (s)” on page 5-0
parameter.
Data Types: single | double

RT — Release time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Release time (s)” on page 5-0
parameter.

5 Blocks

5-66

Data Types: single | double

HT — Hold time (s)
scalar

Dependencies

To enable this port, select Specify from input port for the “Hold time (s)” on page 5-0 parameter.
Data Types: single | double

Output

Y — Output signal
matrix

The Noise Gate block outputs a signal with the same data type as the input signal. The size of the
output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input signal.
• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the number of

elements in the 1-D vector.

This port is unnamed until you select the Output gain (dB) parameter.
Data Types: single | double

G — Gain applied to each input sample
matrix

Dependencies

To enable this port, select the Output gain (dB) parameter.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Main Tab

Threshold (dB) — Operation threshold
–10 (default) | scalar in the range –140 to 0 inclusive

Operation threshold is the level below which gain is applied to the input signal.

To specify Threshold (dB) from an input port, select Specify from input port for the parameter.

Tunable: Yes

View static characteristic — Open static characteristic plot of dynamic range gate
button

The plot is updated automatically when parameters of the Noise Gate block change.

Tunable: Yes

 Noise Gate

5-67

Attack time (s) — Time for applied gain to ramp up
0.05 (default) | scalar in the range 0 to 4 inclusive

Attack time is the time the applied gain takes to rise from 10% to 90% of its final value when the
input goes below the threshold. The Attack time (s) parameter smooths the applied gain curve.

To specify Attack time (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Release time (s) — Time for applied gain to ramp down
0.2 (default) | scalar in the range 0 to 4 inclusive

Release time is the time the applied gain takes to drop from 90% to 10% of its final value when the
input goes above the threshold. The Release time (s) parameter smooths the applied gain curve.

To specify Release time (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Hold time (s) — Time during which applied gain holds steady
0.05 (default) | scalar in the range 0 to 4

Hold time is the period in which the applied gain is held constant before it starts moving toward its
steady-state value. Hold time begins when the input level crosses the operation threshold.

To specify Hold time (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Specify input sample rate
44100 (default) | scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Advanced Tab

Output gain (dB) — Gain applied on each input sample
off (default) | on

When you select this parameter, an additional output port, G, is added to the block. The G port
outputs the gain applied on each input channel in dB.

Tunable: No

5 Blocks

5-68

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time and has a simulation speed comparable to Code generation. In this mode, you can
debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
The Noise Gate block processes a signal frame by frame and element by element.

1 The N-point signal, x[n], is converted to magnitude:

xa[n] = x[n]
2 xa[n] passes through the gain computer. The gain computer uses the static characteristic

properties of the dynamic range gate to apply a brickwall gain for signal below the threshold:

gc(xa) =
0 xa < Tlin
1 xa ≥ Tlin

 Noise Gate

5-69

Tlin is the threshold property converted to a linear domain:

Tlin = 10
TdB 20 .

3 The computed gain, gc[n], is smoothed using specified attack, release, and hold time parameters:

gs[n] =

αAgs[n− 1] + (1− αA)gc[n]
gs[n− 1]

αRgs[n− 1] + (1− αR)gc[n]
gs[n− 1]

if CA > TH & gc[n] ≤ gs[n− 1]
if CA ≤ TH

if CR > TH & gc[n] > gs[n− 1]
if CR ≤ TH

CA and CR are hold counters for attack and release, respectively. The limit, TH, is determined by
the Hold time (s) parameter.

The attack time coefficient, αA, is calculated as

αA = exp −log(9)
Fs × TA

.

The release time coefficient, αR, is calculated as

αR = exp −log(9)
Fs × TR

.

TA is the attack time period, specified by the Attack time (s) parameter. T R is the release time
period, specified by the Release time (s) parameter. Fs is the input sampling rate, specified by
the Inherit sample rate from input or Input sample rate (Hz) parameter.

4 The output of the dynamic range gate is given as

y[n] = x[n] × gs[n] .

References
[1] Giannoulis, Dimitrios, Michael Massberg, and Joshua D. Reiss. "Digital Dynamic Range

Compressor Design –– A Tutorial And Analysis." Journal of Audio Engineering Society. Vol. 60,
Issue 6, 2012, pp. 399–408.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Compressor | Expander | Limiter | noiseGate

Topics
“Dynamic Range Control”

Introduced in R2016a

5 Blocks

5-70

Octave Filter
Octave-band and fractional octave-band filter
Library: Audio Toolbox / Filters

Description
The Octave Filter block performs octave-band or fractional octave-band filtering independently across
each input channel. An octave-band is a frequency band where the highest frequency is twice the
lowest frequency. Octave-band and fractional octave-band filters are commonly used to mimic how
humans perceive loudness. Octave filters are best understood when viewed on a logarithmic scale,
which models how the human ear weights the spectrum.

Ports
Input

x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

CF — Center frequency (Hz)
scalar in the range 3 to 22,000 inclusive

Dependencies

To enable this port, select Specify from input port for the “Center frequency (Hz)” on page 5-0
parameter.
Data Types: single | double

Output

Port_1 — Output signal
matrix

The Octave Filter block outputs a signal with the same data type as the input signal. The size of the
output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input signal.
• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the number of

elements in the 1-D vector.

Data Types: single | double

 Octave Filter

5-71

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Filter order — Order of octave filter
6 (default) | even integer

Tunable: No

Center frequency (Hz) — Center frequency of octave filter
1000 (default) | scalar in the range 3 to 22,000 inclusive

• The maximum center frequency is the value that causes the upper band edge to be equal to the
Nyquist frequency, Fs/2. Frequencies above this value are saturated.

• The minimum center frequency is the value that causes the lower band edge to be equal to 1 Hz.
Frequencies below this value are quantized to 1 Hz.

To specify Center frequency (Hz) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Bandwidth — Filter bandwidth in octaves
1 octave (default) | 2/3 octave | 1/2 octave | 1/3 octave | 1/6 octave | 1/12 octave |
1/24 octave | 1/48 octave

Tunable: Yes

Oversample the input by 2 for this filter — Oversample toggle
off (default) | on

• off –– The Octave Filter block runs at the input sample rate.
• on –– The Octave Filter block runs at two times the input sample rate. Oversampling minimizes the

frequency warping effects introduced by the bilinear transformation. An FIR halfband interpolator
implements oversampling before octave filtering. A halfband decimator reduces the sample rate
back the input sampling rate after octave filtering.

Tunable: No

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

5 Blocks

5-72

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation –– Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

• Interpreted execution –– Simulate the model using the MATLAB interpreter. This option
shortens startup time but has a slower simulation speed than Code generation. In this mode,
you can debug the source code of the block.

Tunable: No

Mask for attenuation limits — Create a mask for filter response visualization
No mask (default) | Class 0 | Class 1 | Class 2

The mask attenuation limits are defined in the ANSI S1.11-2004 standard.

• If the mask is green, the design is compliant.
• If the mask is red, the design breaks compliance.

Tunable: Yes

Visualize filter response — Open plot to visualize magnitude response and compliance
mask
button

A 2048-point FFT is used to calculate the magnitude response.

Tunable: Yes

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

More About
Band Edge

A band edge frequency refers to the lower or upper edge of the passband of a bandpass filter.

Center Frequency of Octave Filter

The center frequency of an octave filter is the geometric mean of the lower- and upper-band edge
frequencies.

 Octave Filter

5-73

Algorithms
Octave Bandwidth to Band Edge Conversion

The Octave Filter block uses the specified center frequency and filter bandwidth in octaves to
determine the normalized band edges [2].

First the block computes the upper and lower band edge frequencies:

fpa = fc × G−1 2b

fpb = fc × G1 2b

• fc is the normalized center frequency specified by the Center frequency (Hz) parameter.
• b is the octave bandwidth specified by the Bandwidth parameter. For example, if Bandwidth is
specified as 1/3 octave, the value of b is 3.

• G is a conversion constant:

G = 103 10 .

Digital Filter Design

The Octave Filter block implements a higher-order digital bandpass filter design method as specified
in [1].

In this design method, a desired digital bandpass filter maps to a Butterworth lowpass analog
prototype, which is then mapped back to a digital bandpass filter:

1 The analog Butterworth filter is expressed as a cascade of second-order sections:

H(s) = H1(s)H2(s)⋯H2N(s) , where:

• Hi(s) = 1

1− 2 s
Ω0

cosθi + s2

Ω0
2

, i = 1, 2, ..., 2N

• θi = π
2N N − 1 + 2i , i = 1, 2, ..., N, ..., 2N

N is the filter order specified by the Filter order parameter.

5 Blocks

5-74

2 The analog Butterworth filter is mapped to a digital filter using a bandpass version of the bilinear
transformation:

s = 1− cz−1 + z−2

1− z−2 ,

where

c =
sin ωpa + ωpb

sinωpa + sinωpb
.

This mapping results in the following substitution:

Ω0 =
c− cosωpb

sinωpb

3 The analog prototype is evaluated:

Hi(z) = 1

1− 2 s
Ω0

cosθi + s2

Ω0
2 s = 1− 2cz−1 + z−2

1− z−2

Because s is second-order in z, the bandpass version of the bilinear transformation is fourth-
order in z.

References
[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice Hall,

2010.

[2] Acoustical Society of America. American National Standard Specification for Octave-Band and
Fractional-Octave-Band Analog and Digital Filters: ANSI S1.11-2004. Melville, NY: Acoustical
Society of America, 2009.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Weighting Filter | octaveFilter | weightingFilter

Introduced in R2016b

 Octave Filter

5-75

Parametric EQ
Second-order parametric equalizer filter
Library: Audio Toolbox / Filters

Description
The Parametric EQ block filters each channel of the input signal over time using a specified center
frequency, bandwidth, and peak (dip) gain. This block offers tunable filter design parameters, which
enable you to tune the filter characteristics while the simulation is running. The filter is designed
using designParamEQ and implemented using dsp.BiquadFilter.

This block supports variable-size input, enabling you to change the channel length during simulation.
To enable variable-size input, clear the Inherit sample rate from input parameter. The number of
channels must remain constant.

Ports
Input

x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a signal channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

Fc — Center frequency (Hz)
scalar

Specify the center frequency as a positive scalar that is less than half the sample rate of the input
signal.

Dependencies

To enable this port, select Specify from input port for the Center Frequency (Hz) parameter.
Data Types: single | double

BW — Bandwidth (Hz)
scalar

Specify the filter bandwidth as a positive scalar that is less than or equal to half the sample rate of
the input signal and 20 kHz.

5 Blocks

5-76

Dependencies

To enable this port, select Bandwidth and Center Frequency for the Filter specification and
Specify from input port for the Filter Bandwidth (Hz) parameter.
Data Types: single | double

GdB — Peak or dip gain (dB)
scalar

Specify the peak or dip gain in dB as a scalar.

Dependencies

To enable this port, select Specify from input port for the Peak Gain (dB) parameter.
Data Types: single | double

Q — Quality factor
scalar

Specify the quality factor as a positive scalar.

Dependencies

To enable this port, select Quality factor and center frequency for the Filter Specification
and Specify from input port for the Quality Factor parameter.
Data Types: single | double

Output

Port_1 — Output signal
matrix

The Parametric EQ block outputs a signal with the same data type as the input signal. The size of the
output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input signal.
• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the number of

elements in the 1-D vector.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Filter order — Order of filter
2 (default) | positive even scalar

Tunable: No

Filter specification — Specify parameters used to design filter
Bandwidth and center frequency (default) | Quality factor and center frequency

 Parametric EQ

5-77

• Bandwidth and center frequency –– Design the filter using Filter Bandwidth (Hz), Center
Frequency (Hz), and Peak Gain (dB).

• Quality factor and center frequency –– Design the filter using Center Frequency (Hz),
Peak Gain (dB), and Quality Factor.

Tunable: No

Center Frequency (Hz) — Center frequency of filter
11025 (default) | positive scalar

Specify the center frequency as a positive scalar that is less than half the sample rate of the input
signal.

To specify Center Frequency (Hz) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Filter Bandwidth (Hz) — Bandwidth of filter
2205 (default) | positive scalar in the range [0, max(fs/2, 20,000)]

Specify the filter bandwidth as a positive scalar that is less than or equal to half the sample rate of
the input signal or 20 kHz, whichever is larger.

To specify Filter Bandwidth (Hz) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Dependencies

To enable this parameter, set Filter specification to Bandwidth and center frequency.

Quality Factor — Quality factor
5 (default) | scalar in the range [0.1, 20]

Specify the quality factor as a scalar in the range [0.1, 20].

To specify Quality Factor from an input port, select Specify from input port for the parameter.

Tunable: Yes

Dependencies

To enable this parameter, set Filter specification to Quality factor and center frequency.

Peak Gain (dB) — Peak or dip gain of filter
6.0206 (default) | scalar in the range [−30, 30]

Specify the peak gain in dB as a scalar in the range [−30, 30].

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

5 Blocks

5-78

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time and has simulation speed comparable to Code generation. In this mode, you can
debug the source code of the block.

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is faster compared to Interpreted execution.

Tunable: No

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

References
[1] Orfanidis, Sophocles J. "High-Order Digital Parametric Equalizer Design." Journal of the Audio

Engineering Society. Vol. 53, November 2005, pp. 1026–1046.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
designParamEQ | designShelvingEQ | designVarSlopeFilter | multibandParametricEQ

 Parametric EQ

5-79

Topics
“Parametric Equalizer Design”
“Equalization”

Introduced in R2019a

5 Blocks

5-80

Reverberator
Add reverberation to audio signal
Library: Audio Toolbox / Effects

Description
The Reverberator block adds reverberation to mono or stereo audio signals. You can tune parameters
of the Reverberator block to mimic different acoustic environments.

Ports
Input

x — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

This port is unnamed unless you specify additional input ports.
Data Types: single | double

Delay — Pre-delay for reverberation (s)
scalar in the range [0,1]

Dependencies

To enable this port, select Specify from input port for the “Pre-delay (s)” on page 5-0 parameter.
Data Types: single | double

HighCut — Lowpass filter cutoff
positive scalar in the range [0, (Sample Rate)/2]

Dependencies

To enable this port, select Specify from input port for the “Highcut frequency (Hz)” on page 5-0
parameter.
Data Types: single | double

Diffusion — Density of reverb tail
scalar in the range [0,1]

Dependencies

To enable this port, select Specify from input port for the “Diffusion” on page 5-0 parameter.
Data Types: single | double

 Reverberator

5-81

Decay — Decay factor of reverb tail
scalar in the range [0,1]
Dependencies

To enable this port, select Specify from input port for the “Decay factor” on page 5-0 parameter.
Data Types: single | double

Damping — High-frequency damping
scalar in the range [0,1]
Dependencies

To enable this port, select Specify from input port for the “High frequency damping” on page 5-0
parameter.
Data Types: single | double

WetDry — Ratio of wet (reverberated) signal to dry (original) signal
scalar in the range [0,1]
Dependencies

To enable this port, select Specify from input port for the “Wet/dry mix” on page 5-0 parameter.
Data Types: single | double

Output

Port_1 — Output signal
matrix

The Reverberator block outputs a signal with the same data type as the input signal. The size of the
output depends on the size of the input:

• Matrix input –– The block outputs a matrix of the same size and data type as the input signal.
• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the number of

elements in the 1-D vector.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Pre-delay (s) — Pre-delay for reverberation
0 (default) | scalar in the range [0, 1]

Pre-delay for reverberation is the time between hearing direct sound and the first early reflection.
The value of Pre-delay (s) is proportional to the size of the room being modeled.

To specify Pre-delay (s) from an input port, select Specify from input port for the parameter.

Tunable: Yes

Highcut frequency (Hz) — Lowpass filter cutoff
20000 (default) | scalar in the range [0, (Sample Rate)/2]

5 Blocks

5-82

Lowpass filter cutoff is the –3 dB cutoff frequency for the single-pole lowpass filter at the front of the
reverberator structure. It prevents the application of reverberation to high-frequency components of
the input.

To specify Highcut frequency (Hz) from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Diffusion — Density of reverb tail
0.50 (default) | scalar in the range [0, 1]

Diffusion is proportional to the rate at which the reverb tail builds in density. Increasing Diffusion
pushes the reflections closer together, thickening the sound. Reducing Diffusion creates more
discrete echoes.

To specify Diffusion from an input port, select Specify from input port for the parameter.

Tunable: Yes

Decay factor — Decay factor of reverb tail
0.50 (default) | scalar in the range [0, 1]

Decay factor is proportional to the time it takes for reflections to run out of energy. To model a large
room, use a long reverb tail (low decay factor). To model a small room, use a short reverb tail (high
decay factor).

To specify Decay factor from an input port, select Specify from input port for the parameter.

Tunable: Yes

High frequency damping — High-frequency damping
0.0005 (default) | scalar in the range [0, 1]

High frequency damping is proportional to the attenuation of high frequencies in the reverberation
output. Setting High frequency damping to a large value makes high-frequency reflections decay
faster than low-frequency reflections.

To specify High frequency damping from an input port, select Specify from input port for the
parameter.

Tunable: Yes

Wet/dry mix — Ratio of wet (reverberated) signal to dry (original) signal
0.3 (default) | scalar in the range [0, 1]

Wet/dry mix is the ratio of wet (reverberated) signal to dry (original) signal that your Reverberator
block outputs.

To specify Wet/dry mix from an input port, select Specify from input port for the parameter.

Tunable: Yes

Inherit sample rate from input — Specify source of input sample rate
on (default) | off

 Reverberator

5-83

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Input sample rate (Hz).

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution – Simulate the model using the MATLAB interpreter. This option
reduces startup time and the simulation speed is comparable to Code generation. In this mode,
you can debug the source code of the block.

• Code generation – Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

Algorithms
The algorithm to add reverberation follows the plate-class reverberation topology described in [1]
and is based on a 29,761 Hz sample rate.

The algorithm has five stages.

5 Blocks

5-84

The description for the algorithm that follows is for a stereo input. A mono input is a simplified case.

Stereo-to-Mono

A stereo signal is converted to a mono signal: x[n] = 0.5 × xR[n] + xL[n] .

Preconditioning

A delay followed by a lowpass filter preconditions the mono signal.

• The pre-delay output is determined as xp[n] = x[n− k], where the Pre-delay (s) parameter
determines the value of k.

• The signal is fed through a single-pole lowpass filter with transfer function

LP(z) = 1− α
1− αz−1 ,

where

α = exp −2π ×
fc
fs

.

• fc is the cutoff frequency specified by the Pre-delay (s) parameter.
• fs is the sampling frequency specified by the Inherit sample rate from input parameter or

the Input sample rate (Hz) parameter.

Decorrelation

The signal is decorrelated by passing through a series of four allpass filters.

The allpass filters are of the form

AP(z) = β + z−k

1 + βz−k ,

where β is the coefficient specified by the Diffusion property and k is the delay as follows:

• For AP1, k = 142.
• For AP2, k = 107.
• For AP3, k = 379.
• For AP4, k = 277.

Tank

The signal is fed into the tank, where it circulates to simulate the decay of a reverberation tail.

 Reverberator

5-85

The following description tracks the signal as it progresses through the top of the tank. The signal
progression through the bottom of the tank follows the same pattern, with different delay
specifications.

1 The new signal enters the top of the tank and is added to the circulated signal from the bottom of
the tank.

2 The signal passes through a modulated allpass filter:

Modulated AP1(z) = −β + z−k

1− βz−k

• β is the coefficient specified by the Diffusion parameter.
• k is the variable delay specified by a 1 Hz sinusoid with amplitude = (8/29761) × (sample

rate). To account for fractional delay resulting from the modulating k, allpass interpolation is
used [2].

3 The signal is delayed again, and then passes through a lowpass filter:

LP2(z) = 1− φ
1− φz−1

• φ is the coefficient specified by the High frequency damping parameter.
4 The signal is multiplied by a gain specified by the Decay factor parameter. The signal then

passes through an allpass filter:

5 Blocks

5-86

AP5(z) = β + z−k

1 + βz−k .

• β is the coefficient specified by the Diffusion parameter.
• k is set to 1800 for the top of the tank and 2656 for the bottom of the tank.

5 The signal is delayed again and then circulated to the bottom half of the tank for the next
iteration.

A similar pattern is executed in parallel for the bottom half of the tank. The output of the tank is
calculated as the signed sum of delay lines picked off at various points from the tank. The summed
output is multiplied by 0.6.

Wet/Dry Mix

The wet (processed) signal is then added to the dry (original) signal:

yR[n] = 1− κ xR[n] + κx3R[n] ,

yL[n] = 1− κ xL[n] + κx3L[n] ,

where the Wet/dry mix parameter determines κ.

References
[1] Dattorro, Jon. "Effect Design, Part 1: Reverberator and Other Filters." Journal of the Audio

Engineering Society. Vol. 45, Issue 9, 1997, pp. 660–684.

[2] Dattorro, Jon. "Effect Design, Part 2: Delay-Line Modulation and Chorus." Journal of the Audio
Engineering Society. Vol. 45, Issue 10, 1997, pp. 764–788.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
reverberator

Introduced in R2016a

 Reverberator

5-87

Weighting Filter
Weighted frequency response filter
Library: Audio Toolbox / Filters

Description
The Weighting Filter block performs frequency-weighted filtering independently across each input
channel.

Ports
Input

Port_1 — Input signal
matrix | 1-D vector

• Matrix input –– Each column of the input is treated as an independent channel.
• 1-D vector input –– The input is treated as a single channel.

Data Types: single | double

Output

Port_1 — Output signal
matrix

The Weighting Filter block outputs a signal with the same data type as the input signal. The size of
the output depends on the size of the input:

• Matrix input –– The block outputs a matrix the same size and data type as the input signal.
• 1-D vector input –– The block outputs an N-by-1 matrix (column vector), where N is the number of

elements in the 1-D vector.

Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Weighting method — Type of frequency weighting
A-weighting (default) | C-weighting | K-weighting

See “A-Weighting” on page 5-90, “C-Weighting” on page 5-90, and “K-Weighting” on page 5-91 for
the definition of the weighting curves.

Tunable: No

5 Blocks

5-88

Inherit sample rate from input — Specify source of input sample rate
off (default) | on

When you select this parameter, the block inherits its sample rate from the input signal. When you
clear this parameter, you specify the sample rate in Input sample rate (Hz).

Tunable: No

Input sample rate (Hz) — Sample rate of input
44100 (default) | positive scalar

Tunable: Yes

Dependencies

To enable this parameter, clear the Inherit sample rate from input parameter.

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation –– Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time
but the speed of the subsequent simulations is faster than Interpreted execution.

• Interpreted execution –– Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed compared to Code generation. In this mode, you
can debug the source code of the block.

Tunable: No

Mask for attenuation limits — Creates a mask for filter response visualization
No mask (default) | Class 1 | Class 2

The mask attenuation limits are defined in the IEC 61672-1:2002 standard.

• If the mask is green, the design is compliant.
• If the mask is red, the design breaks compliance.

Tunable: Yes

Dependencies

To enable this parameter, set Weighting method to A-weighting or C-weighting.

Visualize filter response — Open plot to visualize magnitude response and compliance
mask
button

A 2048-point FFT is used to calculate the magnitude response.

Tunable: Yes

 Weighting Filter

5-89

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals yes
Zero-Crossing
Detection

no

More About
A-Weighting

The A-curve is a wide bandpass filter centered at 2.5 kHz, with approximately 20 dB attenuation at
100 Hz and 10 dB attenuation at 20 kHz. A-weighted SPL measurements of noise level are
increasingly found in sales literature for domestic appliances. In most countries, the use of A-
weighting is mandated for the protection of workers against noise-induced deafness. The ISO and
ICOA standards mandate A-weighting for all civil aircraft noise measurements.

The ANSI S1.42.2001 [1] defines this weighting curve. The IEC 61672-1:2002 [2] standard defines the
minimum and maximum attenuation limits for an A-weighting filter.

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio Toolbox
converts the specified poles and zeros to the digital domain using a bilinear transform:

C-Weighting

The C-curve is "flat," but with limited bandwidth: It has –3 dB corners at 31.5 Hz and 8 kHz. C-curves
are used in sound level meters for sounds that are louder than sounds intended for A-weighting
filters.

The ANSI S1.42-2001 [1] defines the C-weighting curve. The IEC 61672-1:2002 [2] standard defines
the minimum and maximum attenuation limits for C-weighting filters.

5 Blocks

5-90

ANSI S1.42.2001 defines the weighting curve by specifying analog poles and zeros. Audio Toolbox
converts the specified poles and zeros to the digital domain using a bilinear transform:

K-Weighting

The K-weighting filter is used for loudness normalization in broadcast. It is composed of two stages of
filtering: a first stage shelving filter and a second stage highpass filter.

The ITU-R BS.1770-4 [3] standard defines this curve.

Assume a second-order filter.

The table shows the coefficients for the filters.

First Stage Shelving Coefficients Second Stage Highpass Coefficients
a1 = − 1.69065929318241 a1 = − 1.99004745483398
a2 = 0.73248077421585 a2 = 0.99007225036621
b0 = 1.53512485958697 b0 = 1.0

 Weighting Filter

5-91

First Stage Shelving Coefficients Second Stage Highpass Coefficients
b1 = − 2.6916918940638 b1 = − 2.0
b2 = 1.19839281085285 b2 = 1.0

The coefficients presented by ITU-R BS.1770-4 are defined for 48 kHz. These coefficients are
recomputed for nonstandard sample rates using the algorithm described in [4].

References
[1] Acoustical Society of America. Design Response of Weighting Networks for Acoustical

Measurements. ANSI S1.42-2001. New York, NY: American National Standards Institute,
2001.

[2] International Electrotechnical Commission. Electroacoustics Sound Level Meters Part 1:
Specifications. First Edition. IEC 61672-1. 2002-2005.

[3] International Telecommunication Union. Algorithms to measure audio programme loudness and
true-peak audio level. ITU-R BS.1770-4. 2015.

[4] Mansbridge, Stuart, Saoirse Finn, and Joshua D. Reiss. "Implementation and Evaluation of
Autonomous Multi-track Fader Control." Paper presented at the 132nd Audio Engineering
Society Convention, Budapest, Hungary, 2012.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Loudness Meter | Octave Filter | loudnessMeter | octaveFilter | weightingFilter

Introduced in R2016b

5 Blocks

5-92

Wavetable Synthesizer
Generate periodic signal from single-cycle waveforms
Library: Audio Toolbox / Sources

Description
The Wavetable Synthesizer block generates a periodic signal with tunable parameters. The periodic
signal is defined by a single-cycle waveform cached as the Single-cycle waveform parameter of your
Wavetable Synthesizer block.

Ports
Input

WT — Single-cycle waveform
vector of real values

Dependencies

To enable this port, select Specify wavetable from input port for the “Single-cycle waveform” on
page 5-0 parameter.
Data Types: single | double

F — Output wave frequency (Hz)
nonnegative scalar | vector of nonnegative values

Dependencies

To enable this port, select Specify frequency from input port for the “Output wave frequency (Hz)”
on page 5-0 parameter.
Data Types: single | double

A — Output wave amplitude
nonnegative scalar

 Wavetable Synthesizer

5-93

Dependencies

To enable this port, select Specify amplitude from input port for the “Output wave amplitude” on
page 5-0 parameter.
Data Types: single | double

DC — Output wave DC offset
scalar

Dependencies

To enable this port, select Specify DC offset from input port for the “Output wave DC offset” on
page 5-0 parameter.
Data Types: single | double

Output

Port_1 — Output signal
vector | matrix

The Wavetable Synthesizer block outputs a periodic signal defined by the parameters of the block.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Single-cycle waveform — Wavetable
sin(2*pi*(0:511)/512) (default) | vector of real values

The Wavetable Synthesizer block indexes into the single-cycle waveform to synthesize a periodic
wave.

To specify Single-cycle waveform from an input port, select Specify wavetable from input port
for the parameter.

Tunable: Yes

Output wave frequency (Hz) — Frequency of generated signal
100 (default) | nonnegative scalar

The number of times the single-cycle waveform is repeated in one second.

To specify Output wave frequency (Hz) from an input port, select Specify frequency from input
port for the parameter.

Tunable: Yes

Output wave amplitude — Amplitude of generated signal
1 (default) | nonnegative scalar

Amplitude scaling is applied before DC offset.

5 Blocks

5-94

To specify Output wave amplitude from an input port, select Specify amplitude from input port
for the parameter.

Tunable: Yes

Output wave phase offset — Normalized phase offset of generated signal
0 (default) | scalar in the range [0,1]

The phase offset range, [0,1], corresponds to a normalized 2π radians interval.

Output wave DC offset — Value added to each element of generated signal
0 (default) | scalar

To specify Output wave DC offset from an input port, select Specify DC offset from input port for
the parameter.

Tunable: Yes

Samples per frame — Number of samples per frame output from block
512 (default) | positive integer scalar

Sample rate (Hz) — Sample rate of generated signal
44100 (default) | positive scalar

Output data type — Data type of generated signal
double (default) | single

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation – Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

• Interpreted execution – Simulate the model using the MATLAB interpreter. This option
reduces startup time and the simulation speed is comparable to Code generation. In this mode,
you can debug the source code of the block.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Wavetable Synthesizer

5-95

See Also
Audio Device Writer | Audio Oscillator | wavetableSynthesizer

Introduced in R2020a

5 Blocks

5-96

Audio Oscillator
Generate sine, square, and sawtooth waveforms
Library: Audio Toolbox / Sources

Description
The Audio Oscillator block generates tunable waveforms. Typical uses include the generation of test
signals for test benches, and the generation of control signals for audio effects. Parameters of the
Audio Oscillator block specify the type of waveform generated.

Ports
Input

F — Frequency (Hz)
nonnegative scalar | vector of nonnegative values

Dependencies

To enable this port, select Specify frequency from input port for the “Frequency (Hz)” on page 5-
0 parameter.
Data Types: single | double

A — Amplitude
nonnegative scalar | vector of nonnegative values

Dependencies

To enable this port, select Specify amplitude from input port for the “Amplitude” on page 5-0
parameter.
Data Types: single | double

DC — DC offset
scalar | vector

 Audio Oscillator

5-97

Dependencies

To enable this port, select Specify DC offset from input port for the “DC offset” on page 5-0
parameter.
Data Types: single | double

Output

Port_1 — Output signal
vector

The Audio Oscillator block outputs a periodic signal defined by the parameters of the block.
Data Types: single | double

Parameters
If a parameter is listed as tunable, then you can change its value during simulation.

Signal type — Type of generated waveform
sine (default) | square | sawtooth

The waveforms are generated using the algorithms specified by the sin, square, and sawtooth
functions.

Frequency (Hz) — Frequency of generated waveform
100 (default) | nonnegative scalar | vector of nonnegative values

• If “Signal type” on page 5-0 is set to sine, specify Frequency (Hz) as a scalar or as a vector. If
Frequency (Hz) is set to an N-element vector, then the output from the block is the single-
channel sum of N sinusoids. If Frequency (Hz) is set to an N-element vector, then “Amplitude” on
page 5-0 , “Phase offset” on page 5-0 , and “DC offset” on page 5-0 must be scalars or N-
element vectors.

• For square waveforms, specify Frequency (Hz) as a scalar.
• For sawtooth waveforms, specify Frequency (Hz) as a scalar.

To specify Frequency (Hz) from an input port, select Specify frequency from input port.

Tunable: Yes

Amplitude — Amplitude of generated waveform
1 (default) | nonnegative scalar | vector of nonnegative values

• If “Signal type” on page 5-0 is set to sine, specify Amplitude as a scalar or as a vector. If
Amplitude is set to an N-element vector, then the output from the block is the single-channel sum
of N sinusoids. If Amplitude is set to an N-element vector, then “Frequency (Hz)” on page 5-0 ,
“Phase offset” on page 5-0 , and “DC offset” on page 5-0 must be scalars or N-element
vectors.

• For square waveforms, specify Amplitude as a scalar.
• For sawtooth waveforms, specify Amplitude as a scalar.

To specify Amplitude from an input port, select Specify amplitude from input port.

5 Blocks

5-98

Tunable: Yes

Phase offset — Normalized phase offset of generated waveform
0 (default) | scalar in the range [0, 1] | vector with values in the range [0, 1]

The phase offset range, [0,1], corresponds to a normalized 2π radians interval.

• If “Signal type” on page 5-0 is set to sine, specify Phase offset as a scalar or as a vector. If
Phase offset is set to an N-element vector, then the output from the block is the single-channel
sum of N sinusoids. If Phase offset is set to an N-element vector, then “Frequency (Hz)” on page
5-0 , “Amplitude” on page 5-0 , and “DC offset” on page 5-0 must be scalars or N-element
vectors.

• For square waveforms, specify Amplitude as a scalar.
• For sawtooth waveforms, specify Amplitude as a scalar.

DC offset — Value added to each element of generated waveform
0 (default) | scalar | vector

• If “Signal type” on page 5-0 is set to sine, specify DC offset as a scalar or as a vector. If DC
offset is set to an N-element vector, then the output from the block is the single-channel sum of N
sinusoids. If DC offset is set to an N-element vector, then “Frequency (Hz)” on page 5-0 ,
“Amplitude” on page 5-0 , and “Phase offset” on page 5-0 must be scalars or N-element
vectors.

• For square waveforms, specify Amplitude as a scalar.
• For sawtooth waveforms, specify Amplitude as a scalar.

To specify DC offset from an input port, select Specify DC offset from input port.

Tunable: Yes

Duty cycle — Square waveform duty cycle
0.5 (default) | scalar in the range [0, 1]

Square waveform duty cycle is the percentage of one period in which the waveform is above the
median amplitude. A duty cycle value of 1 or 0 is equivalent to a DC signal.

Dependencies

To enable this parameter, set Signal type to square.

Width — Sawtooth width
1 (default) | scalar in the range [0, 1]

Sawtooth width determines the point in a sawtooth waveform period at which the maximum occurs.

Dependencies

To enable this property, set Signal type to sawtooth.

Samples per frame — Number of samples per frame
512 (default) | positive integer

Sample rate (Hz) — Sample rate of generated waveform
44100 (default) | positive scalar

 Audio Oscillator

5-99

The sample rate must be greater than twice the value specified in “Frequency (Hz)” on page 5-0 .

Output data type — Data type of generated waveform
double (default) | single

Data type of generated waveform, specified as double or single.

Tunable: No

Simulate using — Specify type of simulation to run
Code generation (default) | Interpreted execution

• Code generation – Simulate the model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

• Interpreted execution – Simulate model using the MATLAB interpreter. This option reduces
startup time and the simulation has speed comparable to Code generation. In this mode, you
can debug the source code of the block.

Block Characteristics
Data Types double | single
Direct Feedthrough no
Multidimensional
Signals

no

Variable-Size Signals no
Zero-Crossing
Detection

no

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Audio Device Writer | Wavetable Synthesizer | audioOscillator

Introduced in R2020a

5 Blocks

5-100

	Apps
	Audio Labeler
	Impulse Response Measurer
	Audio Test Bench
	Extract Audio Features

	Functions
	showaudioblockdatatypetable
	audioPluginGridLayout
	pinknoise
	stretchAudio
	shiftPitch
	designAuditoryFilterBank
	melSpectrogram
	kbdwin
	mdct
	imdct
	harmonicRatio
	gtcc
	spectralSpread
	spectralSlope
	spectralSkewness
	spectralRolloffPoint
	spectralKurtosis
	spectralFlux
	spectralFlatness
	spectralEntropy
	spectralDecrease
	spectralCrest
	spectralCentroid
	hz2mel
	hz2bark
	hz2erb
	mel2hz
	bark2hz
	erb2hz
	mls
	sweeptone
	interpolateHRTF
	impzest
	mididevinfo
	pitch
	mfcc
	asiosettings
	getAudioDevices
	audioPluginInterface
	audioPluginParameter
	configureMIDI
	designParamEQ
	designShelvingEQ
	designVarSlopeFilter
	disconnectMIDI
	fdesign.parameq
	generateAudioPlugin
	integratedLoudness
	getMIDIConnections
	loadAudioPlugin
	midicallback
	midicontrols
	midiid
	midiread
	midisync
	validateAudioPlugin
	acousticLoudness
	acousticSharpness
	detectSpeech
	calibrateMicrophone
	sone2phon
	phon2sone

	System Objects
	audioTimeScaler
	parameterTuner
	gammatoneFilterBank
	coeffs
	freqz
	fvtool
	getBandedgeFrequencies
	getCenterFrequencies
	getBandwidths
	getGroupDelays
	octaveFilterBank
	splMeter
	calibrate
	voiceActivityDetector
	cepstralFeatureExtractor
	getFilters
	visualize
	createAudioPluginClass
	getFilter
	info
	cost
	audioPlayerRecorder
	audioDeviceReader
	audioDeviceWriter
	audioOscillator
	crossoverFilter
	visualize
	graphicEQ
	info
	visualize
	loudnessMeter
	visualize
	multibandParametricEQ
	visualize
	compressor
	expander
	limiter
	noiseGate
	octaveFilter
	getANSICenterFrequencies
	isStandardCompliant
	visualize
	reverberator
	wavetableSynthesizer
	weightingFilter
	isStandardCompliant
	visualize

	Classes
	setExtractorParams
	info
	extract
	audioFeatureExtractor
	removeAugmentationMethod
	augment
	addAugmentationMethod
	audioDataAugmenter
	writeall
	transform
	combine
	progress
	numpartitions
	partition
	countEachLabel
	splitEachLabel
	preview
	subset
	shuffle
	hasdata
	reset
	readall
	read
	audioDatastore
	midimsg
	mididevice
	hasdata
	midireceive
	midisend
	audioPlugin
	audioPlugin.getSampleRate
	audioPlugin.setSampleRate
	audioPluginSource
	audioPluginSource.getSamplesPerFrame
	audioPluginSource.setSamplesPerFrame
	externalAudioPlugin
	externalAudioPlugin.dispParameter
	externalAudioPlugin.getParameter
	externalAudioPlugin.info
	externalAudioPlugin.process
	externalAudioPlugin.setParameter
	externalAudioPluginSource

	Blocks
	Voice Activity Detector
	Cepstral Feature Extractor
	Audio Device Reader
	Audio Device Writer
	Compressor
	Crossover Filter
	Expander
	Graphic EQ
	Limiter
	Loudness Meter
	MIDI Controls
	Noise Gate
	Octave Filter
	Parametric EQ
	Reverberator
	Weighting Filter
	Wavetable Synthesizer
	Audio Oscillator

